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Terahertz Superresolution Stratigraphic
Characterization of Multilayered Structures
Using Sparse Deconvolution

Junliang Dong, Student Member, IEEE, Xiaolong Wu, Alexandre Locquet, and David S. Citrin

Abstract—Terahertz sparse deconvolution based on an itera-
tive shrinkage algorithm is presented in this study to character-
ize multilayered structures. With an upsampling approach, sparse
deconvolution with superresolution is developed to overcome the
time resolution limited by the sampling period in the measure-
ment and increase the precision of the estimation of echo arrival
times. A simple but effective time-domain model for describing
the temporal pulse spreading due to the frequency-dependent loss
is also designed and introduced into the algorithm, which greatly
improves the performance of sparse deconvolution in processing
time-varying pulses during the propagation of terahertz waves in
materials. Numerical simulations and experimental measurements
verify the algorithms and show that sparse deconvolution can be
considered as an effective tool for terahertz nondestructive char-
acterization of multilayered structures.

Index Terms—Multilayered structures, nondestructive testing,
pulse spreading, sparse deconvolution, superresolution (SR), tera-
hertz (THz) imaging.

I. INTRODUCTION

ERAHERTZ (THz) imaging, as a relatively new and

promising nondestructive evaluation (NDE) technique, has
attracted considerable interest as a noninvasive, noncontact, and
nonionizing method to characterize various nonmetallic materi-
als with multilayered structures [1]-[3]. THz reflective imaging
provides information in depth by analyzing the reflected THz
signal with an incident approximately single-cycle THz pulse.
Due to dielectric discontinuities with depth, reflected temporal
THz echoes associated with the Fresnel coefficients between
various interfaces are recorded as a function of transverse posi-
tion in amplitude and time delay. The successful characteriza-
tion of multilayered structures relies on the precise extraction
of echo parameters from the reflected THz signal. For example,
characterization of the stratigraphic properties is based on the
estimation of arrival times of echoes. In practice, the echoes may
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partially or totally overlap; therefore, deconvolution is usually
required in order to precisely resolve the overlapping echoes
and extract the arrival times of superimposed echoes from noisy
measurements.

The reflected THz signal is the convolution of the incident
THz pulse with the impulse response function, which should
ideally consist of a sequence of ideal impulses corresponding
to the material structure. Conventional deconvolution aims at
retrieving the impulse response function by applying the in-
verse Fourier transform of the transfer function, which is the
ratio of the reflected to the incident THz spectra. However,
high-frequency noise will be introduced in this inverse prob-
lem, since divisions by small numbers will give rise to large
spikes in the high-frequency range, leading to severe ringing in
the impulse response function [4]. Therefore, more effort should
be made to improve the performance of conventional deconvo-
lution. As a modified version of conventional deconvolution,
THz frequency-wavelet domain deconvolution (FWDD) [5] is
specifically designed and has been successfully used for locat-
ing defects and investigating stratigraphic properties in mul-
tilayered structures, such as fiber-reinforced composites [6],
polymer coatings [7], art paintings [8], and human skin [5].
The basic idea of FWDD is to enhance the deconvolution pro-
cess by first employing frequency-domain filtering and then
further improving the signal-to-noise ratio (SNR) by wavelet
denoising. Baseline subtraction is also needed to cancel the
slow fluctuations corresponding to the low-frequency noise due
to the deficiency of THz sources in the low THz frequency
region. The depth resolution by FWDD is highly dependent
on the width of the frequency-domain filter and the SNR. In
addition, the time resolution is limited by the discretization
precision, corresponding to the data sampling period in the
measurement.

The reflected signals from multilayered structures are a class
of very special signals comprised of a limited number of echoes,
and the corresponding impulse response functions have a sparse
representation, which means only a limited number of data
points have nonzero values. This feature enables us to exploit
the sparse constraint and retrieve the impulse response function
by sparse deconvolution. Compared with conventional decon-
volution, sparse deconvolution is a pure time-domain method;
therefore, there is no introduction of the high- and low-frequency
noises mentioned above, and it can be expected to achieve a more



clear representation of the material structures with superresolu-
tion (SR) [9]. For 1-D NDE problems, SR techniques seek to
recover a high-resolution signal sequence from one or a set of
low-resolution acquisition systems. However, sparse deconvo-
lution has not been studied in detail nor has it been extensively
used to process THz NDE signals, and to our knowledge, only
one attempt has been reported so far. In [10], sparse decon-
volution is briefly introduced and used to process THz signals
reflected from a human palm.

