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Evaporating black-to-white hole

P. Martin-Dussaud∗ and C. Rovelli
Aix Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France

(Dated: October 1, 2019)

We construct and discuss the form of the (effective) spacetime geometry inside a black hole under-
going a quantum transition to a white hole, taking into account the back-reaction of the component
of the Hawking radiation falling into the hole.

I. INTRODUCTION

What is the ultimate fate of a black hole? Classical
general relativity disregards all quantum effects and pre-
dicts that black holes live forever, only allowed to grow
and never to shrink. Hawking’s celebrated result [1] has
shown that quantum field theory predicts that a black
hole of mass m can emit radiation (the so-called Hawk-
ing quanta), as if it was a black body of temperature

T =
1

8πm
, (1)

in Planck units ~ = G = c = kB = 1 (see for instance
[2] for a detailed derivation). By energy conservation,
we then deduce that the back-reaction of the quantum
matter on the geometry must make the black hole slowly
to shrink. The end of this evaporation process is outside
the domain of validity of quantum field theory on a given
background, and is not yet clear.

Hawking suggested that the evaporation can continue
until the simple disappearance of the black hole. If so,
unitarity of quantum evolution can be violated [3]. In ad-
dition, if the number of possible internal quantum states
of a black hole is finite and bounded by the exponential of
the horizon area, as some believe, unitarity is already lost
long before complete evaporation, because this number is
insufficient to purify the Hawking radiation [4]. This loss
of unitarity goes under the name of the ‘information-loss
paradox’. Many ideas have been suggested to address it.
Among these: information is simply lost in the process
[5]; no black hole ever forms (fuzzballs) [6]; long-lived
remnants [7]; firewalls [8]; nonviolent information trans-
fer from black holes [9]; information leaks to planckian
degrees of freedom [10].

A complete theory of quantum gravity should adjudi-
cate the issue, give a definite prediction of the ultimate
fate of black holes, and tell us how the ‘information-loss
paradox’ is actually solved in nature. Loop Quantum
Gravity is one of the current approaches to the quan-
tisation of general relativity. It suggests the following
solution to the paradox: (i) the horizon’s area bounds
the number of states that are distinguishable from the
exterior during a time scale of the order of the black hole
lifetime, but not the number of internal quantum states

∗Electronic address: pmd@cpt.univ-mrs.fr

of the black hole (distinguishable by local quantum field
observables inside the hole) [11], thus evading the firewall
theorem, (ii) a black hole does not simply pop out of ex-
istence at the end of its evaporation. Rather, it tunnels
into a long living white hole before full evaporation [12].

This black-to-white hole transition scenario, also called
fireworks [13] or the Planck star scenario [14, 15] is made
possible by the existence of a solution of the classical Ein-
stein equations which is compatible with a black hole un-
dergoing an instantaneous and local quantum transition
to a white hole [13] and is supported by direct calcula-
tions based on loop quantum gravity describing both the
sole transition at the singularity [16, 17] and the transi-
tion including the horizon [18, 19]. The black-to-white
hole transition solves the information-loss paradox, since
it gives information the possibility to be stored inside the
hole and released by the white hole.

Two variations of the scenario are discussed in the lit-
erature; they differ by the estimated value of the black
hole lifetime τ , which depends on the mass m of the ini-
tial black hole, in Planck units:

1. τ ∼ m2, the tunnelling takes place while the black
hole is still macroscopic, and Hawking evaporation
can be neglected [13, 20];

2. τ ∼ m3, the tunnelling takes place after Hawking
evaporation has shrunk the black hole to a nearly
Planckian mass [12].

The second variation was introduced in [12] where it was
suggested that Planck-mass white holes, resulting from
exploding Planck-mass black holes, may be nothing else
but long-lived remnants. The stability of Planck-mass
white holes is discussed in [21].

In both case, the metric undergoes a quantum tunnel-
ing at the time of transition from black to white hole.
Strictly speaking there is no classical metric always in
place, like there isn’t a physically defined trajectory for a
particle tunnelling under a potential barrier. In the case
of the particle tunnelling under a potential barrier, it
is nevertheless still possible to define an effective trajec-
tory, by connecting the partial semiclassical trajectories
of the particle before and after the tunnelling. This effec-
tive trajectory of course violates the classical equations of
motion during the tunnelling. The tunnelling is therefore
modelled by a simple violation of the equations of mo-
tion. In a similar fashion, the black to white transition
can be modelled by a single classical geometry that vio-
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lates the classical Einstein equations in compact spatial
region during a short time.

In this paper, we construct and discuss the form that
this effective spacetime geometry can take. Steps in this
direction were taken in [13, 22] and [20], but a crucial
element was not taken into account: the Hawking ra-
diation and its back-reaction. Here we improve on the
understanding of the physics of the black-to-white hole
transition by discussing possible ways of modelling the
Hawking radiation and its back-reaction. Note that in-
vestigations on the same questionsn, altough following a
different path, have been pursued by James M. Bardeen
in [23].

In section II, we recall the general strategy of the semi-
classical Einstein equations, how it can be applied to
black holes, and how it motivates the construction of
Hiscock model for evaporating black holes. In section
III, we propose a toy model for an evaporating black-to-
white hole, which is then improved by a carefully study
of the evolution of the ingoing Hawking quanta beyond
the singularity. In section IV, we motivates another pos-
sible model describing the evolution of outgoing quanta,
and compare it to the previous one. In the conclusion,
we finally recall how this work is just a step towards a
more complete LQG computation.

II. MODEL OF EVAPORATING BLACK HOLE

The semi-classical Einstein equations
The complete description of black hole evaporation

should require full quantum gravity, but an approxima-
tion can be obtained by quantum field theory on curved
spacetime, as was done in the original derivation by
Hawking [1]. The gravitational degrees of freedom are de-
scribed classically, and quantum matter fields evolve over
it. The limit of such an approach is the back-reaction:
the Hawking quanta, created over a classical space-time,
are expected to affect in return the metric of this space-
time. The metric of space-time, initially given by a vac-
uum solution of the Einstein equations (Gµν = 0) should
be modified to take into account the matter content of
Hawking quanta (Tµν 6= 0). If back-reaction is neglected,
then the Einstein equations are violated.

