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Abstract

This article addresses topics regarding time measurements performed on quantum systems. The

motivation is linked to the advent of “attophysics” which makes feasible to follow the motion of

electrons in atoms and molecules, with time resolution at the attosecond (1 as = 10−18 s) level,

i.e. at the natural scale for electronic processes in these systems. In this context, attosecond

“time-delays” have been recently measured in experiments on photoionization and the question

arises if such advances could cast a new light on the still active discussion relative to the status

of the time variable in quantum mechanics. One still debated issue is to decide whether one can

define a quantum time operator with eigenvalues associated to measurable “time delays”, or time is

a parameter, as it is implicit in Newtonian classical mechanics. One objective of the present paper

is to investigate if the recent attophysics-based measurements could shed light on this parameter-

operator conundrum. To this end, we present here the main features of the theory background,

followed by an analysis of the experimental schemes that have been used to evidence attosecond

“time-delays” in photoionization. Our conclusion is that these results reinforce the view that time

is a parameter which cannot be defined without reference to classical mechanics.
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I. INTRODUCTION

The field of “attophysics” has emerged in the 2000s with the advent of a new generation

of radiation sources delivering “attosecond” pulses of Extreme Ultra Violet (XUV) radiation

via the High-order Harmonic Generation process.1–3 The time resolution attainable with this

new class of sources goes much beyond the realm of “femtochemistry” explored by Zewail et

al.4 The latter technique relies on using optical laser pulses with a few tens of femtosecond

duration, thus making possible to follow the motion of nuclei inside molecules. The essential

difference is that the new generation of “attosecond” XUV sources makes feasible to follow

in real time the motion of electrons inside atoms or molecules. As explained below, exper-

imentalists have been able to measure attosecond “time-delays”, that are associated to the

photoionization process.5–8

The physical meaning of such measurements of “time” raises the question of the status

of the time variable, i.e. whether it is a parameter or a quantum operator. This is a matter

of discussion since the early days of the quantum theory in spite of the fact that, following a

very brief footnote in 1933’s Pauli’s General Principles of Quantum Mechanics,9 there is an

(almost–)general consensus about the idea that there is no time operator with eigenvalues

being associated to the measurement of “time-delays”. Were not the recent improvements in

the time resolution of experiments, the subject would have rested in the quiet repository of

academic topics, of interest only to a handful of scholars. However, since the 1980s, in parallel

with the advent of Scanning Tunneling Microscopy and studies of the transport of electrons

in semi-conductor devices, there has been a significant renewal of research activity regarding

the related topic of “tunneling times”. The idea was to associate a characteristic timing to

the quantum process of electron tunneling through potential barriers,10 or to answer the bold

question put forward by Steinberg: How much time does a tunneling particle spend in the

barrier region? 11 This field of research has given rise to an abundant literature that is not

exempt from controversies, see the review papers.12–16 In parallel, there were many attempts

to define time operators, with eigenvalues that could be associated to “tunneling time”, “time

of arrival”, “dwell time”, “time of occurrence”, etc. See, for instance, a non-exhaustive list

of papers in refs.17 as well as the book edited by Muga.18

As regards to the performances of the new sources, recent advances in both generation

schemes and attosecond metrology have evolved in two distinct directions: One has resulted

2



in the generation of single isolated XUV pulses with duration down to 80 as,19 while the

other resulted in the emission of attosecond pulse trains, the emitted bursts of XUV radiation

having durations down to 63 as.20 As explained below, when recombining such radiation fields

with an infrared (IR) laser pulse, one can realize “two-color” pump-probe experiments with

enough temporal resolution to monitor the motion of electrons on its natural time-scale (1

atomic unit of time ≈ 24 as).21 A representative illustration of these advances is provided

by the real-time imaging of the electron-hole dynamics in the dinitrogen N+
2 molecular ion

in the presence of a strong IR laser pulse, with sub-femtosecond time resolution.22 Another

line of research has been opened by looking at the photoionization of atoms in the time

domain. One major outcome has been to evidence intrinsic “time-delays” associated to the

process.5–8,23 We stress that this concept differs fundamentally from the well established

notions of quantum dynamics related to the lifetime of excited states. Regarding the input

of attophysics in this latter field, see refs.24–26

To address the theoretical aspects of the question, we have collected here several results

that are relevant to expose the formal background required to address the parameter-operator

conundrum. It turns out that most of the textbooks in advanced quantum mechanics report

Pauli’s statement in favor of the parameter nature of time, without giving the hint of a proof.9

This makes difficult for students (and even to confirmed researchers) to convince themselves

of the validity of the assertion that there is no time operator, see for instance Sakurai’s Mod-

ern Quantum Mechanics.27 In fact, the theoretical literature about this topic is scattered in

books on the mathematical foundations of Quantum Mechanics that are not easily accessi-

ble, even on internet.28,29 Another issue is that the topic is often treated in a rather abstract

way, in mathematically oriented papers, not easy to decipher by non-specialists. We mention

that the subject has been also discussed in a series of pedagogically-oriented papers, where

the emphasis was focused on historical aspects, thus shedding light on the reasons why there

is still a debate about the status of the time variable in quantum mechanics.30 One purpose

of the present paper is to expose the theoretical background, in a “user friendly” way. In

the same spirit, we shall describe also the physical basis of the experimental techniques

implemented to measure attosecond “time-delays” in photoionization. We stress that, given

the rather ”pedagogical” orientation of our paper, this latter part is not intended as a com-

prehensive account of the literature recently published on what is considered by now as a

”hot-topic” in the field.
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The organization of the paper is as follows: In the next section, we shall present the

uncertainty relations as they were exposed by Heisenberg. The so-called “Stone-von Neu-

mann theorem”, which provides the mathematical basis put forward to show that there is

no quantum time operator, will be introduced in Section III. In Section IV we shall outline

different approaches used to rationalize the transition from mathematical inequalities for the

variances of hermitian operators and of Fourier Transform duals to Heisenberg’s uncertain-

ties. The relation between the phases of quantum transition probabilities amplitudes and

“time-delays”, will be introduced in Section V. In Section VI, we shall present the physi-

cal background of the “two-color” IR-XUV schemes that have been used to measure such

attosecond “time-delays” in the photoionization processes. The Section VII will contain

the conclusions and perspectives, while two Appendices will contain mathematical material

supporting the reasoning.

