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We review various aspects of photoemission dynamics in the case of 2-photon ionisation. We first
recall the definition of a transition phase specific to 2-photon transitions. Numerical experiments
on model atoms are used to show how the group delay associated with the transition phase is
actually representative of the early dynamics of the detected photoelectron wave packets. Then we
address the question of measuring these transition delays using a standard interferometric technique
of experimental attosecond physics, so-called rabbit. Finally, we outline different reinterpretations
of rabbit giving access to the more fundamental scattering dynamics affecting any photoemission
process.
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I. INTRODUCTION

Two-photon ionisation is an essential process in at-
tosecond science [1, 2], invoked at various stages of a
number of experimental schemes developped for attosec-
ond time-resolved spectroscopy.

The first characterisations of xuv attosecond light
pulses in 2001 [3, 4] were achieved using xuv-ir two
photon interferometry, where the ir plays the role of a
probe field setting an external clock for the temporal re-
construction of xuv bursts produced by high harmonic
generation (hhg) [5, 6]. These pioneer experiments have
laid the foundations of two classes of characterisation se-
tups – the so-called streaking technique adapted to sin-
gle attosecond pulses [7, 8] and rabbit1 scheme adapted
to attosecond pulse trains [9, 10]. They have become,
since then, standard methods of attosecond technology.
Beyond characterisation, the development of these tech-
niques opened the way for coherent control and shap-
ing of attosecond light pulses [11–14], as well as for a
new class of spectroscopy (dubbed high harmonic spec-
troscopy), which consists in analysing the hhg radiation

1 rabbit stands for Reconstruction of Attosecond Beatings By In-
terference of Two-photon transitions [10].
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to retrieve spatial and temporal information on the gen-
erating medium itself with unprecedented, combined Å
and sub-fs resolutions [15].

In the wide variety of attosecond resolved experi-
ments developped over the years, two-photon processes
have also been used in more conventional pump-probe
schemes, in order to trigger and/or to probe ultrafast
dynamics in chemical matter. Among these, thought-
provoking experiments have revisited in the time domain
the process of photoemission itself, evidencing ionisation
delays ranging from few attoseconds to few femtoseconds
in atoms [16, 17], molecules [18] and solids [19]. These
measurements unfold an intuitive [20] yet up-to-then con-
fidential point of view on a very fundamental process of
quantum physics and spectroscopy, and they initiated a
considerable amount of subsequent theoretical and ex-
perimental work, see e.g. the reviews [21–23].

The present article focuses on the imprints that are
characteristic to two-photon transitions on photoelectron
dynamics. In part II, using well-established second-order
perturbation theory, we provide a formal definition for
a “transition delay”, introduced as the group delay as-
sociated with the contribution of the transition operator
to the overall photoelectron phase. Then, we show in
part III that this formal group delay is indeed represen-
tative of the actual early-stage dynamics of the detected
photoelectron. We used for this numerical experiments
performed on low dimensional model systems. Finally,
part IV reviews the principles of the rabbit interferom-
etry and highlights the way it provides access to pho-
toemission dynamics at various levels of approximations.
Here as well, the validity of the approaches are illustrated
with numerical simulations. This is followed by a conclu-
sion in part V.

II. TRANSITION PHASE AND TRANSITION
GROUP DELAY

A. Formal definition of a 2-photon transition delay

1. Second order perturbation theory for monochromatic
fields

The interaction of an atom or a molecule with two pho-
tons from different fields may induce, in the most general
case, transitions leading to four different final energies –
where each photon is either absorbed or emitted. Here
we consider photoemission processes, which restricts us
to situations where at least one of the photons is ab-
sorbed (the most energetic one, with angular frequency
ωa). The other photon (with angular frequency ωb < ωa)
is either absorbed or emitted. The photoelectron energy
E therefore reads

E = Eini + h̵ωa ± h̵ωb > 0 (1)

where Eini is the initial bound state energy, the origin
being set at the ionisation threshold.

Second order perturbation theory expresses the ampli-
tude associated to such a transition, from an initial state
∣ψini⟩ to a given final state ∣ψE,fin⟩, as the matrix element

T (ωa,±ωb) = ⟨ψE,fin∣T̂(ωa,±ωb)∣ψini⟩ (2)

involving the transition operator

T̂(ωa,±ωb) = [(ε⃗b ⋅ r̂)Ĝ(ωa)(ε⃗a ⋅ r̂) + (ε⃗a ⋅ r̂)Ĝ(±ωb)(ε⃗b ⋅ r̂)]

×FaeiφaFbe
±iφb . (3)

Fk and φk represent the amplitude and phase of the elec-
tric field at pulsation ωk (k = a, b), ε⃗a and ε⃗b the corre-
sponding polarisation directions and

Ĝ(ω) = lim
ζ→0+

1

Eini + h̵ω − Ĥ + iζ
(4)

is the Green’s operator, where Ĥ is the system’s field-
free hamiltonian. Each of the two terms contributing
to T̂(ωa,±ωb) is usually assigned a proper chronology:
absorption of photon ωa followed by absorption/emission
of photon ωb on the one hand; absorption/emission of
photon ωb followed by absorption of photon ωa on the
other hand.

The transition dynamics can further be characterised
by a group delay derived from the phase accumulated by
the photoelectron before reaching the final state. The lat-
ter phase is formally evidenced by expanding the Green’s
operator on an eigenbasis {∣ψn⟩} of Ĥ (with eigenvalues
En),

Ĝ(ω) = lim
ζ→0+

⨋
n

∣ψn⟩⟨ψn∣
Eini + h̵ω −En + iζ

, (5)

the (multi)-index n covering both the discrete and contin-
uum parts of the spectrum. If one of the photons brings
the system above the ionisation threshold, there exists
an eigen-energy En̄ for which Eini + h̵ω −En̄ = 0, making
the integral in Eq. 5 singular. The operator then takes
the form:

Ĝ(ω) = P 1

Eini + h̵ω − Ĥ
− iπδ(Eini + h̵ω − Ĥ), (6)

where P designates Cauchy’s principal part.
Thus, the transition operator is complex as soon as

the system can be ionised by one of the photons alone.
This brings a phase to the matrix element T (ωa,±ωb) in
addition to the phase φa ± φb inherited from the driving
fields, which sets an external clock to the process. Note
that the scattering phase ηsc of the photoelectron also
contributes to argT when the final state is described
by a complex valued scattering wave function. How-
ever, the present article focuses on the time-domain
interpretation of the contribution of the transition itself
to the phase accumulated by the photoelectron, in a
given photoemission channel. For this reason, we will
use throughout this study real-valued continuum wave
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functions, which encode the final state scattering phase
in their asymptotic oscillations (see e.g. [24, 25]).

Below, we see how to account for the spectral width of
the ionising pulses, and the consequences on the identi-
fication of a “transition phase” among the contributions
to the overall phase accumulated by the photoelectron
wave packet.