A possible approach to the problem is to consider a
classical gravitational field gµν coupled to quantized mat-
ter fields, via the semiclassical Einstein equations

Gµν(gµν) = 〈ψ|T̂µν(gµν)|ψ〉 , (2)

where Gµν is the usual Einstein tensor (function of the
metric gµν), |ψ〉 is a quantum state for the matter, and

T̂µν is the quantized energy-momentum tensor of the
matter. Equation (2) was first introduced by Møller as
a general tool for approaching quantum gravity [24]. An
idea to solve it would be to use an iterative self-consistent
method:

1. start from a classical background metric g0µν ;

2. compute 〈ψ|T̂µν(g0µν)|ψ〉 using QFT in curved
space-time;

3. find g1µν such that Gµν(g1µν) = 〈ψ|T̂µν(g0µν)|ψ〉;
4. iterate the procedure to find g2µν ;

5. go on until it converges to a self-consistent solution
g∞µν satisfying equation (2).

A lot of work has been done to compute the expectation
value 〈ψ|T̂µν(gµν)|ψ〉, for various metrics gµν and states
|ψ〉, but the pursuit of the iterative method happens to
be very hard, even at the first round.
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Application to black holes

For a two-dimensional black hole formed by the col-
lapse of a null shell, Hiscock was able to compute the
expectation value 〈in|T̂µν(g0µν)|in〉 with a state |in〉 that
matches the Minkowski vacuum inside the shell [25]. The
Penrose diagram of the model is shown on Figure 2 with
the metric g0µν given by

(I)

[
ds2 = −dudv + r2dΩ2

r = 1
2 (v − u)

(3)

(IIa)

[
ds2 = −

(
1− 2m

r

)
dudv + r2dΩ2

r = 2m
(

1 +W
(
e
v−u
4m −1

))
(4)

(IIb)

[
ds2 =

(
1− 2m

r

)
dudv + r2dΩ2

r = 2m
(

1 +W
(
−e v+u4m −1

))
(5)

with dΩ2 = dθ2 + sin2 θdφ2 the usual metric of the unit
sphere. The map between the metric coordinates (u, v)
and the coordinates of the diagram (U, V ) is

(I)


u = v0 − 4m

(
1 +W (−e−1 tanV0 tanU)

)
v = v0 − 4m

(
1 +W (−e−1 tanV0
× tan(V − 2V0 + π/2))

)
with v0

def
= 4m log tanV0

(6)

(IIa)

[
u = −4m log(− tanU)
v = 4m log tanV

(7)

(IIb)

[
u = 4m log tanU
v = 4m log tanV

(8)

The function W is the upper branch of the Lambert W
function. It is an increasing function defined by the equa-
tion x = W (x)eW (x) and its graph is shown in Figure 1.

-0.4 -0.2 0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

Figure 1: Graph of the upper branch of the Lambert W func-
tion.

In region I, 〈in|T̂µν(g0µν)|in〉, abbreviated 〈Tµν〉, van-
ishes everywhere, while in region II, the various compo-

I

IIa

IIb

U

J+

π
2
− V0

0

−π
2

V
π
2

V0 > 0

2V0 − π

Figure 2: Penrose diagram of a black hole formed by the
collapse of a null shell. The event horizon is depicted with a
dashed line.

nents are given by

〈Tuu〉 =
~

24π

[
−m
r3

+
3m2

2r4
+

m

r(u, v0)3
− 3m2

2r(u, v0)4

]
(9)

〈Tvv〉 =
~

24π

[
−m
r3

+
3m2

2r4

]
(10)

〈Tuv〉 = − ~
24π

(
1− 2m

r

)
m

r3
. (11)

Notice first that these formulae are valid both outside and
inside the hole, although the coordinates (u, v) map the
two patches IIa and IIb in a different way (see equations
(7) and (8)). Notice then that 〈Tµν〉 include both con-
tributions from vacuum polarisation (the so-called Boul-
ware state |B〉) and from Hawking quanta:

〈Tµν〉 = 〈B|Tµν |B〉+ 〈in|: Tµν :|in〉 . (12)

The Hawking flux contribution comes only from the nor-
mal ordered stress tensor, whose non-vanishing compo-
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nents are in the outgoing null direction [26]:

〈in|: Tuu :|in〉 =
~

24π

[
m

r(u, v0)3
− 3m2

2r(u, v0)4

]
〈in|: Tvv :|in〉 = 0

〈in|: Tuv :|in〉 = 0.

(13)

Clearly g0µν does not solve the semi-classical Einstein

equations, since Gµν(g0µν) = 0, while in region II,

〈in|T̂µν(g0µν)|in〉 6= 0. So the idea of the iterative ap-

proach was to propose a corrected metric g1µν , that would
ideally solve

Gµν(g1µν) = 〈in|T̂µν(g0µν)|in〉. (14)

Unfortunately, solving this equation seems to be already
too hard. Then, Hiscock suggested to guess a metric g1µν ,
that would violate the semi-classical Einstein equations
less than the original background g0µν . This lead him
to devise a model for an evaporating space-time that we
now recall [27].

Hiscock model

How to guess a corrected metric? We can take inspi-
ration from the value of 〈Tµν〉 in some regions. In our
case two regions are noticeable. First, along future null
infinity, J +, the only non-vanishing component is

〈Tuu〉 =
~

24π

[
m

r(u, v0)3
− 3m2

2r(u, v0)4

]
. (15)

To understand intuitively what it means, suppose, in 2-
dimensional Minkowski space (ds2 = −dudv), that the
same kind of stress-energy tensor is due to isolated parti-
cles, i.e. Tµν = ρ uµuν , with uµ the four-momentum.
Then, if Tuu is the only non-vanishing component, it
means that uµ ∝ (1, 0), in the (∂u, ∂v) basis, and so
uµ ∝ (0, 1), which mean particles are going away along
the v direction. Since 〈Tuu〉 > 0 on J +, we have the pic-
ture of particles of positive energy reaching J + along null
geodesics directed by ∂v. Indeed, the black hole evapo-
rates.