II. HEISENBERG’S UNCERTAINTY RELATIONS

In 1927, Heisenberg has published a highly-cited paper on the so-called “uncertainty rela-

tions” governing the precision of measurements performed simultaneously on couples of con-

jugated variables of classical mechanics.31 The couples encompassed the momentum-position

(p, q), action-angle (J, ω) and time-energy (t, E) pairs, all of them being Fourier Transform

duals of each other. Heisenberg derived the uncertainty relations from the commutators of

the operators associated to these variables, when transposed in the quantum mechanical

formalism. The discussion was focused on two of them, related to the position-momentum

and time-energy pairs:31

∆q ·∆p ∼ h, (1)

∆E ·∆t ∼ h. (2)

Here, ∆q and ∆p are the uncertainties on the position and momentum of the particle con-

sidered, defined for a 1-dimensional system and h ≈ 6.63× 10−34 J s is the Planck constant.

Similar definitions are implied for the time and energy uncertainties. The corresponding

relation for the action J and angle ω pair, was not discussed by Heisenberg, as it could be

derived from the one for the position-momentum couple. At the time of publication of the

paper, the question of the existence of a quantum time operator was not questioned.

4



Beyond the evident formal similarity between Eqs. (1) and (2), there is however a pro-

found difference between them, based on the nature of the variables considered. Position

and momentum are dynamical variables of classical mechanics, often referred to as canoni-

cal variables that are partial derivatives of the Lagrangian.32 While energy is a function of

positions and momenta, time is not a canonical variable and is considered as a parameter

in Newtonian mechanics.32

The position-momentum (Q,P ) operators commutation relation, written in matrix form

for 1-D systems, had been established by Heisenberg as follows:

[Q,P ] = QP − PQ = i~1, (3)

where 1 is the unit matrix. As we shall outline below, Eq. (1) can be recovered directly

from this commutation relation. The question at stake is whether or not one could write

a similar equation for a pair of time-energy (T,H) operators, where H is the hamiltonian

operator and T would be a time operator. Then it would take the following form, as written

by Heisenberg in his paper (see pages 177-178 in ref.31):

[T,H] = TH −HT = i~1. (4)

If this latter equality were correct, then Eq. (2) would follow with the same reasoning as

the one used to establish Eq. (1). However, as pointed out by Pauli,9 Eq. (4) cannot hold,

because the energy spectrum of the hamiltonian operator H for a real physical system is

bounded from below and is possibly discontinuous with discrete eigenvalues. The mathe-

matical argument used to address this point is based on the so-called Stone-von Neumann

theorem which is presented in the next section.

III. THE STONE-VON NEUMANN THEOREM

The self-adjoint operators P and Q act in an Hilbert space H of complex-valued, square-

integrable L2 functions. It turns out that Eq. (3) is verified only if P and Q are unbounded,

i.e. if their spectral radius is infinite and if H is infinite-dimensional. This can be veri-

fied with the help of the following general considerations, exposed here for two hermitian

operators A and B:

i) If A and B are bounded, i.e. with finite spectral radius, then AB and BA are bounded.

If one assumes that AB − BA = α1, with α 6= 0, then the spectra of AB and BA are
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translated by α. However, this is inconsistent with AB = A(BA)A−1 which indicates that

AB and BA have the same spectrum, since they are linked by a similarity transform.33

Thus, if P and Q were bounded, Eq. (3) could be verified only in the limit ~ = 0.

ii) If A and B act in a finite dimensional Hilbert space, their commutator cannot verify

a relation like [A,B] = α1 with α 6= 0. This is because the trace of their commutator is

identically zero while the trace of the identity matrix is equal to the dimension of H. Again,

if P and Q were defined on a finite Hilbert space, Eq. (3) could be verified only in the limit

~ = 0.

These results are satisfying for physicists, who are not bothered with infinite Hilbert

spaces and who assume safely that a particle position and momentum components are in-

trinsically unbounded. However, Weyl put forward a more formal approach,28 which con-

tributed to a deeper insight in the properties of this class of operators and has opened most

interesting perspectives in group theory. In fact, his argument provided the background to

establish the so-called Stone-von Neumann theorem,34,35 which had a profound influence in

Mathematical Physics, as testified by the abundant literature devoted to its consequences.36

An account of the line of reasoning followed by Weyl can be summarized as follows:

Weyl’s insight was that the self-adjoint operators of quantum mechanics can be exponen-

tiated to one-parameter unitary groups − this has been formally demonstrated a few years

later by Stone−.34 He introduced the following unitary operators, here written for P and Q:

Uτ = eiτP and Vτ = eiτQ; with τ ∈ R. (5)

The usefulness of these exponentiated forms can be outlined as follows:

First, the action of these operators on P and Q leads to the following kind of double-sided

expansion:

Uτ Q U−τ = eiτP Q e−iτP =

[
1 + iτP +

(iτ)2

2!
P 2 +

(iτ)3

3!
P 3 + · · ·

]
× Q

[
1− iτP +

(−iτ)2

2!
P 2 +

(−iτ)3

3!
P 3 + · · ·

]
(6)

When rearranging the terms in powers of τ , this product can be conveniently rewritten in

terms of nested commutators, under the form of the so-called “Baker-Campbell-Hausdorff”
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formula:37

Uτ Q U−τ = Q+ iτ(PQ−QP ) +
(iτ)2

2!
(PPQ− 2PQP +QPP ) + · · ·

= Q+ iτ [P,Q] +
(iτ)2

2!
[P, [P,Q]] +

(iτ)3

3!
[P, [P, [P,Q]]] + · · · (7)

If the commutator of the involved operators obeys Eq. (3) so that [P,Q] = −i~, all the

terms in τn with n > 1 are identically zero and one ends with:

Uτ Q U−τ = Q+ ~τ. (8)

As Q and Uτ Q U−τ are linked by a similarity transform, they have the same spectrum.

Thus, Eq. (8) shows that the spectrum of Q is invariant under a finite translation ~τ along

the real axis or, in other words, it is located on the real line and is unbounded. Clearly, the

same analysis holds for P . More formal developments relative to the Stone-von Neumann

theorem are summarized in Appendix A.

