
HAL Id: hal-02148238
https://hal.science/hal-02148238v1

Submitted on 18 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A deep learning model to emulate simulations of cosmic
reionization

Jonathan Chardin, Grégoire Uhlrich, Laurence Voutquenne-Nazabadioko,
Nicolas Deparis, Nicolas Gillet, Pierre Ocvirk, Joseph Lewis

To cite this version:
Jonathan Chardin, Grégoire Uhlrich, Laurence Voutquenne-Nazabadioko, Nicolas Deparis, Nicolas
Gillet, et al.. A deep learning model to emulate simulations of cosmic reionization. Monthly Notices of
the Royal Astronomical Society, 2019, 490 (1), pp.1055-1065. �10.1093/mnras/stz2605�. �hal-02148238�

https://hal.science/hal-02148238v1
https://hal.archives-ouvertes.fr

MNRAS 490, 1055–1065 (2019) doi:10.1093/mnras/stz2605
Advance Access publication 2019 September 7

A deep learning model to emulate simulations of cosmic reionization

Jonathan Chardin,1‹ Grégoire Uhlrich,1,2 Dominique Aubert,1 Nicolas Deparis,1

Nicolas Gillet ,3 Pierre Ocvirk1 and Joseph Lewis1

1Observatoire Astronomique de Strasbourg, Université de Strasbourg, CNRS UMR 7550, 11 rue de l’ Université, F-67000 Strasbourg, France
2IPNL, Université de Lyon, Université Lyon 1, CNRS/IN2P3, 4 rue E. Fermi, F-69622 Villeurbanne cedex, France
3Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy

Accepted 2019 September 7. Received 2019 August 28; in original form 2019 May 16

ABSTRACT
We present a deep learning model trained to emulate the radiative transfer during the epoch of
cosmological reionization. CRADLE (Cosmological Reionization And Deep LEarning) is an
auto-encoder convolutional neural network that uses 2D maps of the star number density and
the gas density field at z = 6 as inputs and that predicts 3D maps of the times of reionization
treion as outputs. These predicted single fields are sufficient to describe the global reionization
history of the intergalactic medium in a given simulation. We trained the model on a given
simulation and tested the predictions on another simulation with the same parameters but
with different initial conditions. The model is successful at predicting treion maps that are in
good agreement with the test simulation. We used the power spectrum of the treion field as
an indicator to validate our model. We show that the network predicts large scales almost
perfectly but is somewhat less accurate at smaller scales. While the current model is already
well suited to get average estimates about the reionization history, we expect it can be further
improved with larger samples for the training, better data pre-processing and finer tuning of
hyper-parameters. Emulators of this kind could be systematically used to rapidly obtain the
evolving H II regions associated with hydro-only simulations and could be seen as precursors
of fully emulated physics solvers for future generations of simulations.

Key words: methods: numerical – galaxies: evolution – intergalactic medium – cosmology:
theory – diffuse radiation.

1 IN T RO D U C T I O N

The process of cosmic reionization is the period that sees the
cosmic hydrogen content of the intergalactic medium (IGM) being
progressively ionized by the first sources of ionizing radiation
during the first billion years of cosmic history (Gnedin 2000;
Barkana & Loeb 2001; Choudhury & Ferrara 2005; Dayal &
Ferrara 2018 for a recent review). This process marks the last major
transition for cosmic gas in the history of the Universe and is of
prime importance to explain what happened to the next generation
of galaxies and to understand the Universe we see today at z = 0.

Correctly modelling this phenomenon in order to interpret future
observational results is one of the upcoming challenges in astro-
physics. With the promise of new facilities dedicated to the study
of this epoch with instruments like SKA (see Barry et al. 2016;
Datta et al. 2016) or JWST (see Windhorst et al. 2006; Wang et al.
2019), the community wants to be ready to investigate the parameter
space from the theoretical side. This can be done with a variety of

� E-mail: jonathan.chardin@astro.unistra.fr

models ranging from analytical (Chiu & Ostriker 2000; Furlanetto,
Zaldarriaga & Hernquist 2004; Benson et al. 2006; Choudhury,
Haehnelt & Regan 2009), seminumerical (Zahn et al. 2007; Alvarez
et al. 2009; Thomas et al. 2009; Zahn et al. 2011), to full simulations
(Gnedin & Abel 2001; Iliev et al. 2006; Ocvirk & Aubert 2011;
Ocvirk et al. 2013; Rosdahl et al. 2013a; Chardin, Aubert & Ocvirk
2014; Gnedin 2014; Aubert, Deparis & Ocvirk 2015; Ocvirk et al.
2016; Aubert et al. 2018; Ocvirk et al. 2018a) incorporating an
increasingly accurate description of the physics at play during the
epoch of reionization.