Secondly, along the horizon, r = 2m, the only non-
vanishing component is

〈Tvv〉 = − ~
768πm2

. (16)

This time we can have the picture that particles of neg-
ative energy are leaving the horizon along null geodesics
directed by ∂u.

These two pictures motivate the model of Hiscock. It
cleverly uses Vaidya-like metrics to represent the two
fluxes of particles. It is made of five patches glued
together as shown on Figure 3, and the metric (the

‘guessed’ g1µν) is given by

(I)

[
ds2 = −dudv + r2dΩ2

r = 1
2 (v − u)

(17)

(II)

[
ds2 = −

(
1− 2m

r

)
dudv + r2dΩ2

r = 2m
(

1 +W
(
e
v−u
4m −1

))
(18)

(III)
[

ds2 = −
(

1− 2N(v)
r

)
dv2 + 2dvdr + r2dΩ2

(19)

(IV )
[

ds2 = −
(

1− 2M(u)
r

)
du2 − 2dudr + r2dΩ2

(20)

(V )

[
ds2 = −dudv + r2dΩ2

r = 1
2 (v − u)

(21)

The metric depends on the mass m of the black hole
at the beginning of the evaporation. It also makes use
of two functions M(u) and N(v), which represent how
the mass decreases with the evaporation. Their value
matches along the boundary III/IV , which marks the
apparent horizon.

I

II

III

IV

V

V

π
2

V0

π
4

π
2
− 2V0

U
0

V0 − π
2

−π
4

−π
2

Figure 3: Penrose diagram of Hiscock model. Everywhere
the metric is locally that of Schwarzschild, characterised by a
parameter of mass. Its value is represented by a color, from
white (mass 0, i.e. Minkoswki) to red (initial massm), passing
through a gradient (M(u) or N(v)). The mass profile along
J+ is shown on Figure 4.

For completeness of the construction, we shall give the
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formulae that relates the coordinates (U, V ) of the Pen-
rose diagram to the coordinates in which the metric of
each patch is written. This is not fully done in the orig-
inal paper of Hiscock [27], but it is a necessary work to
show that the Penrose diagram of Figure 3 correctly rep-
resents a consistent space-time model. The scrupulous
reader will find the equations in appendix A.

How shall we choose the mass function M(u) of the
model? From Hawking’s temperature formula (1), the
rate of mass loss was estimated by Page (see [28]) as

dM

dt
∝ − 1

M2
. (22)

This suggests the behavior M(u) ∼ (u0 − u)1/3, where
u0 is the retarded time at which the black hole faints,
holding as long as the semi-classical approximation is
valid. Nevertheless Hiscock shows that this behavior can-
not hold until the end of the evaporation, and that a finite
total amount of energy flux on J + implies that

lim
M→0

dM

du
= 0. (23)

Therefore, Hiscock proposes a mass profile shown on Fig-
ure 4.

m

u

M(u)

II IV V

Figure 4: Bondi-Sachs mass function along J+ for Hiscock
model.

From the perspective of an outside observer, Hiscock
model seems to describe correctly the phenomenology ex-
pected at the first stages of the evaporation. The de-
creasing Bondi-Sachs mass M(u) along J + corresponds
to an outgoing positive energy flux, due to Hawking ra-
diation. According to this model, the black hole evapo-
rates completely and space-time turns to Minkowski back
again. From our perpspective this end scenario is more
disputable for the persistence of the singularity than for
a potential loss of unitarity. In the following section, we
consider a possible white future to the singularity, which
as a spin-off, gives a way to restore unitarity.

III. MODEL OF EVAPORATING
BLACK-TO-WHITE HOLE (I)

In [13], a first space-time model was proposed to de-
scribe a quantum tunnelling from a black hole to a white
hole, neglecting deliberately Hawking evaporation in the
process. Then we proposed in [20] an alternative model
where the geodesics can go accross the singularity con-
tinuously. In [12], Bianchi et al. argued that a black-
to-white hole transition would be much more probable
at the end of Hawking evaporation, when typically the
black hole has reached a Planckian mass m1. It is the
goal of what follows to build an explicit model for an
evaporating black-to-white hole.

Toy model
The initial idea is simple. Given the Hiscock model

of an evaporating black hole, depicted on Figure 3, just
glue a white hole above the singularity, with an outgoing
bouncing null shell. This can be done easily provided
that the Bondi-Sachs mass M(u), observed on J + in
region (IV ), does not vanish completely but reaches a
small positive value m1. We obtain the Penrose diagram
of Figure 5.

I

II

III

IV

V

V I

V II

V

π
2

V0 − ε

π
4

π
2
− 2V0

U

2V0 − 3π
4

V0 − ε− π
2

−π
4

−π
2

Figure 5: Penrose diagram of a toy model of an evaporating
black hole that turns into a white hole.

In region I, II, III, IV the metric is the same as the
model of Hiscock (see equations (17-20) and (A1-A6)).



6

Elsewhere, the metric is given by

(V )

[
ds2 = −

(
1− 2m1

r

)
dudv + r2dΩ2

r = 2m1

(
1 +W

(
e
v−u
4m1
−1
))

(24)

(V I)

[
ds2 =

(
1− 2m1

r

)
dudv + r2dΩ2

r = 2m1

(
1 +W

(
−e−

v+u
4m1
−1
))

(25)

(V II)

[
ds2 = −dudv + r2dΩ2

r = 1
2 (v − u)

(26)

ε is defined so that the radius at the future endpoint of
the apparent horizon is 2m1, i.e. h(V0−ε−π/2, V0−ε) =
2m1, where h(U, V ) is defined in appendix A. The details
of the map between the coordinates (u, v) of the metric
and (U, V ) of the diagram are postponed to appendix B.

