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Tunnel ionization of atoms and molecules: How accurate are the weak-field asymptotic formulas?
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Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, LCPMR, F-75005 Paris, France

(Dated: February 19, 2018)

Weak field asymptotic formulas for the tunnel ionization rate of atoms and molecules in strong laser fields
are often used for the analysis of strong field recollision experiments. We investigate their accuracy and domain
of validity for different model systems by confronting them to exact numerical results, obtained by solving the
time dependent Schrödinger equation. We find that corrections that take the dc-Stark shift into account are a
simple and efficient way to improve the formula. Furthermore, analyzing the different approximations used, we
show that error compensation plays a crucial role in the fair agreement between exact and analytical results.
Keywords: Tunnel ionization, Strong field physics, Analytic formulas

I. INTRODUCTION

The interaction between an atom or a molecule and an elec-
tric field can give rise to various phenomena depending on the
considered time and energy scales. At low frequencies (typ-
ically infrared radiation) and high intensities (1013 W cm−2

and beyond), the ionization of the system by a laser can no
longer be described by the absorption of one or several pho-
tons as depicted by perturbation theory. In such conditions,
the laser field strongly distorts the atomic potential so that
electrons can escape through tunnel effect. This phenomenon
was first modeled by Keldysh [1] in the 60’s and was then
intensively investigated since it represents the first step of
highly non-linear recollision driven processes such as High
Harmonic Generation (HHG) [2, 3], or non-sequential mul-
tiple ionization [4]. Beyond their fundamental importance,
these recollision processes have been identified in the last 10
years as central for the design of cutting edge spectroscopies
merging Angström and attosecond resolutions, see [5, 6] and
references therein.

As for many non-linear processses, the only way to accu-
rately describe tunnel ionization is to numerically solve the
Time Dependent Schrödinger Equation (TDSE). However, be-
cause of its high numerical cost, this method can only be used
for small systems, i.e. an atom with one or two electrons.
The description of larger and more complex systems such as
molecules is very delicate and requires some approximations:
Single Active Electron approximation and frozen nuclei [7–9],
Strong Field Approximation [10, 11] or low dimensionality
[12]. On the other hand, one may rely on approximate models
such as the Lewenstein model [13] or quantitative rescattering
theory [6]. These models have the advantage to yield ana-
lytical formulas and developments that are easier to handle
than numerical simulations. Moreover, they allow to decom-
pose each strong field process into different steps, e.g. the
celebrated three-step model for HHG [2, 14], which provides
valuable physical pictures and insights. In this framework,
tunnel ionization is the universal first step of all recollision
processes, and is also the main source of their non-linearity,
hence its central importance in strong field physics.

For all the reasons we just cited, approximate analytical for-
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mulas, see [15, 16] for more complete reviews, are often pref-
ered to numerical simulations for the analysis and interpreta-
tion of experimental results. The most frequently used of these
formulas rely on the adiabatic approximation. Among them
are the ones derived by Perelomov et al. (PPT) [17] or Am-
mosov et al. (ADK) [18] for atoms, and extended to molecules
by Tong et al. (Mo-ADK) [19, 20] and Kjeldsen and Madsen
[21], but also more advanced analytical works like the ones
performed by Tolstikhin et al. [22, 23]. However, these ana-
lytical PPT, ADK and Mo-ADK formulas have a limited accu-
racy as was extensively shown recently by Lai et al. [24]. In
fact, they are asymptotically exact when the Keldysh param-
eter [1] vanishes, and are directly deduced from the ioniza-
tion rate in a static electric field. Consequently, their accuracy
strongly depends on the computation of the static ionization
rate.

This static rate is called asymptotic because it is asymptoti-
cally exact when the electric field F goes to zero, i.e. F → 0.
It was obtained at first order for the Hydrogen atom by Landau
and Lifshitz (LL) [25] and extended to any atom by Smirnov
and Chibisov (SC) [26]. Using more advanced analytical de-
velopment based on Siegert states, Tolstikhin et al. have re-
cently achieved an asymptotic development of the ionization
rate at higher orders for atoms [27–29], and molecules [30–
32] including nuclear motion in the Born Oppenheimer ap-
proximation [12, 33]. At the same time, Manakov et al. per-
formed a derivation for negative atomic [34] and molecular
ions [35].

A more empirical and much more direct approach has been
developed for molecules. It consists in a correction of the
asymptotic SC (or ADK, which is equivalent) rate by taking
into account the Stark shift up to second order of perturbation
theory [8, 36, 37]. However, this correction has been used in a
rather inconsistent way considering the development made by
LL [25] and SC [26].