Simulations of cosmic reionization are computationally ex-
pensive because of the necessary inclusion of radiative transfer
physics: propagation at the speed of light and out-of-equilibrium
thermochemistry induce short time-scales, leading to large amounts
of calculations to cover the first billion years in the Universe
history. Hardware acceleration, with e.g. GPUs, can reduce their
cost (see e.g. Aubert & Teyssier 2010; Ocvirk et al. 2016) but
requires dedicated devices, available only in limited numbers or
in specific supercomputing facilities, even though their usage is
becoming more widespread thanks to the rise of machine learning.
Another way to accelerate such calculations is to use the so-called

C© 2019 The Author(s)
Published by Oxford University Press on behalf of the Royal Astronomical Society

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/490/1/1055/5584889 by guest on 18 June 2023

http://orcid.org/0000-0002-3700-1221
mailto:jonathan.chardin@astro.unistra.fr

1056 J. Chardin et al.

reduced speed of light approximation (see e.g. Rosdahl et al. 2013b;
Katz et al. 2017 for an extension of this technique to variable speed
of light). With typical values of c̃ = [0.01 − 0.1] × c, computing
times can be divided by factors ranging from 10 to 100. However,
even with such performances, such simulations remain costly and
can introduce spurious artefacts compared to simulations using the
actual speed of light (Gnedin 2016; Ocvirk et al. 2018b; Deparis
et al. 2019). Overall, even with such techniques, simulations of
cosmic reionization are still challenging.

In this paper, we propose to use the recent advent of deep learning
methods to reassess this issue. Machine learning algorithms are
powerful in the sense that they can learn complex relationships
in data, without requiring any prior functional form to describe a
particular physical problem. Due to the increasingly large amounts
of data encountered in astronomy, be it through observations or
simulations, the use of machine learning techniques is becoming
more and more widespread. For example, Kamdar, Turk & Brunner
(2016a) and Kamdar, Turk & Brunner (2016b) used a large set
of semi-analytical and full hydrodynamical data obtained from
simulations to learn the underlying physics governing the galaxy
formation process. Ucci et al. (2018, 2019) used supervised learning
to infer physical properties of galaxies from their emission-line
spectra. Among others, Schaefer et al. (2018) used convolutional
neural network to build a strong gravitational lens detector while
Parks et al. (2018) used the same kind of technique to characterize
strong absorbers of neutral hydrogen (i.e. damped Ly α systems) in
quasar spectra.

Ntampaka et al. (2019) recently reviewed what has been done in
the field of cosmology with the advent of machine learning tech-
niques. Among them, studies were undertaken to address the epoch
of reionization in the context of deep learning. Shimabukuro &
Semelin (2017) used such methodologies on synthetic 21 cm power
spectra to extract physical properties of the reionization process.
Gillet et al. (2019) first proposed to use light cones of the 21cm
surface brightness as input of convolutional neural network to
predict cosmological parameters. In the same spirit, Hassan et al.
(2019) used synthetic 21 cm light cones drawn from simulations
to predict what the relative contribution to reionization between
star-forming galaxies and AGNs is.

With this study, we aim to go beyond the aforementioned works,
to predict physical fields relevant to reionization from other physical
fields. Our aim is to use fields of gas density and star number counts
as inputs of a neural network to predict maps of reionization times
treion. The reionization times maps encode the whole reionization
history of a given simulation: having a neural network predictor
would allow to assign locations of H II bubbles at all times in
simulations without radiative transfer, which would in turn make
possible the quick acquisition of, e.g. a mean reionization history
associated with those simulations.