The central purple diamond is a very small region of
space-time. We have not given an explicit expression for
the metric here but it would a priori be possible to con-
struct one that matches the boundary conditions around.
It is believed to be a region where quantum effects hap-
pen to enable the tunnelling to the white hole. Thus,
it would be better described by a quantum geometry, in-
stead of any effective classical metric. The Einstein equa-
tions are necessarily violated in this region since classical
general relativity does not allow the black-to-white hole
scenario. The novelty with respect to previous models
like [20] is that the region is very small, typically Planck-
ian.

From the perspective of an observer lying on J +, the
Bondi-Sachs mass evolves as depicted on the mass profile
of figure 6. It is positive and decreasing all along, going
from m to 0. The white hole manifests itself through
a sudden final release of positive energy corresponding
to the emergence of the null bouncing shell. In region
III the inside Hawking quanta, which carry a negative
energy, fades over the singularity, and never show up on
the other side.

m

m1

u

M(u)

II IV V V II

Figure 6: Bondi-Sachs mass function along J+ for the toy
model of evaporating black-to-white hole.

In [29, 30] it was shown that unitary evolution of an
evaporating black hole implies a non-monotonic mass
loss. To put it differently, a black hole must, at some

point, radiate some amount of negative energy (the ‘last
gasp’), which would be depicted on the mass profile as a
momentary increase of the Bondi-Sachs mass. Intuitively,
we can understand that the Hawking quanta, that fell in-
side the black hole, with negative energy, are correlated
with quanta outside, and should thus come out at some
point, to recover unitarity on J +. The profile of Figure
6 does not fulfil the ‘last gasp’ requirement. Indeed the
flux of outgoing energy along J + is

F (u) ∝ −dM(u)

du
, (27)

so that a momentary negative energy flux would mean
a momentary increase of the Bondi-Sachs mass func-
tion. However, preliminary discussions of De Lorenzo
and Bianchi (personal communication), suggest that the
last gasp theorem may fail in 4D, in which case the mass
profile of Figure 6 should not be discarded too easily.

Nevertheless, there is another reason why the previ-
ous model is not physically satisfying. For simplicity of
the construction, we have assumed that the ingoing neg-
ative energy was fading along the singularity. Quantum
gravity results suggests instead that it should cross the
singularity. This calls for a refinement of our first toy
model.

Crossing model
To do so, we consider that the Hawking quanta cross

the singularity. It has been repeatedly noticed that there
exists a natural prescription to extend geodesics beyond
a singularity [31–33]. Thus, modelling the crossing of the
Hawking quanta through the singularity is the easy part
of the refinement. It becomes more intricate afterwards.
The negative energy flux is still ingoing, so it will fall
upon the emerging bouncing shell. What comes next?

The crossing between two null shells has been studied
by Dray and t’Hooft in [34]. Their main result was that it
was possible to glue four Schwatzschild patches along two
null shells (see Figure 7), provided that the four masses
satisfy the only condition

(r0 − 2m1)(r0 − 2m2) = (r0 − 2m3)(r0 − 2m4) (28)

where r0 is the radius at the intersection.
To a first approximation, the ingoing flux, which was

previously modelled continuously by a functionN(v), can
be approached by a step function made of a number n of
slices of constant masses Ni. Then, the negative energy
is carried by individual Hawking quanta which fall one at
a time upon the bouncing shell. The situation is depicted
on Figure 8 for n = 5.

In each box, the metric is Schwarzschild with a con-
stant mass µij , which is determined by equation (28) as
a function of the three masses in the adjacent boxes below
and the value of the radius where the four regions touch.
Now, suppose the radius in the region above the bounc-
ing shell is increasing (resp. decreasing) along outgoing
(resp. ingoing) null geodesics. We prove the following
theorem:
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m1 m2

m3

m4

Figure 7: Four Schwarzschild patches can be glued consis-
tently along null geodesics provided the masses satisfy equa-
tion (28).

0

0

0

0

0

0 N0 N1 N2 N3 N4

µ01

µ02

µ03

µ04

µ12

µ13

µ14

µ23

µ24

µ34

Figure 8: Discrete model for the crossing between the ingoing
Hawking quanta and the bouncing shell.

Theorem 1. Under the above assumptions, µij is a
decreasing function of i and an increasing function of j.
This implies notably that for all i, j

0 < µij < m1. (29)

Proof. Let us first study µ0j for varying j. Denote
rj the radius at the intersection point at the bottom of
the box of mass µ0j . From equation (28), we deduce

(µ0,j−µ0,j−1)(rj−2Nj) = (Nj−Nj−1)(rj−2µ0,j) (30)

Since Nj is decreasing, we have Nj < Nj−1. Then, since
the radius rj is assumed to be increasing, we have rj ≤

2m1 ≤ 2Nj , so that

µ0,j > µ0,j−1 ⇔ rj > 2µ0,j . (31)

which can be restated saying that for each j, one, and
only one of the two following must hold:

µ0,j−1 < µ0,j <
rj
2

µ0,j−1 > µ0,j >
rj
2 .

(32)

Initially, we have r0 = 0. Since r1 > 0 we deduce

0 < µ01 <
r1
2
. (33)

Then, using that rj+1 > rj , we show by induction that
for any j

µ0,j−1 < µ0,j <
rj
2
. (34)

Thus µ0j is increasing with j and satisfies

0 < µ0j < m1. (35)

A similar induction shows that µ1j is also an increasing
function of j, satisfying.