In this work, we show that if one adds consistently the DC-
Stark shift in the derivation of the Landau formula, then the
Stark shift correction only appears in the argument of the dom-
inant exponential term. Moreover, we show that for highly
polarizable molecules, second order perturbation theory can
become insufficient to compute the correct shape of the Stark
shift, with great consequences on the ionization rate. Finally,
we show that, at working laser intensities (& 1012 W.cm−2),
the asymptotic condition that the electric field is small is in
fact not fulfilled. Nonetheless relatively good quantitative re-
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sults are obtained when using the asymptotic formulas com-
pared to TDSE calculations because of error compensation.

In this paper, we use a one-dimensional model for which the
TDSE can be easily solved numerically. Then we confront our
TDSE results to the analytical models to test their accuracy.
As the ionization of the hydrogen atom in a static field reduces
to a one-dimensional problem (through a change to parabolic
coordinates), we believe that our results are most general and
will help to get physical insights that can be extended to the
three-dimensional case.

The article is organized as follows. In section II we present
the numerical methods, and the analytical formulas. Section
III contains our results for atoms and diatomic molecules.
Then, a detailed analysis of the Landau approximations and
their ranges of validity is given in section IV and in the ap-
pendix. Atomic units (~ = me = e = 4πε0 = 1) are used
throughout this article unless stated otherwise.

II. METHODS

We model a one-dimensional atom by an electron trapped in
a Coulomb like potential well. To avoid numerical difficulties
at the origin we use a standard soft Coulomb potential [38]

V0(x) = − Z√
a2 + x2

, (1)

where the parameters Z and a can be adjusted to control the
shape of the potential and notably its ground state energy. We
also model one-dimensional diatomic molecules by the sum
of two shifted soft Coulomb wells

V0(x) = − Z/2√
a2 + (x+R/2)2

− Z/2√
a2 + (x−R/2)2

,

(2)
where R is the internuclear distance. This can be seen, to some
extent, as a simple benchmark model for three-dimensional
diatomic molecules that would be previously aligned along
the direction of the electric field.

The TDSE describing the evolution of the system writes, in
length gauge,

i
∂ψ

∂t
(x, t) =

(
−1

2

∂2

∂x2
+ V0(x) + xF (t)

)
ψ(x, t), (3)

where ψ is the electronic wave function and F (t) is the elec-
tric field. The initial state is taken as the ground state of the
system, numerically calculated on a grid [39]. The wave func-
tion is then propagated on the same grid by a Crank-Nicolson
algorithm [40]. We take a box of size 500 a.u. with a step
∆x = 5 × 10−2 a.u. and a time step of 6.3 × 10−3 a.u.. To
ensure an adiabatic transition from a zero field to a finite value
F , the electric field is slowly brought to a constant value, with
a sine square turn on, for ' 104 a.u. In order to avoid non-
physical reflections at the boundaries of the computation box,
a mask type absorber [41] of width 200 a.u. is used. The
ionization probability is computed as

W(t) = 1−
∑

ϕi∈bound states

|〈ϕi|ψ(t)〉|2. (4)

From this probability we deduce the ionization rate

ΓTDSE = −d ln (1−W )

dt
, (5)

which is time independent as soon as the electric field reaches
its plateau. The results obtained by this method are considered
as exact, and used in the following as a reference to test the
accuracy of analytical formulas for the ionization rate.

In a very low static electric field (|F | � (2Ip)3/2), the
asymptotic ionization rate is given in three dimensions by
Smirnov and Chibisov (SC) [26]. The same formula adapted
to our one-dimensional system reads:

ΓSC = |B|2
√

2Ip

(
4Ip
|F |

) 2Z√
2Ip

exp

(
−2 (2Ip)

3/2

3|F |

)
, (6)

where Ip is the ionization potential of the atom and B is the
asymptotic coefficient of the atomic ground state ϕ0, i.e. fol-
lowing [26],

ϕ0(x) ∼
±∞

B |x|
Z√
2Ip e−

√
2Ip|x| . (7)

Though there exist approximate formulas for this asymptotic
coefficient, such as the one used in the ADK rate, or numerical
tabulations for several atoms and ions (see [16] and references
therein), we computed it numerically for our systems to get
the most accurate value.