We propose to use actual radiative-hydrodynamics simulations of
cosmic reionization to feed the learning process of such networks.
To some extent, we aim at designing a tool similar to semi-analytical
models, but rather than using an explicit model we propose to create
an implicit model. Such a model would be provided by full-physics
simulations and would constitute rather a ‘seminumerical’ model,
orders of magnitude faster than the simulations it originates from.
More generally, one can envision deep learning methods to emulate
physics solvers (i.e. coupled differential equations solvers), using
simulations’ products as training models but with a much smaller
execution times than for actual simulation codes: the radiative
transfer case used here should merely be seen as an example of
a much greater potential.

This paper is organized as follows. We first present the simulation
of cosmic reionization used in this study. Secondly, we detail the
architecture and the training performance of our neural network in
Section 3 before giving the strengths of this model in Section 4. We
finally discuss how our results could be improved and generalized
in the near future in Section 5.

2 SI M U L AT I O N S O F C O S M I C R E I O N I Z AT I O N
WI TH EMMA

In this work, cosmological simulations of the reionization were
produced using the EMMA simulation code (Aubert et al. 2015):
the code tracks the collisionless dynamics of dark matter, the hydro-
dynamics of baryons, star formation and feedback and the radiative
transfer using a moment-based method (see e.g. Aubert et al. 2018;
Deparis et al. 2019). This code adheres to a Eulerian description,
with fields described on grids, and enables adaptive mesh refinement
techniques to increase the resolution in collapsing regions.

For the current study, we used an existing pair of large-scale,
well-resolved simulations (with high enough resolution to follow
the densest absorbers that are subject to self-shielding as shown in
Chardin, Kulkarni & Haehnelt 2018). The two simulations share
the same parameters, but with different displacement phases in
the initial conditions. In both cases, the (128 Mpc h−1)3 volume
is sampled with 10243 cells at the coarsest level. Refinement is
triggered when the number of dark matter particles exceeds 8, up to
6 refinement levels.

A Planck 2015 cosmology was used (Planck Collaboration XIII
2015) to generate the initial conditions, with a starting redshift
of z = 150. Simulations were stopped at z = 6. The dark matter
mass resolution is 2.1 × 108 M� and the stellar mass resolution
is 6.1 × 105 M�. Star particles produce ionizing radiation for 3
Myrs, with an emissivity provided by the Starburst99 model for
a top-heavy initial mass function and a Z = 0.001 metallicity.
Star formation proceeds according to standard recipes described
in Rasera & Teyssier (2006), with an overdensity threshold equals
to 20 to trigger the gas-to-stellar particle conversion with a 0.1
efficiency: such values allow the first stellar particles to appear
at z ∼ 17. Supernovae feedback follows the prescription used in
Aubert et al. (2018): as they reach an age of 15 Myr, stellar particles
dump 9.8 × 1011 J/stellar kg in the surrounding gas, one-third in
the form of thermal energy, two-third in the form of kinetic energy.

Using these parameters, we obtain a cosmic star formation
history consistent, but somewhat underestimated, with constraints
by Bouwens et al. (2015). Even if these simulations are not fully
consistent with observations, it is more than enough for the purpose
of this paper, which is to demonstrate the idea that a machine
learning algorithm can learn the physics of reionization and can be
used to predict the ionization field of non-RT simulations. Hence,
the technique exposed here could be generalized in the future on
simulations more carefully calibrated with observations.

This pair of simulations was produced on the Occigen supercom-
puter (CINES, France) on a standard CPU architecture: EMMA
GPU acceleration capabilities were not enabled and a reduced speed
of light c̃ = 0.1c has been used to reduce the cost of radiative
transfer. For the purpose of the current investigation, we did not use
the simulation products at full resolution: outputs were degraded
to a 2563 resolution to fit within the capabilities of our hardware
dedicated to neural network training.

These two simulations will be labelled, respectively, as TESTSIM
and TRAINSIM. TRAINSIM is the simulation used for the actual
training of our model, whereas TESTSIM is used to quantify

MNRAS 490, 1055–1065 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/490/1/1055/5584889 by guest on 18 June 2023

Emulating reionization simulations 1057

its predicting power. TESTSIM is never used during the training
process and thus provides a way to test the model on a completely
independent data set.