0 < µ1j < m1. (36)

Then, under the assumption of decreasing r along in-
going null geodesics, an induction over i shows that for
any j, µij is a decreasing function of i. �

The previous discrete model gives a fair description
of what can happen when a series of Hawking quanta
successively cross the bouncing shell. In the continuum
limit, when n→∞, the resulting metric takes the form

ds2 = −
(

1− 2µ(u, v)

r

)
dudv + r2dΩ2 (37)

characterised by two functions, namely the radius r(u, v)
and the mass µ(u, v). We cannot give explicitely the
change of coordinates from (u, v) to (U, V ) but we assume
that v(V ) and u(U) are increasing. Then, theorem 1
shows that

∂µ

∂u
< 0 and

∂µ

∂v
> 0. (38)

As a corollary we have

0 < µ(u, v) < m1. (39)

We have no explicit expression neither for the radius
r(u, v) nor for the mass µ(u, v), for it would require in-
tegrate too difficult equations. However, it is clear for
the construction of the discrete setting above that such
functions exist.
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To sum-up, the resulting space-time is depicted on Fig-
ure 9, with the metric given by

(V )

[
ds2 = −

(
1− 2m1

r

)
dudv + r2dΩ2

r = 2m1

(
1 +W

(
e
v−u
4m1
−1
))

(40)

(V Ia)

[
ds2 =

(
1− 2m1

r

)
dudv + r2dΩ2

r = 2m1

(
1 +W

(
−e−

v+u
4m1
−1
))

(41)

(V Ib)
[

ds2 = −
(

1− 2Ñ(v)
r

)
dv2 + 2dvdr + r2dΩ2

(42)

(V II)
[

ds2 = −
(

1− 2µ(u,v)
r

)
dudv + r2dΩ2 (43)

(V III)
[

ds2 = −
(

1− 2P (u)
r

)
du2 − 2dudr + r2dΩ2

(44)

(IX)

[
ds2 = −dudv + r2dΩ2

r = 1
2 (v − u)

(45)

In regions I− IV the metric is the same as the model of

I

II

III

IV

V

a
V Ib

V II

V III

IX

V

π
2

V0 − ε

π
4

π
2
− 2V0

U

2V0 − 3π
4

V0 − ε− π
2

−π
4

−π
2

Figure 9: Penrose diagram of an evaporating black-to-white
hole with ingoing energy flux that crosses first the singularity
and then the bouncing shell. The dashed boundary V/V Ia
represents the apparent horizon of the white hole, charac-
terised by r = 2m1.

Hiscock (see equations (17-20) and (A1-A6)). The mass

function Ñ(v) that appears in the metric of region V Ib
is chosen to match the mass function N(v) along the

boundary III/V Ib. Similarly, the mass function P (u) of
region V III is chosen to match µ(u, v) along the bound-
ary V II/V III. The map between the coordinates (u, v)
and (U, V ) cannot be given explicitly.

A word shall be added concerning the size of the cen-
tral diamond region. The future endpoint of the ap-
parent horizon of the black hole has a radius r = 2m1,
which characterises the typical size of the diamond. The
mathematical construction of the model requires that
0 < m1 < m. However, physically, m1 is believed to
be small. How small? Well, remember that in quantum
gravity the singularity is expected to be actually a ‘thick’
singularity, i.e. a Planck star whose radius is given by
r ∼ N(v)1/3. The power 1/3 is obtained from the condi-
tion that the curvature should become Planckian. So a
Planck star can actually be quite big. Now, along the ap-
parent horizon, the radius is given by r ∼ 2N(v). Then,
evaporation can last at most until the ‘thick singularity’

and the apparent horizon meet, i.e. when m
1/3
1 ∼ 2m1.

This condition means the mass m1 should be Planckian.
Without surprise, a Planckian m1 thus marks a lower
bound for our model. In this case, the size of the dia-
mond itself is Planckian, so it is really just one quantum
of space.

The resulting mass profile along J + is shown on Figure
10. Instead of a sharp release of energy when the shell

m

m1

u
II IV V V III IX

Figure 10: Bondi-Sachs mass function along J+ for a refined
model of evaporating black-to-white hole.

bounces out, as in the previous toy model (see Figure 6),
the Bondi-Sachs mass slowly decreases to zero. It can
be interpreted as the emergence of the Hawking quanta
that finally reach J +. It should be noticed however that
they carry positive energy (since the Bondi-Sachs mass is
decreasing all along), whereas they were known to carry
negative energy after they formed at the apparent hori-
zon. This change of sign is due to the exchange of energy
that occurs when the quanta cross the bouncing shell:
positive energy from the shell is transfered to the quanta.
The final long-dying tail on the mass profile enables en-
ergy (and information) to be slowly released.
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IV. MODEL OF EVAPORATING
BLACK-TO-WHITE HOLE (II)

Outgoing inside radiation

As can be seen from equations (13), Hawking flux is
outgoing even inside the black hole. In other words,
Hawking quanta are well falling towards the singular-
ity, but they are out-falling, i.e. falling along outgo-
ing null geodesics. This has lead some people to doubt
the credibility of the previous Hiscock model, where the
correction inside the hole only corresponds to an in-
falling negative energy flux. Nevertheless, this objection
is not correct because the iterative approach to the semi-
classical Einstein equations requires to consider the full
〈in|Tµν |in〉, including both the Hawking flux contribu-
tion 〈in| : Tµν : |in〉 and the vacuum polarization part
〈B|Tµν |B〉. The formulae are given by equations (9-11)
and we see that all of the components play a role.

We justified Hiscock model earlier by looking at the di-
rection of the flux along the horizon and along J +. We
noticed that along the horizon, the only non-vanishing
component is 〈Tvv〉, which corresponds to an ingoing flux.
However it is true that, as we move away from the hori-
zon, towards the singularity, the components 〈Tuu〉 and
〈Tuv〉 come into play. In fact, on the singularity itself,
when r → 0, all the components of 〈Tµν〉 diverge, but
with the same behaviour:

〈Tuu〉 ∼ −
~

24π

m

r3

〈Tvv〉 ∼ −
~

24π

m

r3

〈Tuv〉 ∼ −
~

24π

m

r3
.