The previous formula involve the field free ionization po-
tential Ip. However, the presence of the field perturbs the en-
ergy levels of the system, and therefore the effective ioniza-
tion potential, since it couples the bound states to the contin-
uum. We computed this energy shift, or dc-Stark shift, using
the R-box method [42] to get the corrected ionization poten-
tial Ĩp(F ) = Ip + ∆Ip(F ) as a function of the electric field.
From the second derivative of ∆Ip(F ) we could then deduce
the polarizability of the atomic ground state. If this Stark shift
remains small, ∆Ip � Ip, then it is possible to take it into
account in the analytical calculations of the ionization rate to
obtain a corrected formula

Γ̃SC = |B|2
√

2Ip

(
4Ip
|F |

) 2Z√
2Ip

exp

(
−2(2Ĩp)3/2

3|F |

)
, (8)

where the ionization potential Ip is replaced by its corrected
value Ĩp(F ) in the exponential factor only. The detailed cal-
culations to get this formula is given in appendix.

Though the exact value of the Stark shift can be computed
for our simple systems, it is not the case in general. It is there-
fore useful to consider approximate expansions for ∆Ip that
will be detailed in the following section.

III. RESULTS

A. Atoms

We consider here a model atom with the parameters set
to Z = 1 and a = 1.1545, with an ionization potential
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Ip = 0.594 a.u.. We first confront the analytical uncorrected
SC rate ΓSC (6) to our exact TDSE results, then we will test
the corrected rate Γ̃SC (8). From Figure 1 (a), we can see that
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FIG. 1. (Color online) Tunnel ionization of the atomic system (sec-
tion III.A). (a) Ionization rate as a function of the electric field. Black
circles for the reference value ΓTDSE (5), dotted purple line for the
SC analytical formula ΓSC (6), dash-dotted green line for the modi-
fied SC formula Γ̃SC (8) corrected with the exact Ĩp and solid orange
line for the same modified SC formula but with the 2PT approxima-
tion Ĩp

2PT
(9). (b) Ratio of the numerical to analytical ionization

rates. Dotted purple line for ΓTDSE/ΓSC, dash-dotted green line for
ΓTDSE/Γ̃SC computed with the exact Ĩp, and solid orange line for

ΓTDSE/Γ̃SC computed with the 2PT approximation Ĩp
2PT

.

although it is derived for an asymptotically weak field |F |→0
the uncorrected SC formula (dashed red line) gives the correct
behavior for the ionization rate compared to the TDSE results
(black crosses). This observation remains true on a large range
of field values corresponding to eight orders of magnitude of
Γ values. It is however difficult to appreciate the accuracy
of the formula because of the logarithmic scale. This is why
we show the ratio of the exact numerical results ΓTDSE to the
analytical ones on Figure 1 (b). It becomes clear on this fig-
ure that the analytical formula ΓSC (red crosses) can only be
trusted up to ' 10% in the best case. As expected from an
asymptotic rate, the accuracy decreases with increasing fields,
and the difference with the TDSE result exceeds 100% for
fields larger than 6.5 × 10−2 a.u., which corresponds to in-
tensities larger than 1.5 × 1014 W cm−2. It is therefore very
delicate to use this formula for quantitative predictions of ion-
ization rates at finite (nonzero) fields.

To check the validity of the corrected formula Γ̃SC (8), we

computed the Stark shift of this atomic system. As can be
seen on Figure 2 it is very well approximated by second order
perturbation theory (2PT):

Ĩp
(2PT)

= Ip + αF 2, (9)

where α = 4.06 a.u. for this system. Then we compare the
modified SC rate Γ̃SC (8) computed either with the exact Ĩp
(dotted blue line) or with the 2PT correction Ĩp

(2PT)
(solid

green line) to the TDSE results (black crosses) on Figure 1
(a) and (b). We see that both versions of Γ̃SC are closer to the
the TDSE results than the uncorrected ΓSC, indicating that the
Stark shift correction systematically reduce the error made by
the SC formula. Moreover we see in the lower pannel that in
both cases (exact and 2PT corrections) the exact to analytical
ratio is flat, which indicates that the behavior predicted by this
corrected formula is very close to the exact one.

As a result, the corrected formula Γ̃SC can be used on a
large range of field values with a relatively constant error of
' 10%. Furthermore, we see that the rate corrected with the
2PT approximation Ĩp

(2PT)
is in very good agreement with

the one corrected with the exact Ĩp. This justifies the use of the
2PT approximation to compute the ionization rate. We have
checked that the general behavior described here is insensitive
to the values of the atomic parameters Z and a.
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FIG. 2. (Color online) Stark shift of an atomic system (section III.A).
Corrected ionization potential as a function of the electric field: dash-
dotted green line for the numerical results and solid orange line for

second order perturbation theory Ĩp
(2PT)

(9).