3 AU TO - E N C O D E R C O N VO L U T I O NA L
N E U R A L N E T WO R K

3.1 Outputs: treion fields

Our aim with this study is to predict the 3D treion field of a simulation,
also known as ‘reionization maps’, built by marking cells with the
cosmological time at which it crosses a given ionization fraction
threshold. At the end of a simulation, it provides the full reionization
history and this field can be used to reconstruct the H II regions’
spatial distribution at all cosmic times (see Ocvirk et al. 2013;
Aubert et al. 2018; Deparis et al. 2019). Predicting such a field
with a neural network should be very useful for those who only
have hydrosimulations at their disposal to get rough estimates of
the mean reionization history of their simulations. In our case, treion

maps are built on the fly by the EMMA simulation code. We choose
an ionization fraction threshold xH II ≥ 0.5 to consider cells of the
simulation as ionized and to mark them with the corresponding
cosmological time of reionization treion. Varying this threshold from
xH II ≥ 0.5 to xH II ≥ 0.9 is unlikely to affect the shape and size of
H II regions (see Chardin, Aubert & Ocvirk 2012, appendix A.3)
and thus is unlikely to affect the spatial distribution of treion maps.
Therefore, varying this threshold should not impact what the neural
network will learn in the next sections.

3.2 Inputs and data set pre-processing

In order to predict treion 3D maps, we use both the gas density
(taken as the log of the baryon overdensity) and star particle number
density, at z = 6. This choice is arbitrary and driven by simplicity:
gas density tracks the distribution of photons absorbers, whereas
the star number density tracks the distribution of emitters. Note that
the star number density is only an incomplete view of the photon
production history: no information about the age or the emissivity
is provided here. Moreover, we could also imagine different kinds
of ionizing sources at play in a single simulation. This would entail
Lyman continuum photon production phases that differ in length
(see e.g. Stanway, Eldridge & Becker 2016, who have shown that
binary interactions increase the length of the ionization photon
bright phases of sources). Evidently other choices would have been
possible, possibly using more information, but as a proof of concept
we will show that even this admittedly simple choice of inputs
provides satisfying predictions at this stage.

As explained hereafter, we will use a convolutional neural
network for our predictions, usually used for image processing
in 2D. In theory, such networks can process 3D fields, such as
an image with multiple channels, but then become quite memory
consuming and less efficient, especially when the three dimensions
are of commensurable sizes. Accounting for the limitations of the
hardware currently available to us, we thus decided to make this first
study using 2D CNN: gas and stellar number densities are provided
to the CNN as 2D slices, and equivalently, predictions on treion, are
returned as 2D planes. Nevertheless, to capture some information
along the direction normal to the plane, we Gaussian smooth the
3D gas and stellar fields along this direction: we take a smoothing
length of σ = 30, corresponding to a size of 3.75 cMpc h−1 for
the simulations studied here. We marginalized our search over
different values for this smoothing scale, and the latter value gave

us the best performance when training the neural network. For a 3D
reconstruction, all successive slices of a treion cube are predicted and
stacked. Of course, this creates discontinuities along the stacking
direction: to mitigate this effect, we perform three separate 3D
predictions using this procedure, stacking along the three different
main directions and combine them to obtain our final 3D prediction
of treion. Further details can be found in Appendix B.

From our 2563 3D fields taken from TRAINSIM, we construct
a sample of 3000 maps of 128 × 128 cells for the stellar and gas
densities, and treion. This constitutes what we usually call the training
set. The maps are picked randomly inside the whole 3D fields and
the same location is taken for the three fields. In addition to the
training set, we also build a test set composed of 500 additional
128 × 128 maps for the three fields, still from TRAINSIM. Such
a test set is here to measure the accuracy of the trained model on
unseen data during the training process. Therefore, we ensure that
the maps taken to build this test set are different from the ones
belonging to the training set.

Finally, we normalize the input in the neural network and we
proceed as follows for both the stellar (S) and gas density (D) fields:

(i) We take the mean of our fields in the whole training set: <S>

and <D>

(ii) We subtract that value from all the values in the maps of the
training set: S = S− < S > and D = D− < D >

(iii) We calculate the standard deviation of those new fields:
std(S) and std(D)

(iv) We divide all the values of S and D by this value: S = S/std(S)
and D = D/std(D)

Fig. 1 shows an example of data used to train the neural network.
We show five different examples of both the transformed stellar
and gas density fields that are the input of the network, and the
corresponding treion field the network aims to predict. We can see at
first glance the correlation between the three different fields in each
example case. Therefore, we can expect that the network, with data
that are transformed this way, should be able to infer the underlying
correlation.