In this paper, the principle of sparse deconvolution and a com-
putationally efficient iterative shrinkage algorithm for sparse de-
convolution are demonstrated to process THz signals reflected
from multilayered structures. In order to increase the time res-
olution, which is limited by the data sampling period, a SR
model for sparse deconvolution is developed by an upsampling
approach. Based on the assumption that the THz echoes are
the time-shifted amplitude-scaled replicas of the THz reference
signal, both FWDD and sparse deconvolution are mainly lim-
ited to deconvolve reflected THz signals with time-invariant
pulses. However, in practice, the temporal pulse spreading
caused by frequency-dependent attenuation and dispersion dur-
ing the propagation of THz waves in materials does occur and,
therefore, lowers the performance of deconvolution. In order to
solve this problem, a simple but effective time-domain model
for describing the pulse spreading is designed and introduced
into the algorithm for sparse deconvolution to enhance its ability
to deconvolve time-varying echoes. Both numerical simulations
and experimental measurements are performed to prove the ef-
fectiveness of sparse deconvolution, and the results are also
compared with those obtained by FWDD.

II. PRINCIPLE
A. Sparse Deconvolution With Data Resolution

In the time domain, the THz reflected signal (electric field)
y(t) is the convolution of the incident THz pulse A(t) with
the impulse-response function f(#), which corresponds to the
structure and properties of the sample at a given point of interest
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For reflective THz imaging, the incident THz pulse h(#) can be
obtained by first recording the THz signal reflected from a metal
plate (THz reference signal) and then multiplying the reference
signal by a factor of —1 for phase correction. In practice, we
should consider the discrete form of (1) with the sampling period
T

M1

Yn = Z hm fn—m + e, (2)

m=0

where y, = y(nT,), h,, = h(mT,), and e, accounts for the
noise originating from the measurement system and materials
with n and m as the indices of data points, and M as the length
of the data points. Let column vectors y, h, f, and e collect the
samples of y,,, h,, f., and e, , respectively. Then, (2) can be

expressed as
yv=Hf+e 3)

where H is the convolution matrix whose rows are delayed
versions of the reversed vector of hT or, equivalently, whose
columns are delayed versions of h.

The basic idea of sparse deconvolution is to achieve the im-
pulse response function by exploiting the sparse constraint. It
aims at approximating the received THz signal y with Hf,
where f is a sparse sequence, that is, f has only few nonzero
components. In this case, the sparse vector f can be computed
by solving the [y regularized optimization problem, which is
defined as

!
min o [[HE — y 3+ 21€]o )

where ||£||o is the Iy-norm of £, whichis defined to be the number
of nonzero entries in f, and X is the regularization parameter,
which controls the tradeoff between the sparsity of f and the
residue norm.

Solving the nonconvex [, regularized optimization problem in
(4) is known to be nonpolynomial hard, and the global optimum
cannot be guaranteed. It has already been shown [11] that this
nonconvex optimization problem can be approximated with a
convex optimization problem by replacing the /;, penalty with
the [ penalty as

1
min 2 [HE -y + 2[€l )

where ||f]|; is the /;-norm of f, which is defined as the sum
of the absolute values of its components. Since the /1 norm is
convex, a global optimum can be guaranteed.

The iterative shrinkage algorithm, which has been developed
recently [ 12] and is able to address the above optimization prob-
lem effectively, is utilized in this paper. Generally speaking, in
the iterative shrinkage algorithm, each iteration involves matrix—
vector multiplication involving H and H followed by a shrink-
age or soft-thresholding step. Specifically, the general iterative
procedure is given by

fi1 = Sir (f - 7TH'(HE —y)) ©)
where 7 is an appropriate step size, which should obey
2
T = (7
[FHTH] 2

in order to guarantee convergence, and the shrinkage or soft-
thresholding operator S, - is defined as

fln]+ar, fln] < —ar
Sir (fln]) =40, | fln) |< AT (8)
fln] — ar, fln] = a7

A thorough theoretical analysis in [13] proves the convergence
of this iterative shrinkage algorithm guaranteeing that the solu-
tion is the global minimizer for convex f. Obviously, the time
resolution of the obtained impulse response function f by sparse
deconvoltuion depends upon the time resolution of the reference



signal h, which is itself determined by the discretization preci-
sion, corresponding to the data sampling period 7.