2. Accounting for the pulse durations

When dealing with pulses of finite durations, the actual
spectral amplitudes T (E) of the created electron wave
packet (ewp) are obtained by integrating the amplitude
defined in Eq. 2 over all the possible photon pairs leading
to the final state at each energy E (see e.g. [26]):

T (E) =
+∞

∫
−∞

T (ωa,±ωb)dωa (7)

with the energy conservation constraint ±ωb = (E −
Eini)/h̵ − ωa. Note that each pair of photon frequencies
brings a factor Fae

iφaFbe
iφb , included in the expression

of T (ωa,±ωb), under the integral. This issue is of partic-
ular importance, since the integration in Eq. 7 entangles,
in the most general case, the “atomic” contribution (im-

printed by Ĝ in Eq. 3) and the field contributions to the
ewp amplitude T (E) and its phase

Θ = argT (E). (8)

Separating the contributions to Θ is however manda-
tory for the interpretation of most of the recent attosec-
ond resolved pump-probe experiments using 2-photon
transitions, notably rabbit-based schemes (see Sec-
tion IV). It is in practice possible when (i) the two ion-
ising fields display constant phases within their band-
widths, or (ii) when one of the pulses is spectrally nar-
row enough to discard the integration, assuming the two
components to display no spectral overlap. In such cases,
one identifies the contribution to Θ that is specific to the
ionised chemical species (so-called “atomic”, “molecular”
or “transition” phase) as

θ = Θ − (φa ± φb). (9)

The above-mentionned rabbit interferometric method,
based on xuv-ir two-photon transitions, assumes in its
common implementations a narrow ir pulse.

To the transition phase one associates a “transition
delay” defined as the group delay

τ = h̵
∂θ

∂E
, (10)

in analogy with the Wigner delay associated to the scat-
tering phase ηsc accumulated in the final continuum
state [16, 17, 20, 24, 27]. The transition delay is the
time-domain quantity the present study is focused on.

B. An illustrative case: 2-photon transition
through an isolated resonance

The relevance of the group delay defined in Eq. 10
to characterise the actual transition dynamics can be il-
lustrated with the specific case of a resonant two-photon
transition. For this, let us consider an atom or a molecule
displaying a resonance in the vicinity of the region
reached by the photon ωa, ie at energy Er ≈ Eini + h̵ωa.
We note Γr the width of the resonance. For simplicity,
we assume monochromatic pulses and work directly on
the transition amplitudes T (ωa,±ωb), ignoring the inte-
gration over the pulse widths (Eq. 7). We additionally
consider the resonance to be significantly intense and iso-
lated, such that all the contributions to T (ωa,±ωb) are
dominated by the transition path involving the resonance
as the intermediate state,

T (ωa,±ωb) ≃
⟨ψE,fin∣ε⃗b ⋅ r̂∣ψr⟩⟨ψr∣ε⃗a ⋅ r̂∣ψini⟩

h̵∆ωa + iΓr

×FaeiφaFbe
±iφb (11)

In this approximate expression, h̵∆ωa = Eini+ h̵ωa−Er is
the detuning of the “first” photon with respect to the res-
onance. The angular frequency of the “second” photon,
ωb, shows up implicitly through the energy conservation
law given in Eq. 1. The transition phase

θ ≃ arctan(− Γr

h̵∆ωa
) (12)

depends explicitly on ωa only. When scanning the reso-
nance by varying ∆ωa, the group delay defined in Eq. 10
now reads

τ ≃ ∂θ

∂ωa
(13)

≃ h̵
Γr

Γ2
r + (h̵∆ωa)2

. (14)

It varies between 0 (large ∣∆ωa∣) and the resonance life-
time τr = h̵Γ−1

r (∆ωa = 0), and it is always positive. In
this case, the delay can be interpreted as the duration
of the transition, which reduces to the following chronol-
ogy: (i) photon ωa is absorbed, (ii) the system remains in
the intermediate resonance for a characteristic duration
τ and (iii) it absorbs/emits photon ωb

2.
One should keep in mind that interpreting the transi-

tion group delay as a duration holds in particular situa-
tions where a single resonant path, among all those open
according to Eqs. 3 and 5, significantly contributes to
the transition amplitude. In a more general framework,

2 A comprehensive and rigorous derivation of transition durations
in the context of resonant Raman spectroscopy can be found
in [28], exploited e.g. for probing the ultrafast dissociation of
small molecules in excited states [29].



4

as considered in the numerical simulations presented in
section III, the group delay reflects the temporal (and
inherently, spectral) distorsions of the produced ewp as
compared to the ionising pulse profiles.

The above derivation also illustrates the close relation-
ship between the 2-photon transition group delay and the
scattering delay experienced by the electron ending up
in the intermediate state, here characterised by the res-
onance lifetime τr. This fundamental connection is the
cornerstone of 2-photon pump-probe setups developed in
the past few years to access the scattering dynamics sub-
sequent to 1-photon ionisation [27], see Section IV C.

III. TRANSITION DELAY AND
PHOTOELECTRON WAVE PACKET DYNAMICS

To demonstrate how the above defined transition phase
and the associated group delay characterise the actual
photoemission dynamics, we performed numerical simu-
lations in simple model systems, following an approach
similar to the one used in [21, 24] in the context of one-
photon transitions. We simulated the full ionisation dy-
namics by solving the time-dependent Schrödinger equa-
tion (tdse) for the model systems in presence of the
fields, and confronted it to the formal delays derived from
transition amplitudes obtained using second order per-
turbation theory.

A. Model systems

1. Potentials

Our numerical experiments were performed on model
1d atoms made of a single electron, of coordinate x, in
various (symmetric) potentials. Each considered poten-
tial is constructed as the sum

V (x) = VLR(x) + VSR(x) (15)

of a long range soft-Coulomb interaction,

VLR(x) = − e2

4πε0

1√
x2 + a2

, (16)

and a system-specific short range contribution VSR(x).
The long range contribution reproduces the universal
asymptotic tail of the potential felt by a photoelectron
leaving a singly charged ion. Its screening parameter a
is the main knob to adjust the ground state energy. The
short range term VSR(x) accounts qualitatively for the in-
teractions between the active electron and the ion core at
short distances, and decays faster than 1/∣x∣. It provides
a flexible way of structuring the continuum.

In the following, we report results obtained on three
model systems, dubbed A, B and C, and referred to as
“atoms” in the following for simplicity. All have their
ground state energy E0 set to −15.64 eV. Atom A is built

with the long range potential only [VSR(x) = 0], while the
potentials of atoms B and C display additional, sym-
metric, short-range barriers. In both cases, the barrier
separation was adjusted to induce a shape resonance at
Er ≃ 1.9 eV above threshold. The main difference be-
tween atoms B and C is the resonance lifetime h̵Γ−1

r , set
to 1.7 fs and 54.8 fs respectively. The corresponding po-
tentials are shown in Fig. 1 and their main characteristics
are reported in Table I.

model a xB wB VB E0 Er Γr h̵Γ−1r
atom (a.u.) (a.u.) (a.u.) (eV) (eV) (eV) (meV) (fs)

A 1.2 – – – −15.64 – – –

B 1.2 ±7.50 5.0 1.36 −15.64 +1.86 387 01.7

C 1.2 ±9.25 7.5 3.54 −15.64 +1.87 012 54.8

TABLE I: Parameters defining each model atom used in our
simulations: a is the regularisation parameter for the soft-
Coulomb long-range component [VLR(x)]; xB, wB and VB rep-
resent the central position, the width and the height of the
hyper-gaussian barriers shaping the short range contribution
[VSR(x)] in atoms B and C. The ground state energy E0, as
well as the resonance energy Er, width Γr (and lifetime h̵Γ−1r )
are the relevant properties for the present study.