(46)

One of the goals of this article is to investigate the fate
of the negative energy after it has reached the singularity,
in a black-to-white scenario. To that aim, the direction
of the energy when it reaches the singularity matters. We
have thus considered equally important to study the case
of an outgoing energy flux inside the hole. This has mo-
tivated the design of another model of evaporating black
hole. It is a slight modification of Hiscock model inside
the hole. The idea is simple: after the ingoing flux of
particles has been created along the apparent horizon,
as in the Hiscock model, they are scattered by the grav-
itational field, and change direction. This scattering is
sketched by introducing a space-like surface inside the
hole (boundary III/V I) along which particles are devi-
ated. The model is represented as a Penrose diagram on
Figure 11.

The metric is given in 7 patches. In regions I −V , the
metric is the same as Hiscock model, given by equations
(17-21). The space-like boundary III/V I is chosen ar-
bitrarily. In regions V II and V III the metric is given

I

II

III

IV

V

V I

?

V II

?

V

π
2

V0

π
4

π
2
− 2V0

U
0

V0 − π
2

−π
4

−π
2

Figure 11: Penrose diagram of an evaporating black hole with
inside outgoing flux.

by

(V I)
[

ds2 = −
(

1− 2Q(u)
r

)
du2 − 2dudr + r2dΩ2

(47)

(V II)

[
ds2 =

(
1− 2m

r

)
dudv + r2dΩ2

r = 2m
(

1 +W
(
−e v+u4m −1

))
(48)

The mass function Q(u) is chosen so that it matches the
mass function N(v) along the boundary III/V I. The
metric is written in terms of coordinates (u, v) or (u, r),
which are related to the coordinates (U, V ) of the Penrose
diagram by the formulae in the appendix C.

Above, we have introduced the outgoing flux as a con-
sequence of the scattering of the ingoing flux. Another,
maybe simpler, physical intuition can be given for the
outgoing flux provided a better system of coordinates
is used to represent the region surrounding the horizon.
Indeed, due to the distortion of distances, the Penrose
diagram does not properly depict the fact that the space-
like boundary III/V I and the time-like apparent hori-
zon III/IV may actually be very close. Using Eddington
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time coordinate,

t̃ = t+ 2m log
∣∣∣ r
2m
− 1
∣∣∣ with t =

u+ v

2
, (49)

a small region around the horizon, thin in V , but large
enough in U to include the two boundaries, looks like
Figure 12. Regions IV and V I surround a very small re-

V I III IV

t̃

r

Figure 12: The region surrounding the horizon in Eddington
time coordinate. Three pairs of Hawking quanta are repre-
sented by blue lines.

gion III. Pairs of Hawking quanta are created alongside
the null event horizon. Both quanta, inside and outside
the hole, are outgoing, i.e. following the same side of
the light cone (remember that the light cones are tilted
in the Eddington time representation). However sketchy
this description may be, we see that the modified model
proposed in this section, with outoing inside radiation,
can be related to the usual intuitive idea of pairs of par-
ticles created along the event horizon.

Evaporating black-to-white hole (II)

The new model proposed for an evaporating black hole
extends naturally to the black-to-white hole scenario.
The inside energy flux cross the singularity, and goes
ahead towards J +. The corresponding Penrose diagram
is drawn on Figure 13. The metric in regions I − IV is
given by the equations (17-20). In regions V I and V II
it is given by equations (47) and (48). Elsewhere, the

J+

-V I

�
�
���

V II

I

II

III

IV
V

V III

IX

X

V

π
2

V0 − ε

π
4

π
2
− 2V0

U

2V0 − 3π
4

V0 − ε− π
2

V0 + ε− π
2

−π
4

−π
2

Figure 13:

metric is given by

(V )

[
ds2 = −

(
1− 2m1

r

)
dudv + r2dΩ2

r = 2m1

(
1 +W

(
e
v−u
4m1
−1
))

(50)

(V III)
[

ds2 = −
(

1− 2R(u)
r

)
du2 − 2dudr + r2dΩ2

(51)

(IX)

[
ds2 = −

(
1− 2m

r

)
dudv + r2dΩ2

r = 2m
(

1 +W
(
e
v−u
4m −1

))
(52)

(X)

[
ds2 = −dudv + r2dΩ2

r = 1
2 (v − u)

(53)

The mass function R(u) is such that it matches with that
of region V II along the singularity. The metric inside
the purple central diamond has been already discussed in
section III. We do not give explicitely the map between
the coordinates (u, v) and (U, V ), but there is not doubt
that the construction is consistent, and that the gluing
can be performed along all boundaries.

In this scenario, the Bondi-Sachs mass is shown on
Figure 14. Contrary to the previous scenarios, the mass
function is not monotonic: after the black hole has
shrinked from m to m1, the transition to a white hole
occurs, and then the mass increases again from m1 to
m. All these outgoing quanta carry a negative energy, so
that the energy conditions are strongly violated in this
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m

m1

u
II IV V V III IX IX

Figure 14: Bondi-Sachs mass function along J+ for a model
of evaporating black-to-white hole with outgoing inside radi-
ation.

case. This feature makes the scenario consistent with the
expectation of a ‘last gasp’ [29, 30], but the violation is
clearly too strong to be physically acceptable. The infor-
mation loss paradox is obviously solved since the inside
quanta, which are correlated to those emitted outside the
hole, finally reach J +. The model proposed by James M.
Bardeen in [23], is quite similar to this second model pre-
sented here.

In this over-simplified model, all inside quanta are out-
going while it is known from equations (46) that only
part of them reaches the singularity with this direction.
A fully satisfying model would then lie in-between the
ingoing model of section III and the outgoing one of sec-
tion IV. As a result, the mass profile itself should lie
somewhere between Figure 10 and Figure 14.