B. Sparse Deconvolution With SR

Compared with conventional deconvolution, one of the ad-
vantages of sparse deconvolution is that it can achieve SR. The
time resolution of sparse deconvolution can be increased by
an upsampling approach. Although the reference signal h(t) is
measured at the sampling rate of the data T, the original discrete
h, which contains M data points, can be upsampled by factor
K to form h*" with time interpolation [14]. In this case, we can
consider that the reference signal h(t) is discretized at 7%/ K;
therefore, the time resolution of f(#) can also be increased by
K times accordingly. The discrete convolution model can be
written as the sum of A" discrete convolutions as

1 K-1 /M-1
Yn = E Z (Z hi‘n f:::—m) +éen (9)
k=0

m=0

where h* are K subwavelets with sampling period T}, such
that h% = h(kT./K +mT,), and f* are the corresponding
sparse subsequences with M points. In this model, the discrete
convolutions based on the original data and (K — 1) times more
data points from the time interpolation are summed up and
averaged to approximate the received signal y. In this model,
we do not perform time interpolation on the received signal y,
which is still discretized at T, with the original data resolution
(DR), in order to prevent introducing additional information into
v, instead, we apply a sampling and holding approach to deal
with y. Then, the matrix form of (9) is

K-1

y = % Z Hf" + e (10)
k=0

with H* the submatrices obtained by taking every Kth row of

H*", which is the convolution matrix based on h*". By tak-

ing this matrix form into the iterative shrinkage algorithm, the

general iterative step should be updated to

K-1
v . T(1 o
£, =S, (f.,*- — TH'T (E > H'f —y)) an
k=0

where the step size 7 should satisfy

2
T <min ——=——--— 12
" TR, 2
in order to guarantee convergence. By interleaving the obtained
K subvectors f* | the final impulse response function with SR
£*", which contains KM data points, can be achieved.

C. Sparse Deconvolution Considering Pulse Spreading

The performance of sparse deconvolution demonstrated
above is mainly limited to the deconvolution of reflective THz
signals with time-invariant echoes, which assumes that the THz
echoes are time-shifted amplitude-scaled replicas of the THz
reference signal. In practice, however, the reflected THz sig-
nals can be both sparse and time varying due to the frequency-
dependent attenuation and dispersion during the propagation

of THz waves in materials. For most of the materials, this
frequency-dependent loss has a low-pass filtering effect on the
propagating THz waves and results in temporal pulse spread-
ing [15], [16]. For thick multilayered samples in particular, a
shape broadening of echoes, which grows as propagation dis-
tance increases, can be clearly observed in the received THz
signals. This temporal pulse spreading will definitely degrade
the accuracy of the sparse deconvolution based on time-invariant
echoes.

A simple but effective discrete-time pulse spreading model is
designed in the following to solve the problem mentioned above.
We assume that the temporal spreading of the propagating THz
pulse, caused by traveling a distance slice Az in an attenuative
and/or dispersive medium, can be modeled using a linear time-
invariant (LTI) system [17], whose impulse response function
is pa- (t). At depth Az, the THz pulse ha . (¢) can be expressed
as

13)

where hg(tf) is the THz pulse at Az = 0, corresponding to
the original THz reference signal. Accordingly, a model of the
pulse spreading associated with traveling a multiple of this dis-
tance, z, = N Az, is obtained by serially connecting the above-
mentioned LTI system N times. The impulse response of the
serially connected LTI system is modeled as an /N-time self-
convolution of the impulse response function of the LTI system
associated with a material slice of thickness Az. Therefore, at
depth NAz, the THz pulse h., (¢) will be governed by

ha:(t) = pa: (£)@hy(t)

he, (t) = pa.()@pa. ()@ -@pa. ()b (1)
N
= par (D@ho(t) (14)
where pg\;)(t) represents N times self-convolution with the

kernel function pa . ().

