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ABSTRACT
We present a new compilation of inferences of the linear 3D matter power spectrum at redshift
z = 0 from a variety of probes spanning several orders of magnitude in physical scale and in
cosmic history. We develop a new lower noise method for performing this inference from the
latest Ly α forest 1D power spectrum data. We also include cosmic microwave background
(CMB) temperature and polarization power spectra and lensing reconstruction data, the cosmic
shear two-point correlation function, and the clustering of luminous red galaxies. We provide
a Dockerized Jupyter notebook housing the fairly complex dependences for producing the
plot of these data, with the hope that groups in the future can help add to it. Overall, we
find qualitative agreement between the independent measurements considered here and the
standard �CDM cosmological model fit to the Planck data.

Key words: large-scale structure of Universe – cosmology: observations.

1 IN T RO D U C T I O N

The �CDM model provides a simple and remarkable fit to much
of the existing cosmological data, forming the basis of the standard
cosmological paradigm. The cosmic microwave background (CMB)
temperature and polarization anisotropies observed by the Planck
satellite can be explained with only the six free parameters of the
�CDM model (Planck Collaboration VI 2018; Planck Collabora-
tion I 2018b). In this paper, we illustrate the extent to which this
model, with parameters fixed to their best fit given Planck data,
is in agreement with a number of other probes spanning cosmic
time and cosmic scales. In an initial work, Tegmark & Zaldarriaga
(2002) demonstrated the consistency between the �CDM model fit
to the WMAP CMB data (Bennett et al. 2013), the first iteration
of the Sloan Digital Sky Survey (SDSS I) (York et al. 2000)
clustering data that were available at the time, the 2 Degree Field
Galaxy Redshift Survey (2dFGRS) (Colless et al. 2001) galaxy
clustering data and the Red-Sequence Cluster Survey (Hoekstra,
Yee & Gladders 2002) weak-lensing data. More recent updates to
this work include Tegmark & Zaldarriaga (2009) and Hlozek et al.
(2012), which included newer data and other types of probes. With
the advent of the Planck mission, of the third and fourth iterations of
the Sloan Digital Sky Survey (Blanton et al. 2017) and of the Dark
Energy Survey (The Dark Energy Survey Collaboration 2005), the
measurements have now reached an improvement of about an order
of magnitude in precision over the last two decades since the initial

� E-mail: solene.chabanier@cea.fr

work. These updated data sets make it timely to re-evaluate the
overall agreement.

The main results of the paper are two-fold. First, focusing in
particular on the Ly α constraints, we develop a new more accurate
method for processing these data into a constraint on the linear
matter power spectrum, Pm(k), at redshift zero. This method is
based on a technique known as total variation regularization (TVR;
Chartrand 2005), which reduces noise in the resulting estimate.
Secondly, we take this constraint, combined with a number of others,
and produce a compilation of Pm(k), shown in Fig. 1. On scales of a
few Mpc, we include the information embedded in the Ly α forest
measured with the quasar survey of the SDSS IV fourteenth data
release (Abolfathi et al. 2018). Partially overlapping in scale, we
also use the cosmic shear measurement from the DES YR1 data
release (Troxel et al. 2017). On scales of several tens of Mpc, we
use the power spectrum of the halo density field derived from a
sample of luminous red galaxies (LRG) from the SDSS seventh
data release (DR7) (Reid et al. 2010). Finally, on the largest scales,
we use the anisotropies of the microwave background measured by
the Planck satellite. In addition to probing a wide range of scales,
from k = 2 × 10−4 to k = 2 h Mpc−1, these data also cover a large
range of cosmic epochs: z ∼ 0.35 for the LRG, z ∼ 0.2–1.3 for the
shear measurements, z = 2.2–4.6 for the more distant Ly α forest,
and z ∼ 103 for CMB.