B. Diatomic molecules

In the case of homonuclear diatomic molecules, the behav-
ior of the Stark shift is very sensitive to the interatomic bond
length. This is because the energy gap between the ground and
first excited states, ∆E =E1 − E0 decreases when the bond
length increases. If this gap gets small, such that ∆E . ∆Ip,



4

then the Stark shift becomes linear and one has to use de-
generate perturbation theory (DPT) to compute the corrected
ionization potential. This reads, at first order:

Ĩp
(DPT)

= −E0 + E1

2
+

1

2

√
(E1 − E0)2 + 4|〈ϕ0|x|ϕ1〉|2F 2.

(10)
To compare numerically the two different versions of pertur-
bation theory, we consider two different molecular systems
S1 and S2 with the same asymptotic behavior (Z = 1) and
the same ionization potential Ip =0.573 a.u. but two different
bond lengths. For the first system S1 we take a= 1, R= 2.2
a.u. and obtain a field free energy gap of ∆E = 0.260 a.u.,
whereas for the second one S2 we take a= 0.6925, R= 4.0
a.u. and get ∆E = 0.117 a.u. We show their dressed exact
ionization potential Ĩp and the two different perturbation the-

ories Ĩp
2PT

and Ĩp
DPT

on Figure 3. We notice quantitative
differences: it is remarkable on Figure 3 (a) that in the first
case 2PT (solid blue line) gives a better agreement with nu-
merical results (red crosses), while in the second case, we see
on Figure 3 (b) that DPT (dotted black line) is more adequate.
This clearly illustrates that second order approximation of the
Stark shift can be ill-fitting and has to be considered with care,
especially for molecules.

We now use the two different Stark shift perturbation ex-
pansions (2PT and DPT) to obtain two different corrected ion-
ization rate formulas Γ̃SC (8) and we compare them to our ex-
act numerical results ΓTDSE on Figure 4. The results for the
smaller molecule (Figure 4 (a) and (b)) are quite similar to the
ones obtained for the atom. The error made by the uncorrected
rate (dashed red line in the upper panel, and red crosses in the
lower panel) increases with the field and becomes rapidly too
large for quantitative applications. The corrected rate Γ̃SC is
closer to the exact one, especially for high fields. In this case,
the 2PT (solid green line and green X’s) and DPT (dotted blue
line and blue dots) corrections give similar results, which is
consistent with the results of Figure 3 (a).

However, in the case of the larger molecule shown on Fig-
ure 4 (c) and (d), the uncorrected formula (dashed red line
and red crosses) fails to predict the right value of the rate. It is
wrong by a factor of two for a field value corresponding to an
intensity of' 5× 1013 W cm−2 and the error is even larger at
higher intensities. Besides, the corrected formula using 2PT
(solid green line and green X’s) does not reduce the error at
all. The only formula that predicts the right order of magni-
tude on a broad range of field values is the formula that uses
the DPT correction (dotted blue line and blue dots).

Here we only present the case of symmetric molecules, for
which there is no permanent dipole moment. Nevertheless
in the case of polar molecules, the Stark shift correction is
crucial for the description of tunnel ionization. In that case
the ionization rate becomes anisotropic, and by considering
only the uncorrected formula (6), one would intuitively state
that ionization preferently occurs in the direction of the maxi-
mum of the electronic density. However, as is detailed in [8],
the Stark shift has an opposite contribution which enhances
ionization in the direction of the permanent dipole moment.
When one considers the two contributions, we find (data not
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FIG. 3. (Color online) Stark shift of molecules S1 (a) and S2 (b) (sec-
tion III.B). Corrected ionization potential as a function of the electric
field: dash-dotted green line for the numerical results, solid orange
line for second order perturbation theory Ĩp

2PT
(9) and dashed pink

line for degenerate perturbation theory Ĩp
DPT

(10). Upper panel:
S1, lower panel: S2.

shown), in accordance with the results of [8], that it is ac-
tually the Stark shift anisotropy that controls the ionization
anisotropy. Therefore, the Stark shift correction is in that case
mandatory even to reproduce the qualitative behavior of a po-
lar molecule.

In conclusion to sections A and B, extreme care has to be
taken when the uncorrected SC formula is used to predict the
ionization rate of a system, especially in the presence of a par-
ticularly strong field. If one can compute the polarizability of
the ground state and therefore correct the ionization potential,
the accuracy of the analytical rate may be improved. Never-
theless, this correction is not universal: if the energy levels of
the system are too close to each other, degenerate perturbation
theory should be used instead.
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FIG. 4. (Color online) Tunnel ionization of molecules S1 and S2 (section III.B). Upper panels: ionization rate as a function of the electric field
of S1 (a) and S2 (c). Black circles for the reference value ΓTDSE (5), dotted purple line for the SC analytical formula ΓSC (6), dashed pink
line for the modified SC formula Γ̃SC (8) corrected with the DPT approximation of Ĩp and solid orange line for the same modified SC formula
but with the 2PT approximation of Ĩp. Lower panel: ratio of the numerical to analytical ionization rates of S1 (b) and S2 (d).