In the discrete model, the distance slice Az = T corre-
sponds to the data sampling period T, with ¢ the propagating
speed of THz waves in the material. Because Az is small, the
temporal spreading of the THz pulse between the adjacent dis-
tance slices must be relatively small, which implies that the
discrete form of the impulse response function pa . [n] should
be close to a Dirac function delayed one sampling period. This
means pa . [n] ~ é[n — 1]. In this paper, we model the impulse
response function pa.[n] for describing the temporal pulse
spreading with a simple form:

a, n=>0
1—2a, n=1

pAz[n} = a ’ n—=29 (15)
0, otherwise

where 0 < a < 1 and a determines the severity of the pulse
spreading. Note that ¢ = 0 yields pa-[n] = §[n — 1], indicat-
ing a simple time delay without temporal pulse spreading. In
practice, the parameter a can be found by fitting a specific sep-
arate echo at a given depth. Let the column vector p collect the
values of pa.[n]; then, the matrix A for describing the pulse
spreading throughout the propagating distance can be expressed



as

A— [p(l) P p® . p(m] (16)
where p'™) represents n times self-convolution with the ker-
nel vector p. Therefore, in order to include the temporal pulse
spreading effect, the convolution matrix form in (3) should be
modified to

y = HAf + e (17

where the matrix HA models the THz pulse with temporal
spreading. Each column of HA now represents a THz pulse
with temporal spreading for a traveling distance equal to nAz,
where 7 is also identical to the column number. Compared with
the THz pulses in the adjacent columns, both amplitude decrease
and shape broadening with respect to the traveling distance can
be observed.

Accordingly, in order to deconvolve this kind of time-varying
THz signal with the iterative shrinkage algorithm, the general
iterative step should be further modified to

fii1 = S (F — 7(HA)T(HAf; —y)) (18)
where the step size 7 should obey
2

T 19

[(FA)THAL )

in order to guarantee convergence. It is important to note that
(17) indicates that the temporal pulse spreading is considered
from the beginning of the received THz signal. However, it is not
acommon case. For example, in a typical THz reflective imaging
experiment, the first columns of H correspond to the THz pulses
propagating in air, which is low loss and involves no pulse
spreading. In this case, A should be divided into two parts by
identifying a typical column number ny, which corresponds to
the air/sample interface. To the left of column ng, A is composed
of an identity matrix I, which is the same as setting a = 0, and
then, after column ng, by setting 0 < a < 1, the temporal pulse
spreading starts to be involved after the air/sample interface. In
the case in which the THz pulse encounters several propagating
media, one can build a block diagonal matrix A composed of
the respective media matrices by setting different values of a.

III. NUMERICAL SIMULATIONS

Numerical simulations are first performed to verify the iter-
ative shrinkage algorithm for sparse deconvolution with both
DR and SR. An actual THz reference signal generated by the
experimental system described in Section IV, which contains
4096 data points with a sampling period T = 0.0116 ps, is
recorded and used in the simulations. An ideal and simple im-
pulse response function fy[n], with the same sampling period
and number of data points, is assumed

1, n= 1460
foln] =< 1, n=1550

0, otherwise.
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Fig. 1. Comparisons between the assumed (a) fy[n] and (b)) [n], and the de-
convolution results obtained by sparse deconvolution and FWDD, respectively.
Insets are the zoom-in images of corresponding boxed peaks.

foln] represents a simple one-layered structure, and the time
interval between its two peaks corresponds to the thickness of
the structure. fy[n] is convolved with the reference signal h[n]
to simulate the received signal yy[n]. Although h[n] is obtained
from an actual noisy measurement, the noise is included in the
input signal, which is known a priori. Therefore, we consider
this simulation as a noise-free case.

Both DR sparse deconvolution and FWDD are employed to
solve this inverse problem and recover the impulse response
function from yy[n| with the knowledge of h[n|. For sparse
deconvolution, the convolution matrix H is formed by h[n],
and the iteration based on (6) is performed 2000 times with the
regulation parameter A = 0.4 and the step size 7 = 1/|HTH]».
For FWDD, a Hanning window function is selected to serve as
the frequency-domain filter. Since the depth resolution achieved
by FWDD is highly dependent on the cutoff frequency f. of
the frequency-domain filter, we prefer to choose f, as high as
possible; however, with a high value of f,, a satisfactory SNR of
the deconvolved signal may not be guaranteed even after wavelet
denosing. In practice, f, = 4 THz is the maximum value we can
choose to ensure both a high depth resolution and a satisfactory
SNR. Baseline subtraction is performed on the deconvolved
signal by FWDD. Other parameters in FWDD can be found in
[8].