2. Wave function parity and selection rule

The three atoms being built on symmetric potentials,
their bound eigenstates have defined and alternate pari-
ties, starting with an even wave function for the ground
state. This point is crucial for the following, since the
selection rule in 1d allows 1-photon transitions only be-
tween states of opposite parities. As a consequence, any
transition from an initial eigenstate of these systems oc-
curs through a single channel. The above-mentioned res-
onances in atoms B and C have odd wave functions.

3. Adapted references

The definition of a delay inherently comes with the
choice of a reference. Since the group delay considered
here is related to the transition phase θ defined in Eq. 9,
an absolute reference is provided by a transition for which
the spectral variations of the transition phase are zero
– which is the case of single-photon transitions. Most
importantly, the reference transition must lead to the
same final state ∣ψE,fin⟩ in order to exclude the scatter-
ing contribution from the studied dynamics. In time-
dependent simulations, we will therefore compare each
2-photon transition starting from the ground state of a
given model atom, to a 1-photon transition starting from
the first excited state of the same atom, and ending up
exactly at the same energies.
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FIG. 1: (color online) Model potentials used in our simulations. The potential for model atom A (left) consists in a simple
soft-Coulomb potential. The potentials for atoms B (center) and C (right) are augmented with additional barriers structuring
the continuum. Horizontal lines indicate discrete energy levels: bound states (E < 0, yellow) and resonances (E > 0, red). The
line styles are associated with the parity of each state: even (full) or odd (dashed). The energy (and life-time) of the states
relevant for our study are also indicated. The main parameters defining these potentials are reported in Table I.

4. Light pulses

The light pulses considered in our simulations are de-
fined in the time-domain using vector potentials

A(t) =
nc

∑
k=1

Akf(Tk, τk, t) cos[ω̄k(t − τk) + φ̃k]. (17)

In this generic expression, the sum runs over the num-
ber nc of “colours” that constitute the complete pulse.
Each component is characterised by a central frequency
ω̄k, a carrier-envelop phase (cep) φ̃k, an amplitude Ak
and a sin2 envelop f of duration Tk (full width at half
maximum, fwhm), centered at time τk.

For the time-independent perturbative computations,
we used the spectral counterpart of the electric field as-
sociated with the above defined vector potential.

B. Influence of the intermediate states

The simulations presented here illustrate to which ex-
tent the transition group delay defined in Eq. 10 for 2-
photon ionisation is representative of the actual photo-
electron dynamics, with a highlight on the imprint of the
intermediate states.

We used two-color pulses (ncol = 2 in Eq. 17, each color
labeled a and b in the following) lasting ≃ 20 fs fwhm.
For simplicity, we considered the pulses to be unchirped
(φ̃a = φ̃b = 0 in Eq. 17) and both centered at the time
origin (τa = τb = 0), such that Θ = θ (see Eq. 9).

1. Two-photon transitions through a broad resonance

We first detail our procedure with the simulations per-
formed on atom B, photoionised by light pulses of central
energies h̵ω̄a = 17.5 eV and h̵ω̄b = 4.9 eV respectively.
The frequency ω̄a was adjusted to bring the system in

the vicinity of the shape resonance lying 1.86 eV above
threshold. We focus on the photoelectron wave packet
formed upon absorption of two photons, emitted with a
central energy ≃ 6.8 eV.

The main task to compute transition group delays as
defined in Eq. 10 consists in evaluating the wave packet
amplitudes T (E) (Eq. 7). To this end, we evaluated
the two-photon transition amplitudes T (ωa,±ωb) (Eq. 2)
via the computation of the first order perturbed wave
function [30], a method that notably bypasses the explicit
integration over the whole intermediate spectrum (Eq. 5).
Figure 2(a) shows the corresponding electron spectrum

σ(E) = ∣T (E)∣2 (18)

and transition phase θ(E) = argT (E). The spectrum
displays a smooth bell shaped profile, which mostly re-
flects the pulse spectral envelops. The average energy
under the peak,

Ē = ∫
E × σ(E)dE

∫ σ(E)dE
, (19)

is 6.76 eV [≃ E0 + h̵(ω̄1 + ω̄2)]. Within this peak, the
transition phase varies linearly. Its spectral derivative
evaluated at the average energy Ē provides a group delay

τ = h̵
∂θ(E)
∂E

∣
Ē

(20)

amounting to 0.955 fs.
From a different perspective, we solved numerically the

tdse for the same atom interacting with the equivalent
pulses in the time domain. We characterised the photoe-
mission dynamics by computing the outgoing electron
flux at a given position xd [24],

jout(xd, t) = Re

⎧⎪⎪⎨⎪⎪⎩
− ih̵
m
ψ⋆(xd, t)

∂ψ(x, t)
∂x

∣
xd

⎫⎪⎪⎬⎪⎪⎭
× xd

∣xd∣
(21)
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FIG. 2: (color online) Electron wave packet created by 2-photon ionisation of atom B using pulses with central energies
h̵ω̄a = 17.5 eV and h̵ω̄b = 4.9 eV. (a) Electron spectrum σ (blue line) and phase θ of the transition amplitude computed using
second order perturbation theory (yellow dotted line) as a function of the photoelectron energy E. Ē corresponds to the average
energy under the peak (vertical line). (b) Outgoing photoelectron flux computed at xd = 4000 a.u. as a function of time for the
considered 2-photon transition (full red curve) and for the reference 1-photon transition starting from the first excited state
and ending at the same average energy Ē (dashed red curve). tof and tofref (vertical lines) are the average numerical times
of flight towards the virtual detector in the two systems respectively. Their difference (∆tof = 0.945 fs) is significant, in spite
of being small compared to the wave packet temporal extensions at detection (several tens of fs).

where ψ is the solution of the tdse, ψ⋆ its complex conju-
gate. In order to restrain our analysis to the same photo-
electron peak as in the time-independent computations,
we filtered the wave function by applying an appropri-
ate spectral mask prior to the flux analysis. Fig. 2(b)
shows the flux obtained at xd = 4000 a.u. This distance
is at the same time large enough to let the pulses vanish
before the ewp covers it and small enough to prevent a
too pronounced spreading of the wave packet. As in the
spectral domain, the resulting flux displays a smooth bell
shaped profile. The average time-of-flight (tof) towards
the virtual detector,

tof = ∫
t × jout(xd, t)dt

∫ jout(xd, t)dt
, (22)

is here 137.8 fs. It is close to the 137.3 fs it would take a
free electron with kinetic energy Ē to cover the distance
of 4000 a.u. We obtained an absolute reference for this
timing by simulating the interaction of atom B initially
in its first excited state, with a single pulse of roughly
13.35 eV, finely tuned to reach the same final energy Ē
as in the two-photon simulations. The obtained reference
flux is also displayed in Fig. 2(b). It presents a similarly
smooth shape (apart from being slightly broader, due to a
longer pulse duration). The corresponding time-of-flight
tofref = 136.9 fs is slightly shorter than the one obtained
previously. This indicates that the ewp is effectively de-
layed by the two-photon transition, as compared to the
one produced by an instantaneous 1-photon transition3.