IV. ERROR ANALYSIS

In the previous section we have seen that while the Stark
shift correction can improve the accuracy of the analytical
rate, discrepancies with exact TDSE results remain. In or-
der to identify the origin of the error, we analyze all the ap-
proximations that are made to establish the ionization rate (see
appendix) by gradually introducing them in approximate eval-
uations of the ionization rate. Then we analyze the error re-
sulting from each of these approximations to determine which
one of our hypothesis is not fulfilled.

To obtain the analytical expression Γ̃SC given in (8), we
compute the electronic density flux far from the atomic po-
tential, i.e. at a point x → −∞, out of the wave function
ψ(x) corresponding to the ground state dressed by the elec-
tric field. The wave function is not available for most of the
practical cases, which is why we use the semi-classical ap-
proximate expression of the wave function. However, this
approximation only gives the wave function up to a constant
normalization factor, i.e. C in (11). The computation of this
factor C supposes a choice of normalization, of which the
absolute value of the rate will depend. The choice of Lan-
dau and Lifshitz in [25] and Smirnov and Chibisov in [26] is
to connect the semi-classical wave function with the ground
state ϕ0 of the unperturbed system. To this end, we divide the
space into three different intervals, as illustrated in Figure 5,
and then use continuity conditions at the frontiers x1 and x0,
where x1 is the external turning point i.e. p(x1) = 0 where

x0x1

Ip

ϕ0(x)ψexact(x)

V0(x)+xF

V0(x)
x

FIG. 5. (Color online) Schematic view of tunnel ionization of the
atomic system described in section III A in a field F = 6 × 10−2

a.u.. Solid red line: exact wave function ψexact(x) dressed by the
electric field and dashed blue line: exact ground state ϕ0(x) of the
unperturbed system (both computed by inverse iteration [39]). See
text and appendix.

p(x) =
√

2(Ĩp + V0(x) + xF ) is the classical action, and x0
is any point inside the barrier. At the right of the point x0
we approximate the wave function by the ground state ϕ0 of
the unperturbed system. At the left of x0 we use the semi-
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classical approximation to get two different expression for
the wave functions in the two regions of space x < x1 and
x1 < x ≤ x0. We refer the interested reader to the appendix
for more details.

The first approxmiation we use is the semi-classical approx-
imation in the regions of space inside the potential barrier and
far from the atomic core. It is justified as long as the spatial
variations of the De Broglie wavelength of the electron are
small [25], which can be written as

1

|p|2

∣∣∣∣dpdx

∣∣∣∣� 1. (11)

If we use only this approximation, we find the following ex-
pression for the ionization rate

Γ1 = |ψ(x0)|2|p(x0)| exp

(
−2

∫ x0

x1

|p(x)|dx
)
, (12)

To evaluate the validity of the hypothesis in (11) the left-hand
side quantity Γ1 is computed numerically in the case of the
atomic system of section III A. For this, the exact wave func-
tion ψ(x0) dressed by the field is computed numerically (e.g.
by inverse iteration [39] or Runge-Kutta propagation), and
then normalized by∫ +∞

x1

|ψ(x)|2dx = 1. (13)

This choice of normalization is consistent the way LL and SC
build their approximate wave function. Note that it is also con-
sistent with the approximation in equation (36) of [27]. The
numerical Γ1 is shown as red connected triangles on Figure 6
for a field F = 2.5 × 10−2 a.u., which corresponds to an in-
tensity of 2.2×1013 W.cm2. In these conditions x1 = −22.05
a.u.. We see that if we choose x0 in the range between 5 and
15 a.u., then the semi-classical approximation gives results
very close to the TDSE rate. Also, the rate Γ1 is almost inde-
pendent of the choice of the arbitrary parameter x0, which is
consistent with the fact that the ionization rate should note de-
pend on x0 at all. We remark that a different choice of normal-
ization for ψ would only scale Γ1 by a constant factor which
would thus still be independent of the arbitrary parameter x0.