3.3 Convolutional neural network architecture

Fig. 2 shows a schematic view of the neural network used here
(see Appendix A for full details). The neural network we build
is a special case of convolutional neural networks. It is called an
auto-encoder and has the unique property of generating a complete
image as an output. An auto-encoder is a non-recurrent neural
network propagating forward (i.e. we process from left to right
in Fig. 2) with an input layer, an output layer and one or more
hidden layers in-between. An auto-encoder is always divided in
two parts: the encoder and the decoder. The encoder is a succession
of convolutions of the input of a layer with filters of a particular
size. The results are then downsampled and given as inputs to the
next layer. The decoder is the symmetric counterpart of the encoder.
Instead of convolution and downsampling, a layer is composed of
a deconvolution plus an upsampling of the results.

The auto-encoder we build here is special because it has more
than one input image even if we aim to predict a single output
image. In practice, we just apply the same series of convolutions
and downsamplings independently for both our input stellar and gas
density fields (the two distinct red rectangles on the left in Fig. 2).
After the forward passing of these maps through the layers of their
dedicated branches of the encoder, the results are merged together
(i.e. we take the average of the output maps of the gas density and the

MNRAS 490, 1055–1065 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/490/1/1055/5584889 by guest on 18 June 2023

1058 J. Chardin et al.

Figure 1. Example of fields used to train our neural network. The stellar particles number counts and gas density fields are used as inputs of the network
and the treion field is what should be predicted. The stellar and the gas density fields are pre-processed as described in Section 3.2 while the treion field is not
touched. Briefly, they are zero-centred as well as unit variance transformed. Moreover, the stellar and gas density fields are Gaussian smoothed in the transverse
direction of the plane seen on the figure to keep 3D information in two dimensions. We can see at first glance that the three fields are correlated. In principle,
the neural network should be able to infer this underlying correlation.

Figure 2. Architecture of the convolutional auto-encoder model used to predict maps of treion (see Appendix A for full details). The auto-encoder has two
entries: the maps of the gas density field and of the star number density which are both Gaussian-smoothed (see Section 3.2 for detailed explanations). There
are two distinct blocks of convolution filters applied on both fields independently represented by the two red rectangles on the left. These two branches of
convolution represent the encoder. After those independent series of convolutions, the outputs of the two last layers in the network are averaged together
before entering the process of deconvolution (represented here as the third red rectangle which constitutes the decoder). At the end, one last layer with a linear
activation function is applied to produce a full 2D map of treion with continuous values.

stellar branches) to feed the decoder. This input successively goes
through the same number of layers as in the encoder. This eventually
leads to a final map (treion) of the same size as the starting inputs.

We employ the usual Adam algorithm for the optimizer and
we choose the mean squared error between the predicted and

true 2D maps for the loss function to optimize. The choice of
mean squared error is dictated by the regression nature of the
problem we are facing here (i.e. predicting continuous values
of treion instead of discrete values) in contrast to classification
problems.

MNRAS 490, 1055–1065 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/490/1/1055/5584889 by guest on 18 June 2023

Emulating reionization simulations 1059

3.4 Training the neural network

The auto-encoder described in the last section is built using the
python API for neural networks KERAS1 (Chollet 2015). Training
the network is done on two Tesla K20 GPUs with the parallel
training option of KERAS. Training on our set-up takes about
28 h with both GPUs when aiming to achieve best performance.
In principle, we can train our network on a much larger number of
GPUs and therefore the wall clock time needed to train the network
can be greatly reduced.

As already mentioned, to train a neural network, we build both
a training set and test set. The training set, is made of data that are
used to minimize the loss function. On the other hand, the test set
is made of data of the same nature as in the training set but are
not used during the minimization process. They are only produced
to control how a current version of the trained model performs on
unseen data. Therefore, we use both the training and test set during
training to monitor each training process.

To monitor our training performance we use two indicators. First,
we use the mean squared error (MSE) between the predicted treion

and the true values. In practice, we want the MSE to decrease during
the learning process until it reaches a plateau, indicating that the
maximum learning potential has been achieved. However, the MSE
value is not meaningful taken in isolation, and does not tell us
much about the quality of the predictions. The same MSE value can
correspond to predictions of variable quality from one problem to
another.