3 The fact that tofref is even shorter than the free electron tof
simply results from the attractive Coulomb potential, which ac-
celerates the electron at all distances for a given total energy.

The two-photon transition delay given by these times-of-
flight,

∆tof = tof(xd) − tofref(xd), (23)

is equal to 0.945 fs, which is very close to the group de-
lay inferred from the perturbative transition amplitudes
(Eq. 20). We have further checked that this value is fairly
insensitive to the virtual detector position. The fact that
the wave packet dynamics is well represented by a single
characteristic time – a delay – is consistent with a phase
varying linearly under a bell shaped peak in the spectral
domain [Fig. 2(a)]. The ≃ 10 as discrepancy observed
between the two evaluations of this delay results from a
slight distorsion induced by the resonance, which is here
exactly reached by one of the photons. We will see be-
low that this discrepancy vanishes as soon as the photon
frequencies depart from the resonance.

To emphasise the influence of the intermediate reso-
nance on the transition dynamics, we repeated the pro-
cedure with different values of h̵ω̄a ranging from 16.6 to
18.7 eV while keeping the sum h̵(ω̄a + ω̄b) equal to 22.4
eV. The delays ∆tof (Eq. 23) and the group delays τ
(Eq. 20) are reported in Fig. 3(b) as functions of h̵ω̄a.
The two sets of data are in excellent agreement. They
follow a lorentzian curve peaking at h̵ω̄a = Er − E0, re-
producing qualitatively the behaviour predicted by the
formula given in Eq. 14 (valid for monochromatic fields
and when only the resonance transiently contributes to
the 2-photon transition). At resonance, the transition is
dominated by the sequence where the ωa photon is ab-
sorbed before the ωb photon. The transition delay may
then be interpreted as a transition duration correspond-
ing to a characteristic time spent by the system in the
resonance before it absorbs the second photon. The max-
imum delay (≃ 1 fs) is lower than the resonance lifetime,
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FIG. 3: (color online) 2-photon transition dynamics evidenced
in the three model atoms (h̵ω̄a + h̵ω̄b = 22.4 eV): group delay
τ (yellow crosses) and time of flight differences ∆tof (red cir-
cles) as functions of h̵ω̄a, evidenced (a) in a smooth continuum
(atom A), (b) in presence of a broad resonance (atom B), and
(c) in presence of a narrow resonance (atom C). The yellow
triangles in panel (b) correspond to the group delay τ derived
from the amplitude computed with the resonant paths only
(ωa + ωb), and neglecting the alternative path (ωb + ωa).

because of the integration of the transition amplitudes
T (ωa,±ωb) (Eq. 2) over the pulse widths (Eq. 7). This re-
flects the fact that the transition delay is indeed induced
by the intermediate resonance, yet obviously limited by
the pulse durations.

We have further confirmed the preponderant role of
the ωa +ωb sequences by recomputing the transition am-
plitudes excluding the complementary ωb +ωa sequences.
The corresponding group delays τ are also displayed in
Fig. 3. They are indeed very close to the ones derived
from the complete amplitudes close to resonance. How-
ever, discrepancies become noticeable at larger h̵ω̄a, indi-
cating that the ωb+ωa sequence cannot in general be left
aside neither from the computation nor from the interpre-
tation of the transition group delay. One faces here the
limitation of interpreting these delays in terms of “dura-
tions”, as already mentioned at the end of Section II A:
The computed delays take negative values when h̵ω̄a gets
away from the resonance, while a duration is by essence
positive – a misinterpretation in such cases typically leads
to the awkward notion of “faster than light” processes,
see also [31].

2. ... through a narrow resonance

We followed the same approach with atom C, which
displays a narrower resonance (lifetime of 54.8 fs) at
nearly the same energy. The tof differences and the
group delays are reported in Fig. 3(c). The maximum
delay reached at resonance (≃ 7 fs) is much smaller than
the actual lifetime, a direct signature of the strong tem-
poral gating of the process by the pulse durations. Here
as well, the two sets of data are in very good agreement.
A discrepancy of ∼ 0.5 fs is nevertheless observed at reso-
nance, when the delay is maximum. This results from
a more pronounced distorsion of the ewp due to the
resonance, both in the spectral and temporal domains
(not shown) – distorsion that cannot be completely ac-
counted for by a simple group delay. Note that these
discrepancies are much less pronounced than when per-
forming the same analysis for 1-photon transitions. In-
deed, an ewp created by a resonant 1-photon transition
displays in the time domain an exponentially decaying
tail ∝ exp(−Γrt/h̵), which is poorly represented by a
single group delay. In a study reported in [21], 1-photon
simulations performed on the same model atom with 25
fs pulses (fwhm) provided a ∆tof of ≃ 30 fs at reso-
nance, while the group delay τ corresponds exactly to
the resonance lifetime, ≃ 55 fs (see Figs. 8.3 and 8.4(c) of
this reference). In the present work, the bell-shape of the
resonant wave packet is fairly preserved due to the finite
duration of the additional pulse accounted for in Eq. 7,
as already mentioned.
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3. ... and through a smooth continuum

Finally, the same simulations were carried out on atom
A, which presents a smooth continuum. The results are
shown in Fig. 3(a). The transition delay takes here neg-
ative values and monotonically goes to 0 when h̵ω̄a in-
creases. This is a signature of the way electron wave
packets build up via the filter of a density of states slowly
decaying as ∝ 1/

√
2E [32]. The observed discrepancies

between ∆tof and τ are of the order the numerical ac-
curacy: They are visible in this figure because the time
range over which the delays vary is very narrow, covering
less than 20 as, while the detected wave packets spread
over several tens of fs.

With this last example, one should note that the 2-
photon transition delays are particularly small, especially
away from the threshold, as long as no long-lived inter-
mediate resonance significantly affects the build-up of the
ewp. This property is exploited by the streaking and
rabbit techniques in their initial designs, which consist
in characterising xuv light pulses with sub-fs resolutions
by means of xuv-ir 2-photon transitions. The next sec-
tion is dedicated to the rabbit technique in particular,
and to its recent reinterpretations for the investigation of
photoemission dynamics.

IV. INTERFEROMETRIC MEASUREMENTS

Resolving dynamics on the attosecond or femtosecond
time scales directly in the time domain is way beyond the
capacities of experimental detectors. Up to now, photoe-
mission dynamics has thus been accessed in experiments
using interferometric methods, providing photoelectron
wave packet amplitudes and phases in the spectral do-
main. We focus here on the rabbit technique, which
directly measures the two-photon transition amplitudes
encoding the transition dynamics discussed previously.