IV. HEISENBERG’S INEQUALITIES

The above theorem, established for the conjugated operators (P,Q), cannot be transposed

to the pair (T,H). Regarding the time variable t, it can be assumed to flow uniformly on

the real line ]−∞,+∞ [ and an associated time operator T would be unbounded. However,

as pointed out by Pauli, the hamiltonian operator H with real eigenvalues associated to

energies is always bounded from below in non-relativistic systems (or it has a discontinuous

spectrum in the gap between [−mc2,+mc2] in a relativistic context).9 This implies that its

spectrum is not invariant under a finite translation along the real axis as in Eq. (8) and,

accordingly, that Eq. (4) cannot be satisfied.

It remains to justify Heisenberg’s time-energy uncertainty relation in Eq. (2). As we

shall show below in Subsection A, it can be established by exploiting the properties of

the Fourier transform, without any reference to quantum operators. It turns out that the

same analysis holds also for the (P,Q) pair, once the operator relation P = −i~∂/∂Q is

admitted.28 This implies that the uncertainty relation Eq. (1) can be established indifferently

in two ways either using the Fourier Transform formalism exposed below in Subsection A,

or using the commutation relation Eq. (3), as shown in Subsection B. Interestingly, the

so-called Cauchy-Schwarz inequality plays a central role in both derivations: Heisenberg’s
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uncertainties relations derive directly from this central theorem of analysis which establishes

the inequalities obeyed by the products of the variances attached to each variable.

A. Time-energy Heisenberg’s uncertainty relation

The definition of the Fourier-transform for the time-frequency duals (t, ω) is extended to

the time-energy (t, E) pair via Planck’s prescription E = ~ω. This is the only place where

quantum mechanics come into play in the line of reasoning. If f(t) is a square-integrable L2

function of the time variable, one can define its L2 Fourier transform g(E), such as the two

functions are linked via the relations (in physicist’s notations):

f(t) =
1√
2π~

∫
R

dE e+iEt/~g(E),

g(E) =
1√
2π~

∫
R

dt e−iEt/~f(t). (9)

They obey the Parseval’s theorem:∫
R

dt |f(t)|2 =

∫
R

dE |g(E)|2, (10)

and the average (or expectation) values t0 and E0, related to each distribution are:

t0 =

∫
R

dt t |f(t)|2 ; E0 =

∫
R

dE E |g(E)|2, (11)

The uncertainties ∆t (∆E) defined by Heisenberg are linked to the variances σt (σE) via:

(∆t)2 = σ2
t =

∫
R

dt (t− t0)2 |f(t)|2 =

∫
R

dt (t2 − t20) |f(t)|2,

(∆E)2 = σ2
E =

∫
R

dE (E − E0)
2 |g(E)|2 =

∫
R

dE (E2 − E2
0) |g(E)|2, (12)

and, since the average values t0 and E0 can be removed from the integrands via variable

changes such as t → t + t0, the squared uncertainties can be identified with the second

moments of |f(t)|2 and |g(E)|2:

(∆t)2 =

∫
R

dt t2 |f(t)|2 , (∆E)2 =

∫
R

dE E2 |g(E)|2. (13)

From these definitions, one can show that the product of the squared uncertainties verifies

the inequality:

∆E2 ·∆t2 ≥
(
~2

4

)∫
R

dt |f(t)|2 ·
∫
R

dE |g(E)|2, (14)
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which reduces to Heisenberg’s inequality when |f(t)|2 (hence |g(E)|2) is normed to unity:

∆E ·∆t ≥ ~
2
. (15)

The details of the derivation, based on the Cauchy-Schwarz inequality, are summarized in

the Appendix B.

When performing the change E → ~ω, Eq. (15), reduces to the well known inequality

for the time-bandwidth product associated to the Fourier components of a signal f(t), with

finite support. The lower limit for the product ∆ω ·∆t = 1/2 is attained only for Gaussian

time-frequency distributions.

We mention also that a less formal derivation of Eq. (15) has been proposed by Man-

delstam and Tamm in 1945.38 It is based on the idea that ∆t is a time interval that can be

associated to the change ∆E in the expectation value of the operator H. A clear exposition

of the reasoning can be found in the book by Griffiths.39

We turn now to the direct connection which can be established between the commutator

relation for the (P,Q) operators, Eq. (3), and Heisenberg uncertainty relation in Eq. (1).

Here again, it can be derived from the Cauchy-Schwartz inequality verified by the product

of the “expectation values” of these operators.

B. Position-momentum Heisenberg’s inequality

We consider first the general case of two hermitian operators A and B. Specialization

to the (P,Q) couple will be presented at the end. The first step implies the definition of

the variances of A and B, for a quantum system in a state |Ψ〉. The expectation values of

these operators will be denoted 〈A〉 = 〈Ψ|A|Ψ〉 with the same definition for B. Then, it is

convenient to define the auxiliary kets:

|f〉 = (A− 〈A〉) |Ψ〉 and |g〉 = (B − 〈B〉)|Ψ〉, (16)

so that the variances attached to the observables A and B are expressed as:

σ2
A = 〈f |f〉 , σ2

B = 〈g|g〉, (17)

which are directly linked to the uncertainties ∆A =
√
σ2
A and ∆B =

√
σ2
B, introduced by

Heisenberg. The minimum value taken by the product of the variances is governed by the
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Cauchy-Schwarz inequality which states that:

σ2
A · σ2

B = 〈f |f〉 · 〈g|g〉 ≥ |〈f |g〉|2. (18)

As the amplitudes 〈f |g〉 are complex quantities with 〈g|f〉 = 〈f |g〉∗, it remains to note that:

|〈f |g〉|2 =

(
〈f |g〉+ 〈g|f〉

2

)2

+

(
〈f |g〉 − 〈g|f〉

2i

)2

, (19)

with:

〈f |g〉 = 〈AB〉 − 〈A〉〈B〉, and 〈g|f〉 = 〈BA〉 − 〈A〉〈B〉, (20)

so that:

〈f |g〉+ 〈g|f〉 = 〈AB +BA〉 − 2〈A〉〈B〉, and 〈f |g〉 − 〈g|f〉 = 〈[A,B]〉. (21)

When inserted in Eq. (19) and replacing in Eq. (18), one obtains the so-called “Robertson-

Schrödinger” uncertainty inequality:40

σ2
A · σ2

B ≥
(

1

2
〈AB +BA〉 − 〈A〉〈B〉

)2

+

(
1

2i
〈[A,B]〉

)2

. (22)

Being the sum of two squares, and specializing to the position-momentum couple in 1-D

systems, with [Q,P ] = i~, see Eq. (3), one has clearly:√
σ2
P · σ2

Q = ∆P ·∆Q ≥ ~
2
, (23)

this relation establishing the minimum value attainable for the product of uncertainties

for conjugated variables. The minimum is reached for the ground state of the harmonic

oscillator system i.e. when the position probability density and the momentum distribution

are Gaussian.