To measure the correctness of our prediction, we use a second in-
dicator which is called the coefficient of determination R2 calculated
with the following formula (see Gillet et al. 2019):

R2 =
∑

(ypred − ytrue)2∑
(ytrue − ytrue)2

= 1 −
∑

(ypred − ytrue)2∑
(ytrue − ytrue)2

. (1)

In practice, a value close to 1 represents a 100 per cent match
between our original data and the ones predicted by the neural
network.

The upper panel of Fig. 3 shows the evolution of the MSE as a
function of the number of training epochs, while the lower panel
shows the evolution of R2. We show these curves for our best
model, after we found the best way to pre-process our data, and the
best network architecture with the best hyperparameters. Trends are
shown for the training set and test set, both from TRAINSIM. We
clearly see the MSE decreasing quickly at the beginning of training
for the first 250 epochs for both the training and test set. This means
that the choice of parameters is well suited to the current problem
and that the model learns efficiently. After about 250 epochs, the
test set reaches a plateau while the training set keeps decreasing. We
continue training up to the moment when the MSE curve reaches a
plateau for the training set. The beginning of the training set plateau
is generally considered as the moment when the best performances
are achieved. We achieve this after 2500 epochs.

Focusing on R2 in the bottom panel, we observe that the model
reaches an accuracy of about R2 ∼ 0.99 on the training set when
the MSE stabilizes. Meanwhile the test set reaches a value of about
R2 ∼ 0.9, which means that our model generalizes well on unseen
data. However, both the training and test set are built from the
TRAINSIM simulation. Even if we make sure they are not the
same maps, nothing guarantees that the model generalizes well on
other, completely disconnected simulations. That is why, we ran the

1https://github.com/keras-team/keras

Figure 3. Training performance curves. The top panel shows the evolution
of the mean squared error (MSE) between the predicted values and the real
ones from the TRAINSIM simulation as a function of the number of epochs
for both the training set and testing set. This is the actual value of the loss
function used to train the model and what the gradient descent algorithm is
trying to minimize. The bottom panel shows the evolution with the number
of epochs of the coefficient of determination R2 of equation (1). It allows to
monitor how our model matches the original values and in particular how
it performs on unseen data with the testing set drawn from the TRAINSIM
simulation. The different horizontal dashed lines show values of R2 = 0.7,
0.8, and 0.9.

TESTSIM to test our model’s performances on new data. All the
results given in Section 4 will thus be given by applying the model
to this TESTSIM simulation, unseen during the training.

4 R ESULTS

4.1 Field reconstruction

To measure the performance of our model on unseen data, we
first use our trained network to reconstruct a field of treion in the
TESTSIM simulation. We use the gas density and the stellar fields of
this simulation and we transform them the same way we transformed
the input training data (see Section 3.2). We then predict multiple 2D
slices to reconstruct the whole treion cube following the procedure
described in Appendix B.

Fig. 4 shows central slices of the reconstructed cube of treion

in the three different directions. The model is well adapted for
predicting treion maps in the three directions. The colourmap in
both the predictions and original data is set to be the same to
enable direct comparison. Overall, the model predicts a range
of continuous values of treion that are within the same range as
the original simulation. Moreover, the global shape of the field
seems to be well predicted by the network which means that the
large-scale structures of the field seems to be well-learned by the
model.

However, we report some differences at smaller scales. The
network struggles to predict the exact same shape for the edges
of treion bubbles. Moreover, the peaks of small treion values are too
high compared to the original data, meaning that the first sources
episodes of reionization are only partially recovered. Some small
treion bubbles are missed during the reconstruction, or some spurious
bubbles are created where they are not present in the original
simulation.

MNRAS 490, 1055–1065 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/490/1/1055/5584889 by guest on 18 June 2023

https://github.com/keras-team/keras

1060 J. Chardin et al.

Figure 4. Example of slices of treion from the TESTSIM simulation and the corresponding predictions from the model. The upper panel shows three different
slices from the TESTSIM simulation, while the lower panel shows the prediction of the same slice with our best model. Average values of R2 ∼ 0.83 are
currently achieved with our best model. The predicted fields are reconstructed following the procedure described in Section 4.1.