The second hypothesis is that there exists an interval I in-
side the barrier where the wave function ψ can be approxi-
mated by the ground state ϕ0 of the unperturbed atomic po-
tential. According to [25, 26], this is justified if the inter-
action with the electric field is very small i.e. |x0F | � Ip
if x0 ∈ I. By replacing the exact wave function ψ(x0) by
ϕ0(x0) in the expression of Γ1 (12), we obtain the rate Γ2

which corresponds to the expression (A5) given in appendix.
We plotted Γ2 as a solid yellow line in Figure 6. We imme-
diately see the huge difference between Γ1 and Γ2. First Γ2

departs from Γ1 and from the TDSE results, which indicates
that the approximation ψ(x0) ' ϕ(x0) is not justified, what-
ever the value of x0. Moreover Γ2 strongly depends on the
unphysical parameter x0, which is non satisfactory.

The third hypothesis is that |x0| is very large, such that
|V0(x0)| � Ip. This allows to use the asymptotic form of

the atomic ground state (7). It also allows to neglect V0(x0)
in the expression of |p(x0)|, and to expand p(x) in powers of
V0(x)/(xF + Ĩp) as we did in (A8). We insert all this in (A5)
to get

Γ3 = |ψ(x0)|2
√

2Ĩp(1 + η) e−2K, (14)

where

K =
(2Ĩp)

3
2

3F
(1 + η)

3
2 − Z√

2Ĩp

ln

(
1 +
√

1 + η

1−
√

1 + η

)
, (15)

and where we defined

η =
x0F

Ĩp
. (16)

This is shown as a dashed blue line in Figure 6. We see that,
as long as x0 > 4 a.u., there is almost no difference between
Γ3 and Γ2, which indicates that the hypothesis |V0(x0)| � Ip
is justified.

Finally, the last approximation uses again that |x0F |� Ip,
i.e. that η � 1, to make the expansion (A9) and to neglect
x0F in |p(x0)|. This last step gives the SC formula of (8),
which is plotted with a dash-dotted green line in Figure 6.
We observe a dramatic difference between Γ̃SC and Γ3, which
indicates that, again, the condition η�1 is not fulfilled, what-
ever the value of x0, for a field of 2.5 × 10−2 a.u.. However
it is remarkable that the error made by this last approximation
almost perfectly compensates the error made by the approx-
imation ψ(x0) ' ϕ(x0) so that the SC formula eventually
gives results relatively close to the exact TDSE computations.

TDSE

  0.0

  2.0

  4.0

  6.0

−20 −15 −10 −5  0

Γ
 (

1
0

−
1
2
 a

.u
.)

x0 (a.u.)

FIG. 6. (Color online) Ionization rate as a function of x0 (see text) for
an electric field F = 2.5 × 10−2 a.u.. The red connected triangles
corresponds to Γ1 given in (12), the solid yellow line Γ2 given in
(A5), the dashed blue line Γ3 (14) and the dash-dotted green line
Γ̃SC given in (6). The horizontal black line indicates the exact value
obtained in TDSE simulations.

We did the same analysis for a much weaker field value
F = 2 × 10−3 a.u., which corresponds to an intensity of
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1.4 × 1011 W.cm2. In these conditions x1 = −295.23 a.u..
As can be seen in Figure 7, at this field value the ionization
rate is of order of magnitude 10−182 a.u. which drastically
highlights the extreme non-linearity of the process. It is well
below any practictal application, and obviously below the nu-
merical accuracy of TDSE simulations, which is why we have
no reference TDSE value for this value of F . Nevertheless,
this academic case constitute a severe test of the approxima-
tions relying on the weak influence of the external field on the
electron at the position x0. We find that the conclusions con-
cerning the relative roles of the approximations are exactly the
same as the ones obtained with F = 2.5× 10−2 a.u.. Indeed,
we see on Figure 7 that the two rates Γ1 and Γ2 are very dif-
ferent from one another, and that Γ2 still exhibits a strong x0
dependency. Therefore the approximation that there exists a
point x0 that is at the same time very large, i.e. |V0(x0)| � Ip,
and very small, i.e. |x0F |� Ip, is never justified, even for a
field value as small as F = 2× 10−3 a.u..

  0.0

  1.0

  2.0

  3.0

−250 −200 −150 −100 −50  0

Γ
 (

1
0

−
1
8
2
 a

.u
.)

x0 (a.u.)

FIG. 7. (Color online) Same as in Figure 6 for an electric field of
F = 2 × 10−3 a.u.. The TDSE value is not displayed because it lies
below the numerical accuracy of the simulation.