A. The rabbit technique

1. The interferometer

The rabbit technique exploits the main properties of
the radiation produced by hhg: (i) it spans a broad spec-
trum ranging from the ir to the xuv domains, (ii) its
spectrum is composed of odd harmonics of the generat-
ing fundamental ir field, (iii) the radiation is coherent.
In rabbit, a target (typically a gas) is photoionised by
a comb of odd harmonics produced by hhg, in presence
of a fraction of ir field (of frequency ωl) diverted from
the generating source.

A typical rabbit electron spectrum is represented in
Fig. 4. It displays a series of peaks associated with each
harmonic constituting the xuv comb, centred at the en-
ergies −Ip + (2q + 1) × h̵ωl (q ∈ N) where Ip is the tar-
get’s ionisation potential. In the following, these “har-

H2q-3

SB2q-2

H2q-1

SB2q

H2q+1

SB2q+2

FIG. 4: (color online) Photoionisation of a gas by an xuv
comb produced by hhg (odd order harmonics of an ir field,
blue arrows) in presence of the fundamental ir (red arrows).
Two 2-photon transitions (xuv ± ir) lead to sidebands (sb2q

...) lying between consecutive harmonic peaks (h2q±1...).
The rabbit interferometry exploits interferences occuring be-
tween the two paths leading to each sideband to get insight
on the dynamics of photoemission processes.

monic” peaks are labelled h2q−1, h2q+1 . . . The presence
of the ir fields induces additional peaks resulting from
2-photon transions: absorption of an xuv photon and
absorption or emission of an ir photon. Since the xuv
field is made of odd harmonics of the dressing ir, these
sidebands are centred between the harmonic peaks, at
the energies −Ip + 2q × h̵ωl. Moreover, the frequency re-
lationship between the involved xuv and ir photons is
such that two different paths lead to a given sideband
sb2q: (i) absorption of harmonic (2q − 1) and absorption
of an ir photon, and (ii) absorption of harmonic (2q + 1)
and stimulated emission of an ir photon. Since the xuv
and ir radiations are coherent, the two paths interfere in
the population of the final state. Their spectral profile,
for each photoelectron energy, thus may be expressed in
the very general form [10, 33]:

sb2q = A2q + B2q × cos (∆Θ2q) . (24)

The quantities A2q and B2q are related to the transition
amplitudes introduced in Section II A,

A2q ∝ ∣T2q−1∣2 + ∣T2q+1∣2 (25)

B2q ∝ 2 × ∣T2q−1T2q+1∣ (26)

and ∆Θ2q is the difference of phases accumulated by the
photoelectron along each of the paths,

∆Θ2q = Θ2q−1 −Θ2q+1. (27)

The rabbit technique, in its original conception, consists
in exploiting these interferences to retrieve the spectral
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phase variations of the xuv field, and ultimately recon-
struct its temporal profile with attosecond resolution [4].
It relies on the identification of the various contributions
to ∆Θ2q.

2. What is contained in ∆Θ2q and what is actually
measured

The contributions to ∆Θ2q are related to the fields and
to the transition operator, as emphasised in section II A.
No contribution from the scattering in the final state is a
priori contained in ∆Θ2q since the two “arms” of the in-
terferometer lead by construction to the same final state.

A strong hypothesis of the original rabbit scheme is
that the ir pulse is narrow enough to neglect the integra-
tion of the transition amplitudes (Eq. 7). The following
derivations also hold if the pulses have finite durations
but display constant phases within their bandwidths. It
is then possible to isolate the ir pulse contribution, φl,
in each of the paths,

Θ2q±1 = ∓φl + ϑ2q±1. (28)

The sign in front of φl is + if the ir photon is absorbed,
− if it is emitted. The term ϑ2q±1 is the sum

ϑ2q±1 = φ2q±1 + θ2q±1 (29)

of the harmonic phase φ2q±1 and of the phase θ2q±1 due
to the transition operator only, see Eq. 9.

In practice, the experimental setup contains a delay
line allowing for a fine control of the time delay τXUV-IR =
φl/ωl between the xuv and ir pulses (see e.g. Fig. 2 and
3 of [9]). A typical rabbit “trace”, obtained by recording
a set of electron spectra for a series of delays τXUV-IR,
displays sideband peaks oscillating at the frequency 2ωl,
since ∆Θ2q can be recast as

∆Θ2q = 2ωl × τXUV-IR + ϑ2q−1 − ϑ2q+1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∆ϑ2q

. (30)

Under conditions allowing for a complete separation of
the phase contributions, the so-called “rabbit phase”
∆ϑ2q, at the heart of the eponym technique, can be then
expressed as

∆ϑ2q = θ2q−1 − θ2q+1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∆θ2q

+φ2q−1 − φ2q+1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∆φ2q

. (31)

Until recently, rabbit was exclusively implemented
considering spectrally narrow peaks in the analysed pho-
toelectron spectra. This validates the separation of the
contributions to the rabbit phase (Eq. 31), assumed
constant within each peak. In these implementations,
the phase measurements are performed on the sideband
peaks integrated spectrally. However, recent experiments
of resonant photoemission in He [35] evidenced sidebands

displaying significant structures, the temporal interpre-
tation of which required to resolve the phase variations
within the sideband spectral widths.

In the following, we will explicitly differentiate the
two situations by denoting the phases resolved within
the sideband bandwidth as above (∆ϑ2q, ∆θ2q...), and
the phases derived from spectrally integrated peaks with
barred notations (∆ϑ̄2q, ∆θ̄2q...).

3. Characterisation of attosecond pulse trains

The original implementation of rabbit assumes the
so called “atomic” (or “molecular”) phase ∆θ2q to be
known, or negligible [when the detection gas displays
a smooth continuum in the region probed by the xuv
photon, see e.g. Fig 3(c)]. Thus a measurement of ∆ϑ̄2q

gives access to the difference of phase ∆φ̄2q between
two consecutive odd harmonics. Assuming this phase
to vary linearly over a spectral range of 2h̵ωl, the ratio
∆φ̄2q/(2ωl) provides a finite difference evaluation of the
group delay characterising the xuv comb. As shown
experimentally for the first time in [4], this group delay
associated to the so-called “atto-chirp” is identified as
the emission time of each harmonic, in line with the
strong-field approximation (sfa) for hhg [34]. Since
then rabbit has become a standard method for the
characterisation [4] and coherent shaping [11] of attosec-
ond xuv pulses trains, as well as their exploitations
based on the “self-probing” paradigm [15], combining
simultaneously as- and Å-resolutions.

To summarise, a standard rabbit setup makes use
of two distinct gases: (i) the generation gas, the finger-
prints of which are encoded in the emitted xuv radiation
and ultimately in the ∆φ̄2q contribution to the rabbit
phase; and (ii) a detection gas, which brings the ∆θ̄2q

contribution. In the following, we review the reinterpre-
tations of the method giving access to the photoemission
dynamics through ∆θ̄2q (∆θ2q in spectrally resolved,
so-called “Rainbow rabbit”, measurements).