As described in Tegmark & Zaldarriaga (2002), inferring the
linear matter spectrum at z = 0 from the various probes we con-
sider here is a highly model-dependent process. We take as our
fiducial model the Planck 2018 best-fitting �CDM model (Planck
Collaboration VI 2018). The results here are therefore a test of
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Figure 1. Top: Data points show inferences of the 3D linear matter power spectrum at z = 0 from Planck CMB data on the largest scales, SDSS galaxy
clustering on intermediate scales, SDSS Ly α clustering and DES cosmic shear data on the smallest scales. In cases where error bars in the k-direction are
present, we have used the method of Tegmark & Zaldarriaga (2002) to calculate a central 60 per cent quantile of the region to which each data point is sensitive.
In other cases, data points represent the median value of the measurement. The solid black line is the theoretical expectation given the best-fitting Planck 2018
�CDM model (this model also enters the computation of the data points themselves). The dotted line for reference shows the theoretical spectrum including
non-linear effects. Bottom: Deviation of the data from the Planck best-fitting �CDM 3D matter power spectrum.

the consistency of this model, rather than direct constraints on the
matter power spectrum. In general, we find qualitative agreement
of this fiducial model with the data we consider.

The data sets which we consider were chosen to be representative
of different types of cosmological measurements which exist and
to cover a broad range of scales, particularly favouring ones
where data products were especially convenient for the calculations
we perform here. Of course, many other measurements exist
which provide constraints on the matter power spectrum, some
of which are known to be in varying degrees of tension with the
Planck best-fitting model. It is beyond the scope of this work

to include them all, however we provide a Dockerized Jupyter
notebook which includes the fairly complex dependencies needed
to produce this plot. We hope it will be used in the future by
other groups to add any desired data set and that it will be
kept up to date. The repository for this notebook can be found
here: .1

The outline of the paper is as follows. In Section 2, we present
the Ly α data and explain how we compute the 3D matter power

1https://github.com/marius311/mpk compilation
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spectrum from the published 1D flux power spectrum. These data
are the ones whose treatment differs the most from the previous
study of Croft et al. (2002) used in Tegmark & Zaldarriaga (2002).
In Section 3, we present the other probes we use (CMB, cosmic
shear and galaxy clustering) and the general method we apply to
compute the 3D matter power spectrum in each case. We conclude
in Section 4.

2 MATTER POWER SPECTRU M FRO M THE
LY α FOREST

2.1 Ly α data

With the advent of medium-resolution spectroscopic surveys that
increased by several orders of magnitude, the number of spec-
troscopically observed high-redshift quasars, the past decade has
witnessed a significant ramp up of the use of Ly α forest as a
cosmological probe. The Sloan Digital Sky Survey in particular,
with the BOSS and eBOSS surveys (Dawson et al. 2016; Blanton
et al. 2017), has now observed over two hundred thousand quasar
spectra at redshifts above 2.1. The 3D correlations in the Ly α

flux transmission field were studied extensively in Slosar et al.
(2011), Busca et al. (2013), Slosar et al. (2013), Kirkby et al.
(2013), Delubac et al. (2015), and Bautista et al. (2017) to measure
the position of the Baryon Acoustic Oscillation peak and provide
constraints on dark matter and dark energy. The correlations along
the line of sight provide information on smaller scales. The 1D flux
power spectrum measured from the Ly α data, for instance, is a
remarkable probe of the impact on structure formation of neutrino
masses (Palanque-Delabrouille et al. 2015b,a; Yèche et al. 2017),
of warm dark matter (Baur et al. 2016; Armengaud et al. 2017; Iršič
et al. 2017) or of various models of sterile neutrinos (Baur et al.
2016, 2017).