Indeed, for these two condition to be fulfilled at the same
time, the electric field has to be much smaller than the condi-
tion one often finds in the literature [17, 26]:

F � (2Ip)3/2. (17)

For example in the case of hydrogen (Ip =

0.5 a.u.),(2Ip)3/2 = 1 and the inequality (17) is ful-
filled for the two field values used in Figure 6 and Figure 7.
However, the expansion in (A9) is, in this case, justified if

e−
2

3F (1−2|x0|F )3/2 ' e−
2

3F e2|x0|, (18)

which will hold if the third term of the expansion is negligible,
i.e.

e−2|x0|2F ' 1. (19)

As we have |x0| � 1, we actually need F ≤ 10−4 a.u. for
(19) to be true. This means that the hypotheses of the Lan-
dau and SC derivation are verified if the intensity is below

108 W cm−2, which corresponds to a meaningless tunnel ion-
ization rate of about Γ . 10−2891! However, once again,
thanks to the error compensation evidenced with the stronger
field as well as with the weaker one (see Figure 6 and 7), the
Landau rate gives semi-quantitative results for intensities up
to 1012 − 1013 W cm−2. The use of this formula for finite
values of the electric field has therefore more empirical than
theoretical foundations.

V. CONCLUSION

We computed the tunnel ionization rate in a static electric
field for different symmetric systems using both the standard
analytical formulas and exact numerical solution of the time
dependent Schrödinger equation. By comparing the two ap-
proaches we found that the standard rate derived by Smirnov
and Chibisov [26] only yields qualitative trends in the best
cases. We demonstrated that we can correct this formula by
taking into account the Stark shift, and we derived a consis-
tent formula where the Stark shift correction only appears in
the argument of the dominant exponential term. We tested
this formula for an atomic and two different homonuclear di-
atomic molecules and showed that the correction systemati-
cally improves the accuracy of the ioniation rate. We proved
that if the energy gap between the two first bound states re-
mains big enough compared to the Stark shift, then second
order perturbation theory is sufficient to compute the Stark
shift, implying that one only needs to know the permanent
dipole moment and polarizability of the system under study.
However, we showed that for highly polarizable systems, sec-
ond order pertrubation theory is a very bad approximation for
the Stark shift and therefore a very bad correction of the ion-
ization rate. In these cases, one has to consider degenerate
perturbation theory.

The main conclusion of this work is that the hypotheses
used for the Landau derivation of the tunnel ionization rate
are unjustified at working intensities to model quantitatively
atoms and molecules interacting with strong laser fields. We
showed that the accuracy of the Landau formula is difficult
to predict since it originates from the compensation of differ-
ent approximations. Consequently, all the dynamical formulas
that are based on this statical rate (ADK), or asymptotically
equal to it in the limit of a zero frequency electric field (e.g.
the rate derived by Perelomov et al. [17]), should be handled
with care when used for quantitative applications.
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Appendix A: On the corrected Smirnov and Chibisov ionization
rate

In this Appendix we establish the formula (8) taking into
account the Stark shift. We follow the procedure of [25, 26],
but adapted to our one dimensional case. To recover the three
dimensional rate, one only needs to integrate the formula over
the two remaining variables, as it is done in [25, 26].

We consider the same system as described in section II, in
presence of a very weak static electric field F � (2Ip)3/2.
We note Ĩp = Ip + ∆Ip the corrected ionization potential
that include the Stark shift ∆Ip. For weak electric field, the
Stark shift can be treated through perturbation theory, and
∆Ip � Ip. For a symmetric potential, the choice of sign
of the electric field is irrelevant and we choose F positive,
therefore ionization occurs in the region of space where x is
negative.

We define a point x0 inside the potential energy barrier such
that |V0(x0)| � Ip and |x0F | � Ip, and we note

η =
x0F

Ĩp
. (A1)

For x ≤ x0 we use the quasi-classical expression of the wave
function:

ψ(x) =


C
√
p

exp

(
i

∫ x1

x

p(x′) dx′ − iπ

4

)
, x < x1

C ′√
|p|

exp

(∫ x

x1

|p(x′)|dx′
)
, x1 < x ≤ x0

(A2)

where p(x) =
√

2(−Ĩp − V0(x)− xF ) is the classical ac-
tion, and x1 is the external turning point i.e. p(x1) = 0. Using
the connecting formulas in [25], we find the relations between
C and C ′, and thus the wave function inside the barrier

ψ(x) =
C√
|p|

exp

(∫ x

x1

|p(x′)|dx′ + iπ

2

)
, x1 < x ≤ x0.