V. CONCLUSION

In this article, we have constructed and discussed sev-
eral effective models that describe an evaporating black-
to-white hole. Based on a first construction by Hiscock,
we have emphasised the double contribution from vac-
uum polarisation and Hawking quanta to the expecta-
tion value of the energy-momentum tensor that enters
the semi-classical Einstein equations. This justifies that
we should consider both models where the inside radia-
tion is ingoing and outgoing. Then, we have shown how
an evaporating black hole can be naturally extended to a
white hole future, as quantum gravity suggests. Whereas
the black-to-white hole model proposed in [20] was flawed
by the well-known instability of white holes, it is a nice
feature of the evaporating model to cure it, as already
noticed in [12]. The consistent mathematical models fi-
nally obtained display two main different profiles for the
Bondi-Sachs mass along I+, but it is believed that the
actual phenomenology should lie in-between the two.

If it exists, the black-to-white hole transition is thought
to be a quantum tunnelling phenomenon. It is thus
expected of any theory of quantum gravity to provide

tools to compute the quantum amplitude of the transi-
tion. Loop Quantum Gravity offers such tools, relying
over the definition of a boundary surrounding the region
where quantum effects are expected to be dominant. In
our models, this region is a central diamond, and we have
shown how its size could be reduced to Planckian scale.
We let to future works the task of effectively computing
the transition amplitude. Such a computation would ul-
timately confirm or not previous estimations of the prob-
abilty of transition and the lifetime of black holes.
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Appendix A: Details of Hiscock model

The Penrose diagram of Figure 2 is a faithfull rep-
resentation of the space-time described by the metric
of equations (3-5). The explicit expression of the map
that relates the coordinates of the diagram and that of
the metric requires to subdivide the Penrose diagram, as
shown on Figure 15. Then it is given by the equations:

(Ia)

[
u = −4m

[
1 +W

(
− tanU

e

)]
v = −4m

[
1 +W

(
− tan(V+2V0−π)

e

)] (A1)

(Ib)


u = −4m

[
1 +W

(
− tanU

e

)]
v = f1(V ) increasing, such that{
f1(−2V0 + 3π/4) = −4m(1 +W (1/e))
f1(π/4) = 0

(A2)

(Ic)

[
u = c1 + f1(U − 2V0 + π)
v = c1 + f1(V )

(A3)

(II)

[
u = −4m log (− tanU)
v = 4m log tanV

(A4)

(III)



v = f2(V ) increasing, such that
f2(π/4) = N−1(M(0))

r = g(U, V ) such that
∂g
∂V =

f ′2(V )
2

(
1− 2N(f2(V ))

g(U,V )

)
g(U, π/4) = − 1

2f1(U − 2V0 + π)
g(2V0 − π/2− V, V ) = 0

(A5)
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V

π
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V0
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Figure 15:

(IV )



u = M−1(N(f2(U + π/2)))
r = h(U, V ) such that

∂h
∂U = −u

′(U)
2

(
1− 2M(u(U))

h(U,V )

)
h(−π/4, V ) = 2m

(
1 +W

(
tanV
e

))
h(U, π/2) =∞
h(U,U + π/2) = g(U,U + π/2)

(A6)

(V )

[
v = M−1(N(f2(V0))) + 2h(V0 − π/2, V )
u = M−1(N(f2(V0))) + 2h(V0 − π/2, U + π/2)

(A7)

With these expressions we can check the consistency
of the space-time model, and notably the gluing condi-
tions, which match the metric along the boundaries of the
patches. Moreover, the advanced time v and the retarded
time u have been chosen to be both continuous along, re-
spectively, J− and J + (this requirement is helpful to
obtain the ray-tracing map).

The metric depends on the parameters m (the mass)
and V0 (linked to the life-time of the black hole)
and an arbitrary constant c1. Besides, the function
f1, f2, g, h,M,N are not given explicitely:

• f1 and f2 are arbitrary monotonous functions sat-
isfying the boundary conditions given in eq. (A2)
and eq. (A5).

• g and h are fixed implicitely by first order differ-
ential equations (A5) and (A6). These equations

are obtained from the requirement that the lines
of constant V or U are null. No explicit solution
is known, except when M and N are constant or
linear [35].

• M and N matches along the apparent horizon, be-
tween regions III and IV : it is the first equation
of (A6). Thus, one of them can be freely chosen,
depending on the expected phenomenology for the
evaporation rate.

Appendix B: Details of toy model

The coordinate map of the toy model in region I −
IV is the same as given by equations (A1-20). Giving
the coordinate map in the other regions require first to
subdivide the Penrose diagram as is shown on Figure 16.
The coordinates of the metric are related to that of the

I
III

IV

V

V Ia -
V Ib

V IIa

V IIb -

V IIc -

V IId -

V IIe-

V IIf

V
π
2

V0 − ε

π
4

U

2V0 − 3π
4

V0 − ε− π
2

Figure 16: Subdivided close-up of the Penrose diagram of a
toy model of an evaporating black hole that turns into a white
hole.

Penrose diagram through:

(V )


u = f4(U) increasing, such that

f4(V0 − ε− π/2) = M−1(N(f2(V0 − ε)))
v = f4(V0 − ε− π/2) + 2h(V0 − ε− π/2, V )

+4m1 log
(
h(V0−ε−π/2,V )

2m1
− 1
)
(B1)

(V Ia)

 u = f5(U) increasing
v = −f5(V0 − ε− π/2)− 2h(V0 − ε− π/2, V )

−4m1 log
(

1− h(V0−ε−π/2,V )
2m1

)
(B2)

(V Ib)

[
u = c5 + f5(U)
v = −c5 − f5(2V0 − π/2− V )

(B3)



13

(V IIa)



u = f4(2V0 − 3π/4)

+4m1

(
1 +W (−e−

f5(2V0−3π/4)−f5(4V0−3π/2−U)
4m1

−1)

)
v = f4(2V0 − 3π/4)

+4m1

(
1 +W ((h(V0−ε−π/2,V )

2m1
− 1)

× e
f4(V0−ε−π/2)−f4(2V0−3π/4)

4m1
+
h(V0−ε−π/2,V )

2m1
−1)

)
(B4)

(V IIb)


u = c6 + 4m1W

(
−e−

f5(2V0−3π/4)−f5(4V0−3π/2−U)
4m1

−1
)

v = c6 + 4m1W
(

(h(V0−ε−π/2,V )
2m1

− 1)