B. Transition delay

We present here results of simulations performed on
model atom B, that illustrate the principles of the rab-
bit method and the way it provides insight on 2-photon
transition dynamics. These simulations do not account
for the limitations inherent to experimental conditions,
such as the incomplete characterisation of the ionising
pulses, stability issues or the finite resolution of detectors.
They represent “ideal” rabbit numerical experiments,
showing what the technique may at best give access to.
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FIG. 5: (color online) (a) sb12 spectrum obtained with atom B in presence of h11, h13 and the fundamental ir at h̵ωl = 1.60 eV
for values of the delay τXUV-IR ranging from 0 to 0.5×Tl (Tl = 2π/ωl). (b) Integrated sb12 intensity as a function of the delay
τXUV-IR (blue circles). Fitting these data with the generic function given in Eq. 32 (green dashed curve) provides a measure of
the rabbit phase ∆ϑ̄12 = 0.08 × π rad.

1. Transition phases

We simulated rabbit on atom B initially in its ground
state. We first detail the results obtained with a funda-
mental laser central frequency h̵ωl = 1.60 eV, such that
h11 reaches the resonance lying at 1.86 eV above thresh-
old, already investigated in section III B 1. Our analysis
focuses on sb12, resulting from the 2-photon paths h11+ir
and h13−ir, for which we computed the transition phases
(θ11 and θ13 respectively) using second order perturba-
tion theory (Eq 9 with φa ≡ φ11/13 = 0 and φb ≡ φl = 0)
on the one hand, and performed a rabbit analysis from
time-dependent simulations on the other hand.

The 3-color light pulses were defined according to
Eq. 17 with ωk = k × ωl (k = 1,11,13). Here as well,

the time-domain cep φ̃k were all set to 0. The xuv en-
velops were centered at the time origin (τ11 = τ13 = 0)
while the center of the ir pulse was assigned the role
of adjustable delay, τ1 = τXUV-IR. The pulses durations
were all set to 15 × 2π/ωl fwhm (∼ 40 fs fwhm). The
field strengths were set low enough to keep negligible any
process involving more than 2 photons.

Figure 5(a) shows the electron spectrum σ centered on
the sb12 peak, obtained in time-dependent simulations
for 5 values of τXUV-IR ranging from 0 to 0.5×2π/ωl. The
peak oscillation is clearly pronounced. The integrated
peak intensity is displayed in 5(b) as a function of τXUV-IR

(circles). The rabbit phase ∆ϑ̄12 characterising these
oscillations, evaluated by fitting the data to the generic
function (dashed curve)

g(τXUV-IR) = A + B × cos(2ωl × τXUV-IR +∆ϑ̄12),(32)

amounts to 0.08×π rad. We also applied the fitting pro-
cedure to each photoelectron energy within the support
of sb12. The spectrally resolved rabbit phase, ∆ϑ12, is
displayed in Fig. 6 (green circles) together with the aver-
aged peak intensity (given by A in the fitting procedure,

see Eq. 32). The phase ∆ϑ12 is not constant: It varies
by ≃ 0.1 × π rad over the sb12 bandwidth. However, its
linear trend suggests that a single group delay will be
sufficient to characterise the photoemission dynamics, as
will be confirmed further.

In addition, we computed the transition phases θ11 and
θ13 associated with the two different paths leading to
sb12 for each final energy E, using perturbation theory
(Eqs 2–9). Their difference θ11 − θ13 = ϑ11 − ϑ13 is re-
ported in Fig. 6 (yellow crosses) as a function of E. It
effectively coincides, within the numerical accuracy, with
the “measured” spectrally resolved rabbit phase ∆ϑ12

all over the peak width. Note that the phase of the inte-
grated peak, ∆ϑ̄12 (dashed horizontal line) is neverthe-
less representative of the wave packet, since it is equal
to the phase ∆ϑ12 evaluated at the photoelectron aver-
age energy Ē (vertical line). This is because the reso-
nance is scanned by a narrow pulse (≃ 100 meV fwhm)
compared to its natural width (h̵Γ−1

r ≃ 400 meV). We
repeated the procedure for a series of laser central en-
ergies h̵ωl ranging from 1.50 eV to 1.65 eV. Figure 7(a)
shows the rabbit phases ∆ϑ12(Ē) (red circles) as well as
the phase difference ∆θ12(Ē) = θ11(Ē)−θ13(Ē) from the
perturbative computations (yellow crosses), evaluated at
the mean photoelectron energy Ē for each simulated ωl.
As expected, the phase difference undergoes a significant
jump while h11 crosses the resonance, corresponding to
a laser central energy h̵ωl = (Er −E0)/11 ≃ 1.59 eV.

The agreement between ∆ϑ12 and ∆θ12 is perfect over
the whole considered range. These results highlight the
validity of the rabbit interferometric scheme to measure
2-photon transition phase differences. We have seen in
section III how the group delay associated with the latter
was representative of the 2-photon transition dynamics.
Hereafter, we combine these conclusions and clarify the
link between rabbit phase, which is an experimentally
measurable quantity, and transition dynamics.
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FIG. 6: (color online) Spectrally resolved rabbit analysis
of sb12 (ωl = 1.60 eV) in atom B: sideband amplitude A12

(full blue curve); rabbit phase ∆ϑ12 obtained with time-
dependent simulations (green circles); transition phase differ-
ence ∆θ12 = θ11−θ13 obtained with second order perturbation
theory (yellow curve). Ē is the average energy under sb12

(vertical line) and ∆ϑ̄12 is the rabbit phase derived from the
integrated sideband (horizontal line, see also Fig. 5).

2. Accurate and approximate evaluations of transition
delays

The relevance of the group delay h̵∂θ/∂E to charac-
terise the transition dynamics (Section III) on the one
hand and the direct link between transition phase θ and
rabbit phase ∆ϑ (Section IV B 1 above) on the other
hand suggest to compare the group delay associated with
∆ϑ to the ewp dynamics revealed by the flux analysis in
the time domain.

We have therefore simulated ionisation of atom B in
the same conditions as above, but considering the two
paths leading to sb12 independantly: One first set of sim-
ulations was performed in the simultaneous presence of
the ir and h11 only, and a second one in the simultaneous
presence of the ir and h13 only. In each of the paths, we
have characterised the ionisation dynamics with the flux
analysis (Eqs. 22-23) of the 2-photon ewp produced at
the sb12 energy, providing numerical times of flight tof11

and tof13 respectively. These data allows an evaluation
of the transition delay difference through the two paths
associated with sb12 as

∆tof12 = tof11 − tof13. (33)

The results are shown in Fig. 7(b), as a function of h̵ωl
(red full circles). The increase of ∆tof12 near the central
laser energy h̵ωl ≃ 1.59 eV reflects the delay induced by
the transition through the intermediate resonance in the
h11 + ir path, the alternative path involving h13 through
a smooth continuum endorsing the role of reference.