(A3)

Using |x0F | � Ip, ψ(x0) can be approximated by the unper-
turbed ground state ϕ0(x0) of the system. This determines
the constant C and thus the final expression for ψ(x) outside
the barrier as

ψ(x) = ϕ0(x0)

√
|p(x0)|√
p(x)

exp

(
−
∫ x0

x1

|p(x′)|dx′
)

× exp

(
i

∫ x1

x

p(x′) dx′ − 3iπ

4

)
, x < x1. (A4)

The ionization rate Γ is given by the opposite of the proba-
bility flux at a point x with |x| � |x1| (where x, x1 < 0)

Γ = − Im(ψ∗
dψ

dx
) (A5)

= |ϕ0(x0)|2 |p(x0)| exp

(
−2

∫ x0

x1

|p(x′)|dx′
)
. (A6)

In the preexponential factor we take |p(x0)| '
√

2Ip, and in
the exponential we keep the first two terms of the expansion
in powers of V0(x)/(xF + Ĩp)

|p(x)| =
√

2(xF + Ĩp) +
V0(x)√

2(xF + Ĩp)
+O

(
V0(x)2

(xF + Ĩp)
3
2

)
(A7)

which, after integration gives∫ x0

x1

|p(x)|dx =
(2Ĩp)

3
2

3F
(1 + η)

3
2

− Z√
2Ĩp

ln

(
1 +
√

1 + η

1−
√

1 + η

)
+O

(
Z

3
2F

1
2

I
3
2
p

)
.

(A8)

For exhaustivity reasons, we have kept the factors in front of
the powers of F in the O(Fα). We use η � 1 to make the
expansion∫ x0

x1

|p(x)|dx =
(2Ĩp)

3
2

3F
+ x0

√
2Ĩp

︸ ︷︷ ︸
A

− Z√
2Ĩp

ln

(
4

η
+O(1)

)
︸ ︷︷ ︸

B

+O

(
x20F√
Ip

)
+O

(
Z

3
2F

1
2

I
3
2
p

)
. (A9)

First, we will see why we can neglect ∆Ip in terms A and
B, and then we will see why we must do it. As ∆Ip can be
treated by perturbation theory we have ∆Ip = O(x0F ) when
F → 0. Then we use ∆Ip � Ip to make the expansion

A = x0
√

2Ip +
2x0∆Ip√

2Ip
(A10)

= x0
√

2Ip +O

(
x20F√
Ip

)
(A11)

and remark that the second term can just be inserted in the
O
(
x20F/

√
Ip
)

term in (A9). We also expand term B as

B =
Z√
2Ip

ln

(
4Ip
|x0|F

+
4∆Ip
|x0|F

+O(1)

)
+
Z∆Ip

(2Ip)
3
2

ln

(
4Ip
|x0|F

+O(1)

)
. (A12)

First we have 4∆Ip/(|x0|F ) = O(1), and we remark that for
X � 1, we have ln(X) = o(Xε) for any ε > 0, this gives

B =
Z√
2Ip

ln

(
4Ip
|x0|F

+O(1)

)
+ o

(
Z(x0F )1−ε

I
3
2−ε
p

)
(A13)
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If we choose ε < 1
2 , we can insert this o

(
Z(x0F )1−ε/I

3
2−ε
p

)
in the O

(
Z

3
2F

1
2 /I

3
2
p

)
term in (A9). We thus see that we can

consistently neglect all terms that contain ∆Ip in (A9) except
for the first term (2Ĩp)

3
2 /3F . We can now insert (A9) in (A5)

to get

Γ = |ϕ0(x0)|2|x0|
− 2Z√

2Ip e2|x0|
√

2Ip
√

2Ip

(
4Ip
F

) 2Z√
2Ip

× exp

(
−2(2Ĩp)

3
2

3F

)
. (A14)

Finally we use |V0(x0)| � Ip to replace ϕ0(x0) by its asym-
potic form, i.e. (7), and notice that

|ϕ0(x0)|2|x0|
− 2Z√

2Ip e2|x0|
√

2Ip −−−−→
x0→∞

|B|2 (A15)

to get the final expression

Γ̃SC = |B|2
√

2Ip

(
4Ip
|F |

) 2Z√
2Ip

exp

(
−2(2Ĩp)3/2

3|F |

)
.

(A16)

The reason why we must neglect ∆Ip in terms A and B ap-
pears more clearly. Indeed, if one kept Ĩp instead of Ip then
the simplification (A15) would not work anymore, and the fi-
nal formula for the ionization rate would depend on the un-
physical quantitiy x0. To avoid such an inconsistency, it is
thus necessary to neglect the Stark shift as we have done. For
the term in the dominant exponential, there is no such require-
ment, and one may keep the corrected ionization potential Ĩp.
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