V. FROM PHASE-SHIFTS TO “TIME-DELAYS”

In view of the above, it appears clearly that there is a fundamental difference between:

i) the time-energy uncertainties product, directly linked to the classical time-bandwidth

relation, as derived from a Fourier-transform analysis, where quantum physics comes into

play when using Planck’s prescription E = ~ω;

ii) the position-momentum uncertainties relation that can be derived from both the

Fourier-Transform analysis and from the quantum properties of matter, as described by

self-adjoint operators.
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This leads to the idea that time is in fact a classical parameter, not amenable to a quantum

description. This point is advocated by Briggs and Rost,41,42 who have convincingly shown

that time appears in the quantum mechanical description of microscopic systems, as the

result of the coupling with the environment that is intrinsically macroscopic and classical.

In this picture, the environment encompasses the time measurement device itself.43

Regarding the quantum mechanical description of an energy-conservative system, time

enter the expression of the wave function through a phase-dependent term. This implies that

time-delays are directly linked to phase-shifts. As shown next, in the the context of scattering

theory, the formal relation existing between time-delays and the phase-shifts induced by the

scattering event, has been established by Wigner.44

A. Wigner-like “time-delays”

Wigner has introduced the concept of “time-delay” in the context of the scattering of

a particle by a short-rang potential.44 In the course of the process, the scattered particle

experiences a delay, as compared to the classical free motion, this latter point being of

importance in what follows. In a quantum context, the projectile, so long as it is in free

motion, can be described by a wave-packet with constant group velocity. In the initial state,

i.e. far from the scattering centre, the radial component of an incoming wave packet (here

specialized to the case of an s−wave component) is of the general form:

Ψin(r, t) ∝
∫ +∞

0

dE|A(E)|e−i(Et/~+kr+δ). (24)

where |A(E)| is the amplitude of the energy distribution, k = mv/~ is the wave number

and δ is a phase fixed by the time when the maximum of the wave packet amplitude would

be located at the origin r = 0. In a similar way, the asymptotic form of the outgoing wave

packet is:

Ψout(r, t) ∝
∫ +∞

0

dE|A(E)|e−i(Et/~−kr+δ−η(E)), (25)

where the new term η(E) is the energy-dependent phase-shift induced by the scattering

potential.

The connection between this quantum description and classical “time-delays” can be

found via a stationary phase argument: The dominant contribution to the above integrals

comes from the energy range where the argument of the oscillatory exponential is stationary.
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This range is located in the vicinity of the zero of its energy derivative. With ∂k/∂E =

m/(~2k), one establishes that the classical time-position relation for the incoming wave-

packet, t = −r/v, is recovered via:

∂

∂E
(Et/~ + kr + δ) =

t

~
+

m

~2k
r = 0, ⇐⇒ t = −m r

~k
= −r/v. (26)

For the outgoing wave, the same reasoning leads to to the modified relation:

t

~
− m

~2k
r − δη(E)

∂E
= 0, ⇐⇒ t =

r

v
+ τW , (27)

where:

τW = ~
∂η(E)

∂E
, (28)

is the so-called Eisenbud-Wigner “time delay”.14,44 The reference to classical mechanics is

implicit in this derivation.45

We note that, in the context of collision theory, the measurement of such “time-delays”

belongs to the realm of so-called Gedanken (i.e. thought-)experiments, which would imply

distinguishing between the arrival times of particles having experienced or not the forces

induced by a spatially localized potential.46 As noted by several authors, such a scenario is

not realizable in actual measurements and, for years, the concept of “time-delays” remained

as a rather abstract topic, with however the exception of resonant scattering, i.e. when

delays could be related to the lifetimes of decaying states in atoms, molecules or nuclei.14,46

B. Quantum Tunneling

As mentioned in the introduction, the question of the link between phase-shifts and

“time-delays” has been explored in more detail in the 1980s, in relation with the quantum

phenomenon of tunneling. Again, energy derivatives of phase-shifts were invoked, the ratio-

nale being that, as compared to free motion in the absence of the barrier, the transmitted

wave acquires a phase that depends on both the energy of the projectile and on the shape

of the barrier. This can be schematized as shown in Fig. (1), which represents an incoming

particle with kinetic energy lower than the top of the barrier, with its reflected and trans-

mitted wave components. For a given barrier shape, the latter are represented as complex

amplitudes R(E) and T (E) with general form:

R(E) = |R(E)|eiφ(E) ; T (E) = |T (E)|eiη(E) with : |R(E)|2 + |T (E)|2 = 1. (29)

12



E
n

er
g

y
  

E
Position

| R(E) | e
iφ(E)

| T(E) | e
iη(E)

V

0

FIG. 1. Schematic representation of the tunneling of a particle with kinetic energy E, incoming from

the left of a barrier with height V , with E < V . The transmitted and reflected wave components

are complex quantities with modulus denoted |T (E)| and |R(E)|, with respective phases η(E) and

φ(E), see Eq. (29).