The simulation results are shown in Fig. 1(a). It can be seen
that the deconvolution results, fsp[r] and fewpp[n], which are
obtained from DR sparse deconvolution and FWDD, respec-
tively, successfully recover the assumed impulse response func-
tion, as the locations of the pulses in fsp[n] and frwpp[n] exactly
match the peaks in fj[n]. The width of the pulses obtained by
sparse deconvolution is narrower than that obtained by FWDD,
which indicates the potential that the minimal time interval re-
solved with DR sparse deconvolution can be smaller than that
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Fig. 2. Comparisons between the assumed (a)f, [n] and (b)f{)[n], and the

deconvolution results obtained by DR sparse deconvolution and SR sparse de-
convolution with ' = 4 and FWDD, respectively. Insets are the zoom-in images
of corresponding boxed peaks.

with FWDD. The minimal time interval which DR sparse de-
convolution is able to resolve can be identified by varying the
distance between the two peaks in fj[n]. We determine that the
impulse response function with minimal resolvable time interval
fi[n] is as follows:

1, n = 1460
n = 1485

0, otherwise

foln] = @n

in which the time interval between two peaks equals 257 . The
deconvolution results are shown in Fig. 1(b). We observe that
two peaks can be identified based on the results from DR sparse
deconvolution, while only one peak can be located based on the
results from FWDD. It is important to note that, in practice, for
both FWDD and sparse deconvolution, the minimal thickness
resolution, corresponding to the depth resolution, is dependent
on the coherence length, the sampling frequency, and the SNR.

Next, SR sparse deconvolution is utilized to recover fy[n] and
filn] based on signals with lower time resolution. Both fj[n]
and f[n] are convolved with the reference signal i[n], and
after convolution, the signals are undersampled by a factor 8 to
simulate the received signals yo[m] and y{[m], which contain
only 512 data points corresponding to a data sampling period
T! = 8T, In this case, we consider the time resolution of yq [m]
and y{[m] as the DR. Both DR sparse deconvolution and SR
sparse deconvolution are performed based on yq [, ¥} [m], and
I'[m], which is accordingly the undersampled version of /i[n]
by a factor 8. In this simulation, the maximum undersampling
factor is limited by the Nyquist sampling frequency to ensure
that all the information in the received signal is sampled.

The deconvolution results are shown in Fig. 2 for both cases.
The DR deconvolution results, fpr[m| and frwpp ], which

Incidence

Incidence

(a) (®)

Fig. 3. Two samples with multilayered structures. (a) Sample A: a three-
layered structure, which is composed of one copy paper, air gap, and one
polymer coating. (b) Sample B: a seven-layered structure, which is composed
of four different papercards with air gaps between them.

are obtained from DR sparse deconvolution and FWDD, re-
spectively, cannot recover the assumed impulse response func-
tions with enough accuracy, as the locations of the peaks in
Jor[m] and frwpp[m] do not exactly match the peaks in fj[n].
In order to increase the accuracy and time resolution, SR sparse
deconvolution based on (11) is employed, and the SR achieved
is determined by the upsampling factor K. In our simulations,
with K = 4, the SR deconvolution results fsg[k] successfully
recover the assumed impulse response function fy[n], as the lo-
cations of the peaks in fsg[k| exactly coincide with the assumed
peaks in fy[n]. It is noted that the accuracy of fsg[k| is also
affected by the start point in the undersampling period; in this
simulation, with only four times upsampling, we can achieve
an accurate recovery. The results thus show that SR sparse de-
convolution can overcome the limitation of DR and recover the
impulse response function with SR.

IV. SAMPLES AND EXPERIMENT

Two samples with multilayered structures are fabricated to
verify and evaluate the performance of sparse deconvolution ex-
perimentally. The first sample (Sample A), shown in Fig. 3(a),
is a three-layered structure made by sticking one layer of pa-
per on a polymer-coated steel plate, with an air gap intention-
ally introduced between the paper (thickness ~ 100 pm) and
the polymer coating (thickness ~ 50 pm). The second sample
(Sample B), shown in Fig. 3(b), is a seven-layered structure ob-
tained by stacking four different papercards. The thicknesses of
the first three papers are about 300 pm, and the thickness of the
fourth papercard is about 400 pm. Since the papercards are not
compressed tightly, air gaps with different thicknesses are also
introduced between the papercards.