All the aforementioned drawbacks of the model show its limited
capacity to make robust predictions at small scales, which could be
improved with a combination of a larger data set for the training and
different kinds of inputs. For example, the star number density at
z = 6, is actually degenerate and can be similar for different source
production histories: it is therefore not surprising that our model
struggles to perfectly reproduce the time evolution. In fact, given
this limitation, the ability of the network to predict a reionization
timeline similar to the actual one can even be seen as surprising
and indicates that to some extent, the star production history is
encoded in the gas density distribution and stellar number density.
The inclusion of information about the source ages could surely
improve the prediction on reionizations’ evolution, especially at
early times.

Finally, in the lower left corner of each slice of the reconstructed
fields, we also show the value of the R2 coefficient of prediction
for the corresponding slices compared to the original slice of the
TESTSIM simulation. We reach average values of R2 ∼ 0.83 over
the three directions with our best model, without any fine-tuning
of the model. Again, we expect to increase this accuracy with fine
tuning of the hyperparameters of the model, a bigger sample for the
training, and better pre-processing of the input data.

4.2 True versus predicted values

As a second test, we also construct the 2D histogram of the true
versus predicted values of treion. Fig. 5 shows the number count
of cells lying in the true-predicted plane. The red line on the
figure shows the one-to-one relation. To highlight the differences,
the bottom and left histograms show the mean and the standard

Figure 5. 2D histogram of the true versus predicted values of treion for our
best neural network model once the training is finished. The histogram is
constructed on the whole 3D reconstructed cube of the TESTSIM simulation
as explained in Section 4.1. The red line shows the one-to-one relation while
the colourmap encodes the number count of cells lying in the 2D space of
true versus predicted. The bottom and left histograms show the mean and the
standard deviation of the residual: r = Predicted − True in the vertical and
horizontal directions. The bottom histogram is the learning error, p(r|True),
while the side histogram is the recovery uncertainty, p(r|Predicted).

deviation of the residual: r = Predicted − True along the vertical
and horizontal directions, respectively.

The left-hand side histogram which displays the distribution of
residuals as a function of the prediction (p(r|Predicted)) is an actual

MNRAS 490, 1055–1065 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/490/1/1055/5584889 by guest on 18 June 2023

Emulating reionization simulations 1061

measure of the uncertainties on predictions μ. Such a test is standard
in deep learning model validation, and the closer the distribution to
the one-to-one relation, the better the performance of the network
(see Gillet et al. 2019). Overall, our model tends to predict values of
treion close to the one-to-one relation which once again demonstrates
the ability of our network to perform this particular task.

We note that the average of the residuals in this case is well centred
on the zero residual value for treion ≥ 0.4 Gyrs. We report values
of σ = 0.045 Gyrs for the mean of the uncertainty on prediction
along all this range of treion values. This value is fairly constant over
all this range and it means that we only have a 4.5 per cent error
on our predictions on average. We measure a minimum value of
σ = 0.010 Gyrs and a maximum uncertainty of σ = 0.061 Gyrs
indicating an error fluctuating between 1 and 6 per cent compared to
real values. However, the model clearly overestimates the values of
treion < 0.4 Gyrs which means that we miss the first ionized regions
in our predictions.

Finally, the bottom histogram, showing the distribution of resid-
uals as a function of true values (p(r|True)), represents the network
error ξ . The average value of the residual is well-centred around
zero in the range [0.5–0.9] Gyrs for values of treion. We conclude
that our network makes robust predictions in this range with a mean
uncertainty of σ = 0.05 along these values. This is not surprising
since these values of treion correspond to the large scales that are
well predicted in the maps of Fig. 4. However, we note that larger
uncertainties are reported for treion < 0.5 Gyrs. In this case, the
mean residual is significantly above the zero value, which suggests
a larger predicted treion in this range. This can be seen in Fig. 4,
where these peaked locations in the maps have higher values in
the predictions compared to the original data. Therefore, our model
seems to struggle to predict the smaller scales in the maps, which
correspond to the first locations in the simulation that were reionized
by the first generation of ionizing sources.