In this work, we use data from the eBOSS DR14 release (Abol-
fathi et al. 2018), corresponding to the entirety of the BOSS
survey complemented by the first year of eBOSS. We take the
1D transmitted flux power spectrum measured by the BOSS and
eBOSS collaborations in Chabanier et al. (2018). It used a selection
of 43 751 highest quality quasar spectra from a parent sample
of 180 413 visually inspected spectra. They were selected for
the absence of BAL features, a good mean spectral resolution
and high mean signal-to-noise ratio per pixel. The analysis gives
the flux power spectrum along a line of sight, Ptot 1D, in 13
equally spaced redshift bins covering the range z = 2.2–4.6 with
�z = 0.2. The highest redshift bin is built from 63 quasars only
and has large uncertainties. We therefore use only the lowest
12 redshift bins in this work. These data show an oscillatory
feature due to the correlated absorption by Ly α and Si III at
a velocity separation �v = 2271 km s−1. Adopting the approach
from McDonald et al. (2006), we model the total transmission flux
fraction as,

δtot = δ(v) + aδ(v + �v), (1)

with δ(v) being only for Ly α. The resulting power spectrum is

Ptot 1D(k) = (1 + a2)PF1D(k) + 2a cos(�v k)PF1D(k). (2)

We use equation (2) to correct for these wiggles, where a is fit
independently for each redshift bin. We use these 1D transmitted
flux power spectra to derive the 3D matter power spectrum as
explained below.

Table 1. Fit parameters. First column: Central value and variation range in
the simulation grid. Second column: Best-fitting value and 68% confidence
interval for a fit to Ly α + Planck (TT + lowE).

Parameter Simulations Best fit

ns 0.96 ± 0.05 0.954 ± 0.004
σ 8 0.83 ± 0.05 0.817 ± 0.007
�m 0.31 ± 0.05 0.330 ± 0.009
H0 (km s−1 Mpc−1) 67.5 ± 5 66.2 ± 0.6

T0(z = 3) (K) 14 000 ± 7 000 11300 ± 1600
γ (z = 3) 1.3 ± 0.3 0.7 ± 0.1
Aτ 0.002 5 ± 0.002 0 0.002 6 ± 0.000 1
ητ 3.7 ± 0.4 3.734 ± 0.015

2.2 Method

We follow the prescription of Croft et al. (1998), updated in Croft
et al. (2002). We assume that the 3D flux power spectrum PF3D is
related to the linear matter power spectrum Pm by a proportionality
relation,

Pm(k, z) = PF3D(k, z)

b2(k, z)
, (3)

with b(k, z) a scale and redshift-dependent bias that depends on the
cosmological model. The scale dependence is an improvement over
the initial methodology, added in Croft et al. (2002), to take into
account the effects of non-linear evolution, thermal broadening and
peculiar velocities.

The 1D and the 3D flux power spectra are related by

PF3D(k) = −2π

k

dPF1D(k)

dk
, (4)

which we use to derive the 3D flux power spectrum needed in
equation (3).

We compute the bias b(k, z) for each of the 12 redshift bins
mentioned above using CAMB2 (Lewis, Challinor & Lasenby 2000)
for the linear matter power spectrum, and hydrodynamic simulations
dedicated to the analysis of the BOSS 1D data (Borde et al. 2014)
for the 1D flux power spectrum. The simulations are produced
for a grid of parameters whose values are varied around a central
model. The four cosmological parameters are the scalar spectral
index ns, the RMS matter fluctuations amplitude today in linear
theory σ 8, the matter density today �m, and the expansion rate
today H0. The astrophysical parameters (all at z = 3) are the
normalization temperature of IGM T0, the logarithmic slope of
the δ dependence of the IGM temperature γ , the effective optical
depth of the Ly α absorption Aτ and the logarithmic slope ητ

of the redshift dependence of Aτ . The central (also dubbed best
guess) simulation is based upon a fiducial model corresponding to
the Planck Collaboration XVI (2013) best-fitting cosmology. The
simulation grid, however, allows us to test other cosmologies.