A standard THz time-domain spectroscopy system ( Teraview
TPS Spectra 3000) is employed in this study to perform THz
reflective imaging at almost normal incidence on these two
samples. Before studying the samples, the THz reference sig-
nal, shown in Fig. 4, is recorded by setting a metal plate at
the sample position. The data sampling period in the measure-
ment is set to Ty = 0.093 ps. Each recorded reflected temporal
THz waveform contains 512 data points, and the signal is av-
eraged over ten shots. DR sparse deconvolution is applied to
reconstruct the sample structures based on the received sig-
nals. For the three-layered sample, SR sparse deconvolution is
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further applied to increase the time resolution of the arrival
times of echoes. Since both the THz loss and the propagating
distance are relatively large in the seven-layered sample, sparse
deconvolution including temporal pulse spreading described in
Section II-C is implemented to increase the accuracy of the
reconstruction.

V. RESULTS AND DISCUSSION

A typical received THz signal reflected from Sample A is
shown in Fig. 5(a). Since the thickness of each layer is optically
thin in the THz regime, this received THz signal is the superpo-
sition of several echoes, corresponding to the internal interfaces
in the sample. Both DR sparse deconvolution and FWDD are
implemented to deconvolve the received signal, and the results
are compared. It is important to note that, in this section, we
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Fig. 6. Comparison between the DR deconvolved signal and the SR

deconvolved signals with the upsampling factor K = 2, 4, and 8. Two insets
are the zoom-in version of the first and fourth peaks.

consider the THz reference signal (shown in Fig. 4) as the input
and the received THz signal as the output; therefore, the actual
impulse response function associated with the reflection coeffi-
cients should be obtained by multiplying the deconvolved signal
by a factor of “—1” for phase correction.

For DR sparse deconvolution, the convolution matrix H is
formed by the experimentally obtained reference THz signal,
which contains 512 data points, and the iteration based on (6)
is performed 2000 times with the regulation parameter A = (.2
and the step size 7 = 0.1/||HTH||s. For FWDD, we utilize the
same parameters as the ones we used in the simulations, as
f. = 4 THz is the maximum value we can set to ensure the
deconvolved signal with both a high depth resolution and a sat-
isfactory SNR. The deconvolved signals with both methods are
shown in Fig. 5(b) and (c). Both of the deconvolved signals can
recover the main features of the sample structure. However, by
comparison, we can find out that the deconvolved signal from
DR sparse deconvolution, which contains sharp peaks and no
slow fluctuations, is capable of providing a more clear repre-
sentation of the various interfaces in the sample than that from
FWDD. Furthermore, DR sparse deconvolution is also more ef-
fective in resolving small echoes due to the multiple reflections
in the samples. The thicknesses of the paper, the air gap, and the
polymer coating can be calculated based on the measurement of
the optical delay between relevant peaks and the knowledge of
the refractive indexes. As mentioned before, the time resolution
of the locations of echoes is limited by the sampling period 7
in the experiment.

SR sparse deconvolution is further implemented on the re-
ceived signal from Sample A to increase the time resolution
for more accurate thickness calculation. The SR deconvolved
signals with an upsampling factor K = 2,4, and 8 are shown
in Fig. 6 and are compared with the DR deconvolved signal. As
K increases, the accuracy in locating the positions of echoes
increases, which leads to a more accurate thickness calculation.
It is also noticed that the upsampling factor K does not need
to be too large, as the SR deconvolved signals with K’ = 4 and
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considering the temporal pulse spreading effect. (a) Deconvolved signal with
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the pulse spreading. (¢) Deconvolved signal with sparse deconvolution includ-
ing pulse spreading. (d) Zoom-in of the last three interfaces in (b). (e) Zoom-in
of the last three interfaces in (c).

8 provide almost the same locations of echoes. The time res-
olution achieved here by SR sparse deconvolution is actually
limited by the SNR in the received THz signal [18].