It was tempting to define a Wigner-like “tunneling time” from the energy derivative of

the phase of the transmission probability amplitude τW = ~ ∂η(E)/∂E. However, it soon

appeared that this approach was oversimplified and could not encompass the great variety

of physical situations. For a barrier with height V , the following definitions have been

proposed, in addition to the original Wigner definition for τW :

τL = −~ ∂η
∂V

τBL = −~∂ ln |T |
∂V

τPM = Im

[
−~ ∂T

T ∂E

]
. (30)

Here τL stands for the dominant contribution to the Larmor time as defined for a region of

space where a magnetic field makes the spin of the projectile to precess.13,14 We mention

that a more general definition had been proposed earlier by Baz’ et al.47 It establishes the

relation existing between a “time delay” and the deflection angle θ of a charged projectile

traveling through a finite region of space where a (weak-)magnetic field is present. Here

the magnetic field plays the role of a “clock” device, so that a meaningful “time-delay”

associated to the scattering event can be measured, via the determination of the deflection

θ.47 On the other hand, τBL stands for the Büttiker-Landauer time defined for a time-

modulated barrier.10,13 The last definition of τPM stands for the Pollack-Miller imaginary

time.48 The latter originates from the fact that both a Feynman path-integral approach

and the concept of time-averaged correlation functions lead to complex tunneling times,
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with no clearcut physical interpretation of the real and imaginary components.14 A common

framework for these different definitions is presented in Yamada’s paper.49

One major reason for the lack of consensus is that the high-energy components of the

incoming wave-packet are propagating faster, thus reaching the barrier first and having

higher transmission probability. This entails that the spatio-temporal distribution of the

transmitted wave-packet is changed with respect to the incoming one and that the stationary-

phase derivation looses of its relevance. Other criteria have been proposed to remedy to this

difficulty, such as choosing the motion of the average value of the position operator, but all

of them suffer from some inconsistencies.

Besides, the time-energy Heisenberg inequality implies that a temporal profile is associ-

ated to any complex dynamical phenomenon taking place in a quantum system. A single

“time” can be associated to the process if the profile is relatively unstructured and localized

in both time end energy, i.e. when the wave-packet motion remains dominantly classical.

This is explicit in Wigner’s derivation of the relation existing between the energy derivative

of a scattering phase-shift and a group delay. The correspondence is meaningful only via a

reference to classical mechanics and it is a priori excluded for the purely quantum process

of tunneling. This leads to the conclusion is that a single “time” is not enough to fully

characterize the spatio-temporal distribution of the transmitted wave-packet in tunneling.

We note that this applies also to the reflected wave packet as well as to the notion of “dwell

time” associated to the time spent by a scattered particle in a potential well.14

We mention that a very active field of related research has opened, in relation with the

process of atomic (or molecular) strong field ionization taking place in the presence of an

intense IR or mid-IR laser pulse. In such conditions, the dominant mechanism for ionization

is tunneling through the barrier created by the superposition of the atomic binding poten-

tial and of the oscillating electric field associated to the IR laser. In the presence of the

latter, with cycle duration in the femtosecond range, the oscillations of the barrier can be

considered as being slow, as compared to the attosecond scale that characterizes the elec-

tronic motion in atoms.50 Then, it is valid to develop a “quasi-static” approximation which

exploits the results of calculations performed within the framework of the semi-classical

WKB – time-independent – approximation for tunneling.51 A natural consequence is that

the question of “tunneling times” has arisen also in this context, the most recent experi-

mental results reported being the ones obtained with the help of the so-called “attoclock”
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scheme;52–54 See also the reports of recent experiments,55,56 as well as theory papers and

references therein.57–59

We turn now to the study of the photoionization process, as seen in the time domain, in

an attophysics context.

VI. TIME-DELAYS IN ATTOSECOND XUV PHOTOIONIZATION

The main idea is that photoionization of atoms or molecules by a pulse of XUV radiation

can be considered as a half-collision since the photoelectron, initially in a bound state, is

ejected in a scattering state. Then, the energy-derivative of the scattering phase-shift of the

ejected electron wave function can be related, as above, to a characteristic time associated

to photoionization. We stress that the transfer of energy that leads to the ejection of the

electron results from the annihilation of one photon, a process which can be considered as

instantaneous.60

However, as above, the definition of a “time delay” requires to choose a “reference” sys-

tem. Delays in “Gedanken” experiments or in numerical simulations can refer in principle

to any arbitrarily chosen reference. By contrast, in real experiments, delays can be mea-

sured when two processes associated to distinct quantum transition amplitudes are launched

simultaneously. Such conditions are met when ionizing atoms from two distinct sub-shells

with the same radiation pulse. The general principle underlying these measurements is

schematized in Fig. 2 for atoms, when irradiated by a attosecond pulse of XUV light. The

frequency is chosen high enough so that electrons pertaining either to the valence or to the

inner-valence sub-shells can be photoionized. For example, in the representative case of Ne

submitted to an attosecond XUV pulse with central energy ~ωXUV ≈ 100 eV, a proportion

of atoms are ionized from the inner-valence state 2s while another part of them are ionized

from the 2p valence states. The ratio between the ionization yields is given by quantum me-

chanical rules determining ionization probabilities.6 The photoelectron spectrum displays

two distinct peaks, with widths governed by the combined bandwidths of the attosecond

XUV pulse and of the electron spectrometer response.61

When generated in the sole presence of an XUV pulse, the experimentally recorded pho-

toelectron spectra do not permit to measure characteristic photoionization delays in the ab-

sence of a time-discrimination device. A convenient way to realize such a time-discrimination

15



| a >E
a

E
b | b >

δ
a

δ
b

ε
a

ε
b

FIG. 2. Schematic representation of single-photon photoionization of atoms by XUV radiation with

frequency high enough to extract an electron from either states |a〉 or |b〉. In the asymptotic region,

the phase-shifts δa and δb of each electron wave-packets differ, as compared to a free wave (light-

color) with the same kinetic energy. When “clocked” by an auxiliary IR laser, one can evidence a

“time-delay” between the wave-packets originating from either state |a〉 or |b〉, (see text).

is to “clock” the process in the presence of an auxiliary IR field.62 In such conditions, the

emitted photoelectrons can exchange energy and momentum with the IR “dressing” field,

through stimulated transitions (either absorption or stimulated emission).63–67 Then, while

the XUV pulse “pumps” electrons in the continuum, the coherent IR laser field plays the

role of a “dressing” field used as a “probe”. As we shall show below, the difference in the

timing of ionization of each atomic state can be determined from the analysis of the photo-

electron spectra recorded when scanning the delay τ between the XUV “pump” and the IR

“probe”.55,56,63,64,73,74

Depending on the type of attosecond XUV pulse used, two distinct technique have been

implemented: i) “Streaking” relies on an isolated XUV pulse, combined with a few-cycle IR

pulse;65–67 ii) the so-called RABBIT technique uses XUV harmonics of the fundamental IR,
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when they are produced as an Attosecond Pulse Train (APT).63,64,73,74 The first technique

makes feasible a direct measurement of delays,5,6,8 while the latter gives access to the intrinsic

phases of quantum transition amplitudes.63,64,73,74

We mention that a most interesting outcome of these investigations has been to evidence

the role of the IR probe field: The “dressing” of the photoelectrons by the IR field changes

the phases of the wave-packets created in the course of the primary photoionization process.