In Table 1, we list the values of the parameters used in the best
guess simulation, as well as the corresponding best-fitting values
measured in Chabanier et al. (2018), for a fit to the eBOSS 1D
Ly α power spectrum combined with the Planck 2018 ‘TT + lowE’
likelihood (Planck Collaboration VI 2018). The best-fitting model
is in good agreement with the central simulation. The parameters
that deviate the most from their central value are σ 8 and �m. We
determine the biases bbf for the best-fitting model by computing the
biases bbg for the best guess simulation, and we apply first-order

2https://camb.info
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Figure 2. Biases computed at z = 2.8 for the best guess (in blue) and
best-fitting (in red) configurations. The lines are linear log fits to each case.

corrections to account for the measured shifts in σ 8 and �m, using
simulations where all parameters are kept to their central value
except for either σ 8 or �m. We determine the bias b(z, k) at each
redshift z and scale k by

bbf(z, k) = bbg(z, k) + (σ8,bf − σ8,bg)
db

dσ8
(σ8,bg, �m,bg)

+ (�m,bf − �m,bg)
db

d�m
(σ8,bg, �m,bg).

Fig. 2 shows both best guess and best-fitting biases for redshift z =
2.8. As illustrated in the figure for a specific redshift, but similarly
for all redshifts, the linear corrections have little effect.

Equation (3) thus allows us compute the linear power spectra
Pm(k, zi) for all 12 redshift bins zi. We then transpose each of them
to z = 0 with the relation

Pm,zi
(k, 0) = Pm(k, zi) × t(k, zi) , (5)

where the evolution term t(k, zi) is determined in linear theory using
a Boltzmann code such as CAMB3 (Lewis et al. 2000) or CLASS4

(Lesgourgues 2011). Finally, we combine all 12 z = 0 power spectra
Pm,zi

using an inverse-variance weighted average. The top panel of
Fig. 3 shows the resulting Pm(k, 0).

2.3 Total variation regularization

The discrete differentiation of the 1D transmitted flux power
spectrum PF1D to obtain the 3D transmitted flux power spectrum
PF3D significantly amplifies noise and uncertainties. The effect is
worst at small scales where only the highest redshift bins, which
are also the noisiest, contribute to the measurement. To reduce this
computational artefact, we use a refined differentiating technique,
the total variation regularization (TVR) method, proposed in Char-
trand (2005). It is a specific regularization process that estimates
the derivative of a function f as the minimizer umin of the functional
F,

F (u) = αR(u) + DF(Au − f ), (6)

where α is the regularization parameter, R(u) is the regularization
term which penalizes noise, and DF(Au − f) is the data fidelity term
with Au(x) = ∫ x

0 u. The TVR uses R(u) = ∫ |u′ | and DF(·) = ∫ | · |2.

3https://camb.info
4http://class-code.net/

The resulting algorithm has only one free parameter, α, that we fix to
10−5 for all the redshift bins, as it appears to be a good compromise
between smoothing the data and conserving valuable information.
We tested the TVR on an analytical form of the 1D flux power
spectrum, which allowed us to compare the resulting derivative
to the true PF3D. The TVR induces no computational bias, except
on the first three sampling points, which we hence decide not to
keep in the following. To estimate the uncertainty on the 3D power
spectrum resulting from this regularization, we perform a parametric
bootstrap at each k bin with 1000 iterations. The bottom panel of
Fig. 3 shows the final 3D matter power spectrum at redshift z = 0
derived with the TVR approach. The dispersion is clearly reduced
and the power spectrum from TVR considerably smoother than the
one from a straight derivative. The TVR technique increases the
correlations between neighbouring points (up to 50 per cent in the
worst case, for nearest neighbour correlation), although correlations
with next-to-nearest neighbours are between 1 and 20 per cent at
most.

Finally, we point out that we use the TVR derivation for the data
but we keep to straight derivatives to compute the biasing functions
from the hydrodynamic simulations. The reason is the following.
The PF1D from the simulations is much smoother than in the data,
and systematic uncertainties from the bias term are largely sub-
dominant compared to data statistical uncertainties. Using the TVR
technique on the simulations would therefore unnecessarily increase
the correlations between neighbouring points without yielding a
measurable gain on the resulting uncertainties.