Based on the raw and deconvolved signals from Sample A,
no temporal pulse spreading is clearly observed, since the thick-
ness of sample is relatively small. Sample B, however, is thicker
and displays pulse spreading when the THz pulse propagates
through. The typical received signal yq(t) reflected from Sam-
ple B is shown in Fig. 7 in black. Since the thicknesses of the
papercards are large enough, the reflected THz pulses corre-
sponding to the various interfaces between papercards can be
clearly identified. However, each pulse indicating the location
of the interface is still the superposition of the echoes bouncing
back from the front and back interfaces of the air gaps. As the
propagating distance increases, a shape broadening can be ob-
served in the THz echoes, which corresponds to the temporal
pulse spreading due to the attenuation and dispersion in the pa-
percards. The deconvolved signals with FWDD and DR sparse
deconvolution without pulse spreading are shown in Fig. 8(a)
and (b). Compared with FWDD, sparse deconvolution is more
effective in resolving small echoes due to multiple reflections,
as smaller amplitudes following the main pulses corresponding

to the air/papercard interfaces can be clearly observed, shown
in Fig. 8(b). For the deconvolved signal with FWDD, it is ob-
vious that this pulse spreading can also lower the performance
of FWDD, as the peaks indicating the locations of interfaces
become wider as the propagating distance increases. For the de-
convolved signal with DR sparse deconvolution without pulse
spreading, the peaks corresponding to the echoes bouncing back
from the first and second papercards are quite sharp; however,
additional small peaks appear at the last three interfaces, which
will definitely obscure the exact locations of the interfaces. The
origin of these additional peaks is the temporal pulse spreading.
Without including this pulse spreading effect in the algorithm,
the input signal is considered as invariant, which is the narrow
THz reference signal, and thus, a wider THz echo in the received
signal will be treated as a combination of several narrow pulses.

In order to obtain the deconvolved signal with definite and
clear locations of interfaces, it is necessary to utilize the sparse
deconvolution including pulse spreading to deal with the re-
ceived signal reflected from Sample B. The most important step
in this algorithm is the formation of the matrix A. By peak
detection, the location of the first air/papercard interface can
be identified. This location is considered as the typical column
number ny. Above ng, A is filled with an identity matrix, and
after ng, A is formed based on (16). The key parameter a is
determined by multiple trials. In our case, the criterion for the
fitness of a is based on the last received THz pulse correspond-
ing to the interface between the back of the last papercard and
the air, which should satisfy the following conditions: 1) the de-
convolved signal achieved fpr (t) should provide one sharp and
clear pulse corresponding to the location of the last interface;
and 2) fpr(¢) is convolved with the input signal including pulse
spreading h, (t), and there should be a good fit between the
convolution result 1, (t) @ fpr(f) and the received THz signal
o (t), especially for the last THz pulse. The optimal value we
determine in the algorithm is a = 0.035, and the correspond-
ing deconvolved signal is shown in Fig. 8(c). We observe that,
by considering the pulse spreading effect, the spurious peaks,
which appear in Fig. 8(b), are eliminated, and all the interfaces
are clearly located by sharp pulses. Furthermore, the accuracy
of the deconvolved signals is confirmed by the reconvolution
and the comparison with the actual received THz signal yq (t),
shown in Fig. 7. By carefully checking the deviation between the
reconvolution and the actual received signal, shown in Fig. 7(c)
and (d), the deconvolved signal with pulse spreading is more
accurate, since smaller ripples in the fluctuations of the devia-
tion can be observed in the region of late-coming echoes. The
zoom-in insets of the last THz echoes in Fig. 7(a) and (b) further
prove the validity of this algorithm.

VI. CONCLUSION

In this study, sparse deconvolution based on an iterative
shrinkage algorithm has been demonstrated for THz charac-
terization of multilayered structures. Compared with conven-
tional deconvolution, such as FWDD, in which high- and
low-frequency noises are inevitably introduced, sparse decon-
volution is a pure time-domain technique, which can provide a
more clear representation of the impulse response function with



sharp pulses. Since the time resolution of conventional decon-
volution is limited by the discretization precision, an SR version
of sparse deconvolution is further developed by an upsampling
approach based on time interpolation, which increases the ca-
pability of sparse deconvolution for precise estimation of the
arrival times of THz echoes. In addition, the temporal pulse
spreading due to the frequency-dependent loss during the THz
propagation is also considered in the sparse deconvolution. A
simple but effective time-domain model for describing the tem-
poral pulse spreading effect is designed and introduced into the
iterative shrinkage algorithm. This model requires little prior
knowledge of the properties and structure of the materials and
can greatly improve the performance of sparse deconvolution in
processing time-varying THz pulses. The algorithms for sparse
deconvolution are all verified with numerical simulations and
experimental measurements, which demonstrate that sparse de-
convolution is an ideal and effective tool for THz nondestructive
characterization of multilayered structures.
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