In short, the outcome of the experiment is modified by the measurement device itself, such

a situation illustrating one of the peculiarities of Quantum Mechanics. We turn now to a

brief presentation of the theoretical background governing this class of experiments.

A. Isolated Attosecond XUV Pulses: Streaking

“Streaking” of photoelectron spectra consists in recording the kinetic energy variations

of angle- and time-resolved signals, when combining an attosecond XUV pulse with a rather

intense few-cycle IR pulse, with controlled delay τ .65–67 The physical background can be

schematized as follows: When ejected in the presence of the “dressing” IR field with vector

potential ~A(ωIR, t), the photoelectrons (with charge −e and velocity ~v), acquire a conserved

“canonical” momentum:

~p = m~v − e ~A(ωIR, t), (31)

As shown in Figs. (3), the corresponding “streaked” spectrogram, i.e. the time-resolved

photoelectron energy spectrum, follows in time the oscillations of the vector potential:

EKin(ωIR, t) =
1

2
mv2 =

1

2m
[~p+ e ~A(ωIR, t)]

2

≈ 1

2m
[p0 + eA0(ωIR, t)]

2, (32)

where the second line corresponds to an experimental configuration with detection aperture

aligned with the polarization direction ‖ ~A(ωIR, t).
6,67 Here,

p20
2m

= ~ωXUV − Ip, (33)

is the initial kinetic energy of the photoelectron born from a bound state with ionization

energy Ip, upon absorption of one XUV photon ωXUV , in the absence of the IR field. In

Fig. 3(a), we present the time-dependence of the vector potentials of a few-cycle IR field,

and of an isolated attosecond XUV pulse with controlled delay τ . A typical shape of a
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FIG. 3. (a) Schematic representation of the time dependence of the vector potentials of a few-

cycle IR laser pulse (T ≈ 2.6 fs) and of an isolated “attosecond” XUV pulse. There is a delay

τ between the maxima of the envelopes of the vector potentials. (b) Numerical simulation of a

streaking photoelectron spectrogram. The photoelectron kinetic energy variations are reported,

as a function of τ . This simulation has been realized by solving the Time-Dependent Schrödinger

Equation for a 1-dimensional model potential with ionization energy IP ≈ 13.6 eV, in the presence

of the IR pulse and of an XUV pulse with central energy ~ωXUV ≈ 63.6 eV and a duration ≈ 400

as. Here, the width of the energy distribution of the photoelectrons is governed by the time-energy

relation Eq. (15).

streaking photoelectron spectrogram, as a function of τ , is displayed in Fig. 3(b). The

photoelectron trace has an energy width that is governed by the attosecond XUV pulse

duration, through Heisenberg uncertainty relation Eq. (15). In actual experiments, one has

to include also the response of the electron spectrometer.6,61,67 We mention that sophisticated

iterative techniques, such as the one dubbed FROG-CRAB, have been developed to achieve

a temporal resolution at the attosecond level, i.e. significantly more accurate than the limit
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imposed by the duration of the pump XUV pulse.68

One of the major findings from this class of experiments was to observe that the streaking

traces for the electrons originating from either the 2s or 2p states in Neon were off by an

amount ∆t2s,2p ≈ 21 as which, although small, is significant given the time resolution of

the experiment.6 Together with other streaking experiments, this was the signature of the

existence of different “time-delays” in the photoionization process, depending on which initial

states the photoelectron were originating.5,8

As mentioned in the introduction, the theoretical interpretation of these results has given

rise to several difficult questions. A priori, the only difference regarding the timing of

ionization, lays in the different phase-shifts experienced by photoelectrons originating from

distinct atomic states. In the cases considered here, the dipole approximation holds, with

selection rule ∆` = ` ± 1. As an example, the photoelectrons originating from an s states

have a p−wave character, while those originating from a p−state are in a superposition of

s− and d−waves. These photoelectron waves experience different effective radial potentials

and their associated phase-shifts η`(E), as well as their energy derivatives ∂η`(E)/∂(E), are

different. This leads to the idea to derive corresponding `−dependent Wigner-like “time-

delays”:

τ`,W = ~ ∂η`(E)/∂E. (34)

It turns out that, in the representative case of the 2s and 2p states in neon, there is no

satisfactory agreement between the experimental value ≈ 21± 5 as and the results derived

from this Wigner-like model.6 Indeed, the results of the simulations cluster around τ ≈ 10

as, i.e. they are off from the experiment by ≈ 10 as. One open question is related to the

intra-shell electron correlations that are expected to play an important role, when comparing

ionization from different sub-shells in rare gases.69–72 Also, the discrepancy might be ascribed

to the difficulty to estimate the delay resulting from the “dressing” induced by the rather

intense IR probe. The role of this latter effect has been addressed in detail in the context

of the RABBIT spectroscopies which are implemented at lower IR intensities, see next.

B. Attosecond Pulse Trains: RABBIT photoelectron spectroscopy

The principle of the technique has been described first by Véniard et al.73 while the

RABBIT acronym stands for the title of Muller’s paper: “Reconstruction of Attosecond
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harmonic Beating By Interference of Two-photon transitions”.74 A pedagogical description

of the technique has been already published.75

Here, the IR field used to generate the XUV harmonics is multicycle, with durations of the

IR pulse lying in the range of a few tens of fs, for 800 nm lasers with cycle duration of≈ 2.6 fs.

The XUV spectrum emitted by centrosymmetric systems (e.g. rare gas atoms) is constituted

of a comb of equidistant harmonic frequencies labelled · · ·ω2N−1, ω2N+1, · · · , that are odd

multiples of the pump IR laser with ω2N±1 = (2N ± 1)ωIR. Accordingly, when ionizing a

test atom with such an harmonic pulse, the photoelectron energy spectrum is constituted

of equally spaced lines, separated by 2~ωIR and located at energies ε2N±1 ≈ ~ω2N±1 − Ip.