3 MATTER POW ER SPECTRUM FROM OTH ER
PROBES

Having described in some detail the Ly α forest constraints and
our new TVR-based method for calculating them, we now turn
to constraints from the other data sets considered in this work,
which more closely follow the procedure laid out by Tegmark &
Zaldarriaga (2002). Their procedure is based on the relating a
given observable, di (which can be for example a CMB C, or
measurement of cosmic shear power spectrum at some redshift,
etc...), to Pm(k, 0), via

di =
∫

d ln k Wi(k)Pm(k, 0). (7)

Each given observable will have a different ‘window’ function,
Wi(k), which can be calculated from theory for a fixed cosmological
model. In many cases, for example if our di are simple auto-
correlation functions, the Wi(k) are strictly positive. Furthermore,
depending on the exact quantity measured, they are often also fairly
localized in k. In these cases, we normalize the Wi(k) to unit area,
effectively treating it as a probability distribution, and, following
Tegmark & Zaldarriaga (2002), take the error bar in the k-direction
in Fig. 1 to denote the middle 80 per cent quantile of this distribution.
Our slight modification to their procedure is that whereas they take
the middle 80 per cent of the quantity Wi(k)Pm(k, 0), we take it
of just Wi(k). We view this as the more natural choice since it
is just Wi(k) which represents the projection of the data into the
redshift zero matter power spectrum. Additionally, this gives us
a k-direction error bar which does not depend on the shape of
Pm(k, 0).

In Fig. 4, we plot the window functions for the different obser-
vations which we use. In each case, some ‘rebinning’ of the data
is applied as compared to the raw data products provided by each
experiment. This is done so as to produce more reasonably spaced
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Figure 3. Linear matter power spectrum inferred from Ly α data. Results from the discrete differentiation are shown in the top panel, and from the TVR
approach in the bottom panel. The black solid line is the linear theory expectation.

data points in the k-direction, and to improve the localization of
the Wi(k). We describe these rebinnings in the individual sections
below. One can verify the localized nature of the different window
functions, indicating the validity of interpreting each data point as
a constraint on Pm(k, 0).

Cosmic microwave background: For CMB data, we use the Planck
2018 temperature, polarization, and lensing reconstruction power
spectra (Planck Collaboration I 2018b, Planck Collaboration VIII
2018a). At < 30 in temperature, we use the C’s provided by the
COMMANDER likelihood, with the asymmetric error bars averaged
together, which should have minimal impact as we also bin multiple
C’s together which will have a symmetrizing effect. At > 30 in
temperature and polarization, we use the PLIK-LIKE bandpowers and
covariance, rebinned as described above. We do not use polarization
below < 30 because the signal there is highly reionization-model
dependent (e.g. Zaldarriaga 1997). For the lensing reconstruction,
we use the bandpowers and covariance from the ‘aggressive’ data
cut. The window functions are shown in Fig. 4. One can see that the
TE window functions are not strictly positive since they do not arise
from an auto spectrum. For this reason, we cannot interpret them as
a constraint on the amplitude of Pm(k, 0), hence we show only TT
and EE in Fig. 1. Although we do not do so here, one could interpret
them as a constraint on a linear combination of the amplitude and
derivative of Pm(k, 0), however.

Cosmic shear: For cosmic shear, we use DES first-year constraints
on the cosmic shear real-space two-point correlation functions
ξ

ij
± (θ ), where the i and j indices label different redshift bins

(Troxel et al. 2017). These functions can be written in the form
of equation (7),

ξ
ij
± (θ ) =

∫
d ln k W

ij
± (θ, k)P (k, 0), (8)

where

W
ij
± (θ, k) = 1

2π

∫ χH

0
dχ ( + 1/2)J0/4(θ)

qi(χ )qj (χ )

χ2

P (k, χ )

P (k, 0)
,

(9)

the qi(χ ) are the lensing efficiency functions defined as usual (e.g.
as in Troxel et al. 2017), and

k =  + 1/2

χ
. (10)

We choose to bin together all of the redshift bins, producing a set
of five fairly localized window functions for each θ bin, plotted in
Fig. 4. Interestingly, one can see that ξ+ produces window functions
which are not strictly positive. This arises due to the weighting of
the Bessel function inside of the integrand. Thus, similarly as for
the CMB TE power spectrum, we do not plot these constraints on
Fig. 1, although they could in theory also be interpreted as a joint
constraint on the amplitude and derivative.