× e
f5(V0−ε−π/2)−f5(2V0−3π/4)

4m1
+
h(V0−ε−π/2,V )

2m1
−1
)
(B5)

(V IIc)

 u = c7 + 4m1W

(
−e−

f5(2V0−3π/4)−f5(4V0−3π/2−U)
4m1

−1
)

v = c7 + 4m1W

(
−e−

f5(2V0−3π/4)−f5(2V0−π/2−V )
4m1

−1
)

(B6)

(V IId)



u = f4(2V0 − 3π/4)

+4m1

(
1 +W ((h(V0−ε−π/2,U−2V0+π)

2m1
− 1)

× e
f5(V0−ε−π/2)−f5(2V0−3π/4)

4m1
+
h(V0−ε−π/2,U−2V0+π)

2m1
−1
)

v = f4(2V0 − 3π/4)

+4m1

(
1 +W ((h(V0−ε−π/2,V )

2m1
− 1)

× e
f4(V0−ε−π/2)−f4(2V0−3π/4)

4m1
+
h(V0−ε−π/2,V )

2m1
−1)

)
(B7)

(V IIe)



u = c8 + 4m1W
(

(h(V0−ε−π/2,U−2V0+π)
2m1

− 1)

× e
f5(V0−ε−π/2)−f5(2V0−3π/4)

4m1
+
h(V0−ε−π/2,U−2V0+π)

2m1
−1
)

v = c8 + 4m1W
(

(h(V0−ε−π/2,V )
2m1

− 1)

× e
f5(V0−ε−π/2)−f5(2V0−3π/4)

4m1
+
h(V0−ε−π/2,V )

2m1
−1
)

(B8)

(V IIf)



u = f4(2V0 − 3π/4)

+4m1

(
1 +W ((h(V0−ε−π/2,U−2V0+π)

2m1
− 1)

× e
f4(V0−ε−π/2)−f4(2V0−3π/4)

4m1
+
h(V0−ε−π/2,U−2V0+π)

2m1
−1)

)
v = f4(2V0 − 3π/4)

+4m1

(
1 +W ((h(V0−ε−π/2,V )

2m1
− 1)

× e
f4(V0−ε−π/2)−f4(2V0−3π/4)

4m1
+
h(V0−ε−π/2,V )

2m1
−1)

)
(B9)

Appendix C: Details of the evaporating black hole
model with inside outgoing radiation

The subdivision of the Penrose diagram is on Figure
17.

Ia

Ib

Ic

Id

Ie

If

II

III

IV

V

V I

?

V II

?

V

π
2

V0

π
4

V1

3π
4
− 2V0

π
2
− 2V0

U
0

V0 − π
2

−π
4

−π
2

Figure 17: Subdivided Penrose diagram of an evaporating
black hole with inside outgoing flux.

(Ia)

[
u = −4m

[
1 +W

(
− tanU

e

)]
v = −4m

[
1 +W

(
− tan(V+2V0−π)

e

)] (C1)

(Ib)

 u = −4m
[
1 +W

(
− tanU

e

)]
v = f1(V ) increasing, such that
f1( 3π

4 − 2V0) = −4m(1 +W (1/e))
(C2)

(Ic)


u = −4m

[
1 +W

(
− tanU

e

)]
v = f2(V ) increasing, such that{
f2(V1) = f1(V1)
f2(π4 ) = 0

(C3)

(Id)

[
u = c1 + f1(U − 2V0 + π)
v = c1 + f1(V )

(C4)

(Ie)

[
u = c2 + f1(U − 2V0 + π)
v = c2 + f2(V )

(C5)

(If)

[
u = c3 + f2(U − 2V0 + π)
v = c3 + f2(V )

(C6)
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(II)

[
u = −4m log (− tanU)
v = 4m log tanV

(C7)

(III)


v = f3(V ) monotonous, such that

f3(π/4) = N−1(M(0))
r = g(U, V ) such that{

∂g
∂V =

f ′3(V )
2

(
1− 2N(f3(V ))

g(U,V )

)
g(U, π/4) = − 1

2f1(U − 2V0 + π)

(C8)

(IV )



u = M−1(N(f3(U + π/2)))
r = h(U, V ) such that

∂h
∂U = −u

′(U)
2

(
1− 2M(u(U))

h(U,V )

)
h(−π/4, V ) = 2m

(
1 +W

(
tanV
e

))
h(U, π/2) =∞
h(U,U + π/2) = g(U,U + π/2)

(C9)

(V )

[
v = M−1(N(f3(V0))) + 2h(V0 − π/2, V )
u = M−1(N(f3(V0))) + 2h(V0 − π/2, U + π/2)

(C10)

(V I)



u = P−1(N(f3(C−1(U))))
r = j(U, V ) such that

∂j
∂U = −u

′(U)
2

(
1− 2P (u(U))

j(U,V )

)
j(2V0 − π + V1, V ) = 2m (1

+W (− 4m+f2(V1)
4m+f2(π/2−V )e

− f2(V1)
4m +

f2(π/2−V )
4m −1)

)
j(2V0 − π/2− V, V ) = 0
j(C(V ), V ) = g(C(V ), V )

(C11)

(V II)


u = −c4 − f2(U − 2V0 + π)

+4m log
(

1 + f2(U−2V0+π)
4m

)
v = c4 + f2(π/2− V )

−4m log
(

1 + f2(π/2−V )
4m

) (C12)

There are three parameters m, V0 and V1. The constants
c1, c2, c3 and c4 are arbitrary. The functions g, h and j are
fixed implicitly by the differential equations. the func-
tions f1, f2 and f3 are arbitrary. The functions P,M,N
encode the phenomenology of the evaporation (two fix
the position of the two pseudo-horizons, while the third
fixes the rate of evaporation). The curve C parametrise
the boundary III/V I in the Penrose coordinates (it is
space-like).
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