In the following, they will be labelled H2N±1. On the other hand, when seen in the time

domain, see Fig. (4a), the harmonic radiation is emitted under the form of an APT, i.e. a

train of equally spaced attosecond XUV pulses.63

As it is the case for “streaking”, RABBIT is based on the fact that, in the presence of

two different “colors”, e.g. XUV + IR, the system can exchange energy (photons) from

the two fields. The IR field intensity is kept low enough so that multiphoton ionization is

negligible while, regarding the interaction with the harmonic XUV radiation, one-photon

absorption is by far dominant.76 By contrast, the probability for the two-photon processes

associated to the joint absorption of one XUV photon and the exchange of one IR photon is

not negligible. In fact, for suitably chosen IR intensities and delays, the cross sections of the

two-color, two-photon IR-XUV processes become comparable to the one for the absorption

of a single XUV photon.73 This property is exploited in RABBIT spectroscopies where,

in a suitably chosen regime, the corresponding transition amplitudes can be conveniently

computed from second-order perturbation theory.63,73,74

As shown in Fig. (4b), in the simultaneous presence of the two fields, one observes side-

bands, labelled S2N , that are equidistant from the consecutive harmonic lines H2N±1.
7,63,73

Their magnitudes vary periodically with the delay τ between the two fields. Such periodic

variations result from the interferences between the amplitudes associated to the different

quantum paths leading to a given sideband. Their τ−dependence is given by the simple

law:7,63,73–75

S2N ≈ α + β cos[2ωIR(τ − τ2N − τθ)], (35)

In this expression, derived from a lowest-order perturbation theory approach, α and β are

real parameters that characterize the atomic target and the fields amplitudes. They differ
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FIG. 4. (a) Schematic time-domain representation of the “two-color” configuration for RABBIT-

like time-resolved measurements. Shown are the time dependence of the vector potentials of a

many-cycle IR laser pulse (T ≈ 2.6 fs) with moderate intensity and of train of “attosecond” XUV

pulse built from a set of harmonics of the IR. By controlling the delay τ between the IR cycle

and the peaks of the XUV pulse train, one “clocks” the time when ionization takes place. (b)

Schematic frequency-domain representation of a photoelectron spectrum as obtained in a “multi-

color” configuration, typical of a RABBIT experiment. Photoelectron peaks associated to the

absorption of odd harmonics are denoted H2N±1 and sidebands resulting from the exchange of one

additional IR photon are denoted S2N . The magnitudes of the sidebands change periodically, as

shown in Eq. (35), when varying the delay τ between the IR cycle and the peaks of the XUV pulse

train.75

also, depending on the initial state ionized in the process. τ2N can be defined as a “group

delay” associated to the difference in the emission times of consecutive harmonics.64 On the

other hand, τθ is an intrinsic “atomic time” associated to the two-photon ionization process.

It is this latter quantity that is of interest here since it contains the channel-dependent

ionization “time-delay” itself. Indeed, one can identify two dominant contributions to τθ

which, to a very good approximation, can be expressed as:7,77

τθ ≈ τW,` − τcc, (36)

i) the first term τW,` is the atomic, state-dependent Wigner-like delay as defined in Eq.

21



(34);

ii) the second term, denoted τcc, is associated to the stimulated continuum-continuum

transitions that result of the “dressing” of the photoelectron by the probe IR field.7,77

The validation of this important feature of RABBIT spectroscopy has been established,

in parallel with a numerical comparison with the phase measurements performed for the 3s

and 3p states of Argon.7,71,77 From the measured values of these phases for a sequence of

sidebands · · ·S2N−2, S2N , S2N+2, · · · , one can infer their energy dependence as well as their

derivatives and deduce the corresponding ionization delays, according to Eqs. (34) and (36).

Regarding theory, a detailed derivation of a closed form expression of τcc, which accounts

for the contribution of the “dressing” phenomenon, can be found in ref.78 Performing the

same measurements for two distinct atomics states, one can recover the difference between

the characteristic ionization times of each atomic state. In the above mentioned case of the

3s and 3p states of Argon, the “time-delays” found ∆t3s,3p = τ3s − τ3p vary from −100 to

+10 as, depending on the photoelectron energy.7,77

Before to leave the section dealing with the RABBIT technique, we mention that a

very promising concept has been recently implemented in experiments. It exploits the fact

that this type of measurements is interferometric by essence, since it involves interferences

between different quantum paths leading to the same final state. Such measurements can

be viewed also as double-slit experiments in the time domain. Recent developments deal

with the case where one of the two “arms” of the “RABBIT interferometer” is transiting

via a resonance, while the other explores a smooth continuum. Here, the two “arms” are

the two distinct quantum paths leading to the same sideband. In such a case, the measured

phases can be converted into delays which contain also the “dwell time” inherent to the time

actually spent by the photoelectron in the resonant state. These topics have been addressed

in recent papers dealing with excited bound states in He,79 as well as with He autoionizing

states,25,26. The case of molecular autoionizing state in N2 has been also investigated.80,81

VII. CONCLUSIONS

After the introduction in Section I and a brief exposition of Heisenberg’s inequalities in

Section II, the sections III-IV of the present paper have dealt with a simplified presentation

of the mathematical background serving as a basis to show that there is no hermitian time
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operator in Quantum Mechanics. In short, this orthodox mathematical analysis leads to the

conclusion that it is not possible to measure an absolute value of time, as an eigenvalue

of an hermitian operator associated to a quantum system. However, this conclusion is still

debated in the Mathematical Physics literature, most of the arguments being related to the

quantum process of tunneling. An interesting feature of this analysis is to evidence the fact

that the time-energy uncertainty relation in Eq. (2) – and the inequality in Eq. (15) –

are derived only on the ground of Fourier analysis. By contrast, the momentum-position

uncertainty relation in Eq. (1) – and the inequality in Eq. (23) – can be derived either by

using the commutation relation of the associated hermitian operators, Eq. (3), or by using

a Fourier analysis applied to the (P,Q) pair. This represents the main difference between

the two types of inequalities.

In Section V, we have addressed the question of defining unambiguously characteristic

“times” associated to collisions or to quantum tunneling. The theoretical framework is

given by Wigner’s definition of a “time-delay” as the energy derivative of a phase-shift.