We then computed the group delay associated with the
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FIG. 7: (color online) (a) sb12 transition phase difference in
atom B as a function of the fundamental laser energy h̵ωl
(the corresponding h11 energies are given in the upper axis):
rabbit phase ∆ϑ̄12 (green circles); transition phase difference
∆θ12 = θ11 − θ13 evaluated at the average sideband energy Ē
for each ωl using second order perturbation theory (yellow
crosses). The yellow curve shows the scattering phase differ-
ence η11−η13 computed for each ωl. (b) Transition delay dif-
ference between the h11 +ir and h13-ir paths: time of flight
difference ∆tof12 = tof11 − tof13 (red full circles); rabbit
group delay τ12 as defined in Eq. 34 (green empty circles); ap-
proximate rabbit group delay τ̄12 as defined in Eq. 35 (green
rectangles). The yellow full curve is the weighted scattering

delay difference 11/12 × τ (11)sc − 13/12 × τ (13)sc , and the yellow

dotted curve is the resonant term 11/12 × τ (11)sc (scattering
delays from [24]). The grey dashed curves serve as guidelines.

rabbit phase,

τ12 = h̵
∂∆ϑ12

∂E
∣
Ē
, (34)

at the average photoelectron energy associated with sb12

for each ωl. They are also displayed in Fig. 7(b) (green
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empy circles). The perfect agreement obtained between
τ12 and ∆tof12 confirms the conclusions drawn when
comparing tof differences with formal group delays in a
series of 2-photon transitions on the one hand (see Fig. 3)
and transition phase difference with rabbit phases on
the other hand [see Figs. 6 and 7(a)].

In addition, we have tested the approximate evaluation
of the group delay associated with the rabbit phase sug-
gested by Eq. 13 – invoked for example when the experi-
mental detection is not precise enough to resolve the rab-
bit phase variations within the sidebands. In the present
context, this approximate group delay reads [36, 37]

τ̄12 = 1

12

∂∆ϑ̄12

∂ωl
. (35)

We computed τ̄12 using the data sampled in Fig. 7(a)
(green circles) and displayed the result in Fig. 7(b) (green
rectangles). While it qualitatively follows the trend of
the exact group delay, with a maximum reached when
h11 hits the intermediate resonance, it fails to accurately
reproduce the latter due to the various approximations
invoked to derive its expression (see Section II B).

These results emphasise the importance to resolve the
rabbit phase variations within each sideband to accu-
rately access the transition dynamics. It is however im-
portant to realise that the impact of the approximations
strongly depends on the probed system and on the pulse
parameters.

In [38], He atoms were ionised by an xuv beam gen-
erated in Ar. The central energy h̵ωl of the generat-
ing laser was set around 1.54 eV, with a tunability of
∼ 10 meV. Varying thereby h̵ωl allowed the 15th har-
monic to scan the 1s3p level of He over ∼ 200 meV, with
the sideband next up (sb16) lying safely in the contin-
uum. rabbit measurements evidence a transition phase
∆θ̄16 undergoing a jump of ∼ 0.5π. In this case, the mea-
sured phase variations are obviously affected by the pulse
widths, since the phase of a 2-photon transition through a
discrete (bound) intermediate state is expected to display
a sharp π rad jump when considering monochromatic
fields. This work is one the first investigations of intrin-
sic photoemission dynamics using rabbit. Although the
time domain interpretation of the measurements was not
pushed further in this seminal work, the spectral phase
variations constitute a clear signature of the influence of
the intermediate 1s3p resonance on the 2-photon transi-
tion dynamics.

In a different study [36], rabbit measurements were
simulated in a model N2, following vibronically resolved
experiments and a preliminary interpretation reported
in [18]. Two resonances corresponding to the first two
vibrational states of an electronic resonance in the X
channel were scanned by h11 of a laser with a simulated
tunability of approximately ±0.025 eV around h̵ωl = 1.56
eV. The computed vibrationally-resolved sb12 rabbit
phases display a clear phase jump each time h11 crosses a
resonance, with an additional intermediate sharp π jump
resulting from destructive interferences between the two

consecutive resonances in one of the vibrational chan-
nels. These phase variations were interpreted in the time
domain using Eq. 34, and compared to the “actual” ion-
isation dynamics using numerical tof like in the present
study, with again a satisfactory agreement.

C. Scattering delay

In this last part, we review the possibilities to access
scattering delays out of rabbit measurements. Three
different (yet related) methods, established at different
levels of approximation, will be considered. They are in-
troduced below according to the gradual complexity of
their experimental implementations. The first method
relies on a standard measurement of integrated rabbit
phases ∆ϑ̄2q. The second one is based on the variations
of ∆ϑ̄2q with respect to ωl and therefore requires a laser
frequency scan. The last one, dubbed “Rainbow rab-
bit”, uses the spectral variations of ∆ϑ2q(E) within the
sideband and therefore requires measurements with high
spectral resolution as well as an ideally narrow ir probe
pulse. The three methods have different ranges of ap-
plicability. The second one is particularly suited to the
rabbit simulations we performed in atom B, as will be
illustrated.

1. Approximate evaluations of scattering delays using ∆ϑ̄2q

(standard rabbit)

The possibility to access photoelectron scattering de-
lays experimentally with the rabbit scheme was first
demonstrated in [16]. It was established in this work
that the two-photon transition phase for each path lead-
ing to a given sb2q is equal to the scattering phase η2q±1

in the intermediate continuum state, computed at the
harmonic peak central energies

E2q±1 = E0 + (2q ± 1) × h̵ωl, (36)

up to a universal correction φ
(±)
CC . The latter accounts

for the couplings between the intermediate and final con-
tinuum states, induced by the ir “probe” through the

asymptotic Coulomb tail of the ionic core potential. φ
(±)
CC

possesses an analytic expression valid at sufficiently high
energies, see [39]. The ∆θ̄2q contribution to a given side-
band then reads:

∆θ̄2q = η2q−1 − η2q+1 +∆φCC (37)

with ∆φCC = φ(−)CC −φ(+)CC . Measuring ∆θ̄2q hence provides
a finite-difference evaluation of the scattering delay

τsc(E2q) = h̵
∂ηsc

∂E
∣
E2q

(38)
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associated with a (virtual) 1-photon ionisation towards
E2q = E0 + 2q × h̵ωl, since

∆θ̄2q

2 × ωl
=
η2q−1 − η2q+1

2 × ωl
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≃τsc(E2q)

+∆φCC

2 × ωl
. (39)

This link between ∆θ̄2q and τsc(E2q), which was in-
voked in numerous subsequent theoretical and experi-
mental studies (see e.g. [31, 40–48] for a non exhaus-
tive list), holds if the continuum is smooth enough for
the scattering phase to vary linearly within an energy
range of 2× h̵ωl. Below, we show that our simulations in
atom B suggest an alternative interpretation of rabbit
phases in terms of scattering delays, adapted for transi-
tions through structured continua as well.

2. ... using ∂∆ϑ̄2q/∂ωl

Let’s turn back to the sb12 rabbit phases “measured”
in atom B. We will only consider in the following the
“integrated” phase measurements, displayed in Fig. 7(a).
We have previously seen that the variations of ∆ϑ̄12 with
respect to ωl were partly representative of the transition
dynamics, according to Eq. 35. We will now alterna-
tively extract, from the same rabbit phases, insight on
the scattering dynamics, basing our analysis on Eq. 37
instead.