Galaxy clustering: For galaxy clustering, we use measurements of
the halo power spectrum from a sample of luminous red galaxies
from the Sloan Digital Sky Survey seventh data release (Reid
et al. 2010). Using a model for the halo bias, we can relate these
measurements to the underlying linear matter power spectrum in
which we are interested. We use the model given in Reid et al.
(2010) with free parameters b0, a1, and a2. Fitting to our fiducial
cosmological model, we find best-fitting values of 1.24, 0.54, and
−0.33, respectively, at a pivot scale of k� = 0.2 Mpc h−1.

4 C O N C L U S I O N S

In this paper, we present a measurement of the 3D matter power
spectrum at redshift z = 0 by combining different cosmological
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Figure 4. The window functions, Wi(k), for several of the data sets
considered here. The shaded region represents the middle 80 per cent
quantile of the absolute value of the function, which is the region denoted by
the k-direction error bars in Fig. 1, and represents roughly to which k-scales,
a given data observation, is sensitive to. Note that some observations have
non-strictly positive windows, meaning we cannot interpret them as simply
a measure of the overall amplitude of the matter power spectrum at a given
scale, but rather some combination of this and its derivative.

probes spanning four orders of magnitude in scales, from k =
2 × 10−4 to k = 2 h Mpc−1, and a wide range of cosmic history,
from z ∼ 0 to 1000, shown in Fig. 1. Taking advantage of the
advent of new generation instruments to probe cosmic structure,
we re-evaluate the study done in Tegmark & Zaldarriaga (2002).
We use the latest data sets available for the Ly α forest 1D power
spectrum (SDSS-IV DR14), for the Cosmic Microwave Background
temperature anisotropies and polarization measurements (Planck
Collaboration VI 2018), for the cosmic shear two-point correlation
function (DES YR1) and for the galaxy clustering with measure-
ments of the halo power spectrum (SDSS DR7).

On scales of a few Mpc we use measurements of the 1D
transmitted flux Ly α power spectrum measured by the BOSS and
eBOSS surveys of the SDSS (Chabanier et al. 2018). We follow the
general method of Croft et al. (2002) to recover the 3D matter power

spectrum from the 1D measurements. However, we improve the
determination of the total power Pm(k, 0) compared to the previous
analysis by using a refined differentiation technique, the Total
Variation Regularization method proposed in Chartrand (2005),
which allows us to significantly reduce the resulting dispersion.
On small scales, we also use cosmic shear real-space two-point
correlation functions from the DES YR1 data release (Troxel et al.
2017), which undergo the same general treatment as in Tegmark &
Zaldarriaga (2002). On scales of tens of Mpc, we use measurements
of the halo power spectrum from a sample of LRGs from the SDSS
seventh data release. We use the halo bias model from Reid et al.
(2010). For scales of hundreds of Mpc, we use CMB data with
temperature, polarization, and lensing reconstruction power spectra
measurements (Planck Collaboration I 2018b, Planck Collaboration
VIII 2018a). Except for Ly α that undergoes a specific treatment,
we apply the general method of Tegmark & Zaldarriaga (2002) to
estimate the amplitudes and uncertainties on the 3D matter power
spectrum.

Our work provides a qualitative consistency test of the �CDM
model. Although we do not perform any thorough quantitative tests,
we have computed the χ2 of the the data points shown in Fig. 1
against our fiducial model, ignoring any covariance between the
data points, and using only the error bars in the y-direction. We
find χ2 = 117.3 for 108 degrees of freedom, which is consistent
with an expected χ2 fluctuation to within 1σ . We stress that this
number is only a very rough quantitative estimate of the consistency,
but does at least highlight that no discrepancy is hiding in the
residuals of Fig. 1. Our results thus highlight the good agreement
of the �CDM model with observational data issued by independent
experiments, covering a large range of cosmic times and cosmic
scales.
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