From the experimental side, the difficulty is to determine the energy dependence of the

“scattering phase” of the outgoing waves, as compared to free motion. The first investiga-

tions were focused on tunneling, but the advent of attophysics has shifted the discussion on

the photoionization process. Given the “attosecond” duration of a pump XUV pulse, it is

in principle possible to measure differences between the timing of ionization from distinct

atomic or molecular states. However, defining absolute “time-delays” remain elusive since

one needs always to compare to free motion.

The input of two-color attosecond spectroscopies, either “streaking” or RABBIT, has

been described in Section VI. The advances achieved have been to measure the emission

times of photoelectron wave packets originating from different initial atomic states. These

“time delays” are the quantities that have been determined in the experiments performed

on isolated atoms such as Ne,6 and Ar.7 However, the relation between phases and delays, as

proposed by Wigner, is based on a stationary phase argument, the explicit relation between

the energy derivative of the phase and time being established with reference to classical

motion. This supports the idea that time is a parameter, as in classical dynamics.

More generally, there is no doubt that the advent of “attophysics” opens new perspectives

in the study of time-resolved phenomena in atomic and molecular physics. This goes one

step beyond Zewail’s “femtochemistry”,4 as it permits in principle to follow in real time the
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changes of the electron probability density within a reactive system. The concepts and the

techniques described here will be of interest to follow the future developments of this new

field of research.

Appendix A: Formal developments relative to the Stone-von Neumann theorem

For the sake of completeness, we mention that the relation Eq. (8): Uτ Q U−τ = Q+ ~τ ,

is valid also for any power Qn and, consequently, for any function f(Q) expressible as a

power series, so that:

Uτ f(Q) U−τ = f(Q+ ~τ). (A1)

Clearly, this applies to Vσ = eiσQ with σ ∈ R and one has:

Uτ Vσ U−τ = eiσ(Q+~τ) = ei~στ Vσ, (A2)

the same applying to Uτ :

Vσ Uτ V−σ = ei~στ Uτ . (A3)

This kind of relations constitutes the so-called multiplicative form of Heisenberg’s commu-

tation relation Eq. (3).

The Stone-von Neumann theorem establishes a formal proof of the above results, valid

for infinite-dimensional Hilbert space H and demonstrates the irreducibility of the system

of unitary operators Uτ and Vσ, which form Abelian (commutative) groups. In a simplified

form, the theorem states that there exists always a norm-preserving transformation S of H

such as:82

SPS−1f(q) = −i~ ∂
∂q
f(q), and : SQS−1f(q) = qf(q), (A4)

These equations are written in a 1-dimensional space, but the generalization to a finite-

dimension euclidean space is straightforward, the analysis starting from the well known

commutation relations:

[Pi, Pj] = 0 , [Qi, Qj] = 0 , [Qi, Pj] = i~δi,j , (A5)

the irreducible representations of these operators being unitarily equivalent to each other.

Starting from the Lie algebra generated by this set of relations, mathematicians have built

a most active research area in Group Theory and related topics.36 We mention also that the

Eq. (A4), which provides the expressions of the operators P and Q in the q−representation,

implies that p and q are Fourier-transform duals. This property is being used in Section IV.
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Appendix B: Cauchy-Schwarz inequality verified by the product of the variances of

Fourier Transform duals

To establish the inequality verified by the product of the squared variances, one can start

from Weyl’s remark:28

|f(t)|2 =
d

dt
[t f(t)] f ∗(t)−

(
t
df(t)

dt
f ∗(t)

)
. (B1)

Replacing in the integral over |f(t)|2, and integrating the first term by parts, one gets:∫
R

dt |f(t)|2 =
[
t |f(t)|2

]+∞
−∞ −

∫
R

dt t f(t)

(
df ∗(t)

dt

)
−
∫
R

dt t

(
df(t)

dt

)
f ∗(t)

= −2 Re

[∫
R

dt t f(t)

(
df ∗(t)

dt

)]
≤ 2

∣∣∣∣∫
R

dt t f(t)

(
df ∗(t)

dt

)∣∣∣∣ . (B2)

This result derives from the fact that, in the first line, the first term is zero, as a consequence

of the L2 property of f(t), while the remaining two terms are complex conjugate of each

other, the absolute value of the real part being smaller or equal to the modulus of the

integral. Then the Cauchy-Schwarz inequality can be invoked again, to establish that:∣∣∣∣∫
R

dt t f(t)

(
df ∗(t)

dt

)∣∣∣∣2 ≤ ∫
R

dt t2 |f(t)|2 ·
∫
R

dt

∣∣∣∣df ∗(t)dt

∣∣∣∣2. (B3)

In the left-hand side, the first factor is identified to (∆t)2 while the second one can be further

transformed by using the derivation rule for Fourier transforms:

df ∗(t)

dt
↔ −

(
i

~

)
Eg∗(E), (B4)

which, when using Parseval’s identity, leads to:∫
R

dt

∣∣∣∣df ∗(t)dt

∣∣∣∣2 =

(
1

~2

)∫
R

dE E2|g(E)|2 =
∆E2

~2
. (B5)

Thus, combining the results given in Eqs. (B2), (B3) and (B5), one obtains the inequality

providing the minimum value for the product of variances (squares of uncertainties).
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J. Caillat, J. Mauritsson, A. Maquet, R. Täıeb, and A. L’Huillier “Probing Single-Photon

Ionization on the Attosecond Time Scale,” Phys. Rev. Lett. 106, 143002 (2011) 5 p.

8 S. Neppl, R. Ernstorfer, E. M. Bothschafter, A. L. Cavalieri, D. Menzel, J.V. Barth, F. Krausz,

R. Kienberger, and P. Feulner, “Attosecond Time-Resolved Photoemission from Core and Va-

lence States of Magnesium”, Phys. Rev. Lett. 109, 087401 (2012) 5 p.

9 Wolfgang Pauli, General Principles of Quantum Mechanics, (Springer, Berlin, 1980), p. 63.
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Kovac̆ev, R. Täıeb, B. Carré, H.G. Muller, P. Agostini, and P. Salières, “Attosecond Synchro-

nization of High-Harmonic Soft X-rays,” Science 302, 1540-1543 (2003).

65 Eric Constant, Vladimir D. Taranukhin, Albert Stolow, and P. B. Corkum, “Methods for the

measurement of the duration of high-harmonic pulses,” Phys. Rev. A 56, 38703878 (1997).
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