For each considered ωl, we have computed the scatter-
ing phases η11 and η13 of the continuum states reached at
the central harmonic peak energies E11 and E13 (Eq. 36).
Their difference η11−η13 is displayed in Fig 7(a) as a func-
tion of ωl (yellow full curve), for a direct comparison with
the rabbit phases (green circles). In the present situa-
tion, the behaviour of the scattering phase difference is
governed by the resonant one, η11 (we checked that η13 is
nearly flat). While an ideally narrow and isolated reso-
nance would result in a sharp π rad jump, the computed
phase follows a jump spread over Γr ≃ 0.40 eV and atten-
uated by the contribution of the background continuum
(it spans ≃ 0.6 × π rad).

Keeping in mind that the rabbit phase ∆ϑ̄12 is a di-
rect measure of the transition phase difference ∆θ̄12 (the
harmonic field phases were set to 0), we conclude from
Eq. 37 that the difference between ∆ϑ̄12 and η11 − η13

is the “continuum-continuum” correction ∆φCC. In this
case, it evolves nearly linearly from ∼ 0.2 × π rad to
∼ 0.4 × π rad over the covered range4. In this context,
the sb12 group delay τ̄12 defined in Eq. 35 can be recast

4 The universal analytic formula given in [39] is not expected to be
valid at such a near-threshold energy. Computed in the present
case, it presents a spurious linear chirp of ∼ −0.3 fs (not shown).

as

1

12

∂∆ϑ̄12

∂ωl
= 1

12

∂(η11 − η13)
∂ωl

+ 1

12

∂∆φCC

∂ωl

= 11

12

∂η11

∂(11 × ωl)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

τ
(11)
sc

−13

12

∂η13

∂(13 × ωl)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

τ
(13)
sc

+ 1

12

∂∆φCC

∂ωl

(40)

where τ (2q±1)
sc are the scattering delays in the continuum

states populated upon absorption of the harmonics at the
energies E2q±1 (Eq. 36), and

∂∆φCC

∂ωl
∼ 1 fs (41)

in our simulations.
We have thus obtained an alternative interpretation

of the rabbit delay τ̄12 first introduced in Eq. 35. The
weighted scattering delay difference 11/12×τ (11)

sc −11/13×
τ (13)
sc is displayed in Fig. 7(b) (yellow full curve). It fol-

lows nicely the rabbit delay (green rectangles in Fig. 7),
especially near resonance (ωl ≃ 1.59 eV), with a global
time shift of ∼ 100 as due to the linear chirp of ∆φCC

(see Eq. 41). To further confirm the preponderant role of
the resonant transition (through h11) over the alternative
one (through h13), we have also displayed in Fig. 7(b) the

weighted scattering delay 11/12× τ (11)
sc alone (dotted yel-

low curve). It is indeed very close to the weighted delay
difference (full yellow curve) – nearly equal at resonance.
Note that at larger orders q, the ratios (2q±1)/(2q) con-
verge to 1 and the spectral derivative of ∆φCC vanishes.
These quantities can then be practically neglected from
Eq. 40 and the methods gives a direct access to the scat-
tering delay difference τ (2q−1)

sc −τ (2q+1)
sc . Probing resonant

scattering dynamics with this interpretation of integrated
rabbit measurements was successfully achieved in the
3s−14p Fano resonance of Ar [49].

3. ... and using ∂∆ϑ2q(E)/∂E (Rainbow rabbit)

Eventually, we show how scattering dynamics can be
accurately retrieved from spectrally resolved rabbit mea-
surement. Here as well, we use the formalism introduced
in [16, 39]. Eq. 37 allows to rewrite the spectrally re-
solved rabbit phase as

∆ϑ2q(E) = ηsc(E − h̵ωl) + ηsc(E + h̵ωl) −∆φCC(E).
(42)

Only the central frequency of the ir, ωl, is considered in
this expression. This implies that the ir pulse is spec-
trally narrow enough to neglect the integration (Eq. 7)
that would blur the ηsc imprints in ∆ϑ2q(E). The two
wave packets contributing to the sb are then considered
as spectrally shifted replica of the 1-photon electron wave
packets created by each harmonic.
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The link with the scattering delays is then straight-
forward. It is simply given by the spectral derivative of
Eq. 42,

h̵
∂∆ϑ2q(E)

∂E
= τsc(E − h̵ωl) − τsc(E + h̵ωl) + h̵

∂∆φCC(E)
∂E

.

(43)

Accessing the scattering dynamics from Rainbow rabbit
measurements thus requires approximations only on the
spectral derivative of the ∆φCC correction – for exam-
ple assumed negligible, or computed using the analytic
formula given in [39]. Note that it allows retrieving the
complete scattering dynamics beyond the limiting notion
of group delay, when the rabbit phase undergoes signif-
icantly non linear variations within the sb bandwidth.
This was demonstrated and first applied in [35] to ac-
curately reconstruct the autoionisating dynamics of He
excited in its 2s2p state, where it was shown that inte-
grated rabbit measurements were not adapted.

V. CONCLUSION

We have shown how the formal group delay derived
from the phase associated with the transition operator
in 2-photon ionisation (the so-called transition phase) is
representative of the actual photoelectron dynamics, us-
ing numerical simulations on model atoms. Our simu-
lations performed on model atoms displaying smooth or
structured continua illustrate the role of the intermediate
states reached along the transition. The group delay may
be interpreted as a transition “duration” only when a res-
onance with significant lifetime is transiently populated
during the process.

We then illustrated how xuv + ir rabbit interferom-
etry gives access to the transition phase and to the dy-
namics it encodes. Our numerical experiments emphasise
the importance of resolving the rabbit phases within
the photoelectron wave packet bandwidth, using the so-
called Rainbow rabbit approach, to retrieve the tran-
sition dynamics accurately. Measurements based on the
standard rabbit scheme (which measures a global phase

of the wave packet) provide insight on those dynamics
only qualitatively.

Finally, we reviewed the ways of using rabbit (in var-
ious reinterpretations) to access the more fundamental
scattering dynamics, which affects any photoelectron in
the final stage of its emission, as it scatters away under
the influence of the remaining ionic core. Three meth-
ods, tested in experiments in the last few years, were
considered. All rely on an expression of the 2-photon
transition phase involving the scattering phase in the
intermediate continuum state reached by the xuv–
augmented by the so-called “continuum-continuum”
correction accounting for the ir induced Coulomb
coupling of the intermediate and final continuum states.
The first two methods use the measurements of standard
(integrated) rabbit phases. In the first one, scattering
delays are deduced from the rabbit phases themselves,
while in the one second the delays are related to the
rabbit phase variations against the fundamental ir
laser frequency. The third method is based on Rainbow
rabbit measurements, where the scattering dynamics
is reconstructed from the spectral evolution of the
rabbit phase within the photoelectron wave packet
bandwidth. Each of the three approaches requires an
adapted experimental setup, with variable complexities
(fixed vs. tunable ir frequency, standard vs. high
spectral resolution). One should keep in mind that
all these approaches rely on different approximations,
with various sensitivities to characteristic parameters
– such as the ionising pulse durations and the pres-
ence of resonances in the probed region of the continuum.
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scattering, Physics Reports 312, 87-330 (1999).

[29] M. Simon, L. Journel, R. Guillemin, W. C. Stolte, I.
Minkov, F. Gel’mukhanov, P. Sa lek, H. Ågren, C. Car-
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