4.3 Power spectra

As a third test, we also compute the 1D power spectrum P1D(k) of the
3D field of treion(−→r) for both the original TESTSIM simulation and
the reconstructed prediction of the network. The power spectrum
is defined as the azimuthal average of the square of the module of

the 3D Fourier transform δ(
−→
k) of the 3D treion(−→r) field. This is

computed as follows:

δ(�k) =
∫

treion(�r)e−2πi�k.�rd�r (2)

P1D(k) =< |δ(�k)|2 >|�k|=k=
∑

|�k|=k |δ(�k)|2∑
|�k|=k 1

(3)

Fig. 6 shows these two power spectra as well as the ratio of the
two.

Overall, we report a perfect match between true and predicted
values at large scales. The two spectra are on top of each other up to
scale k = 0.1 h cMpc−1 (i.e the ratio of both spectra is almost equal
to 1). This is in agreement with what is observed in Figs 4 and 5,
where large-scale structure in the maps (with values of treion > 0.5
Gyrs) are well predicted by the network.

However, at scales k > 0.1 h cMpc−1 the network seems to
underpredict the power compared to the real simulation. Again, this
discrepancy corresponds to small scales that are missed in the maps
of Fig. 4 with treion < 0.5. This means that the network struggles

Figure 6. Power spectra of the treion fields. The blue and red lines show,
respectively, the power spectrum of the original TESTSIM simulation and
the one predicted by our best model once the training is finished. Power
spectra are computed on the whole 3D cube. The green line shows the ratio
of both power spectra.

to keep track of the first ionizing sources that appeared during the
simulation.

4.4 Reionization history

The previous sections show results on the prediction of the field of
treion, which encapsulates the whole reionization history of a given
simulation. Here, we propose to use this map to demonstrate the
potential of our model to predict the evolution of average quantities
during the process of cosmic reionization, and how it compares with
real simulations. We aim at showing how this could be useful for
those who only have hydro simulations, and want to get an emulation
of the radiative transfer calculation without performing it.

First, in Fig. 7, we show the reconstructed evolution with cosmic
time of the ionized regions’ expansion. To synthesize this evolution,
we construct light cones from treion slices. The upper panel shows
the evolution of the light cone constructed from the central treion

slice of the TESTSIM simulation, while the lower panel shows the
same evolution predicted by the model. Such fields are constructed
as follows:

(i) We first take a slice of the 3D treion field.
(ii) We consider a cosmic time of tH II at which we want to create

the H II regions’ spatial distribution.
(iii) We keep all the treion < tH II cells.
(iv) We mark them as ionized with a value of one.
(v) We consider the other cells as neutral with a value of zero.
(vi) We repeat this for multiple values of tH II and stack the results

to construct the light cone.
(vii) We follow this procedure for both the treion field of the

TESTSIM simulation and prediction of the network.

Overall the two light cones look rather similar between the pre-
diction and the TESTSIM simulation. We observe better agreement
at large cosmic times (i.e. when the reionization process is well
advanced). The H II bubbles in the predicted field are at the right
location with sizes comparable to the original ones. However, the
edges of the bubbles are somewhat different: some of them are
merged in a single bubble in the predicted field, whereas several
disconnected bubbles are reported in the original data. We also

MNRAS 490, 1055–1065 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/490/1/1055/5584889 by guest on 18 June 2023

1062 J. Chardin et al.

Figure 7. Example of light cone from the TESTSIM simulation and the corresponding predictions from the model. The upper panel shows the light cone of
the central slice of the TESTSIM simulation, while the lower panel shows the prediction of the same slice with our best model.

Figure 8. Evolution of the volume filling factor of H II regions QH II with
cosmic times in both the original simulation (TESTSIM) and prediction of
the neural network. QH II is calculated from the whole 3D field of treion in
both cases by taking the cumulative sum of the histogram of the treion values.

observe some bubbles completely disappearing in the prediction
compared to the TESTSIM simulation. The inaccuracy of the model
at predicting the smallest scales is reflected here when predicting
the H II regions’ spatial distribution as a function of cosmic time.

At early times, for t ∼ 0.5 Gyrs, some of the first and smallest
bubbles are missing. This illustrates again the fact that the model
struggles at predicting the first stages of the H II regions’ expansion.
This is due to the fact that the model is unable to predict the smallest
treion values in Fig. 4, which reveals the limitations of the model to
get accurate apparition times for the first generations of ionization
sources early on in the simulation.

As a second test, we compute the evolution of the fraction of
the volume that is ionized at a given cosmic time. In Fig. 8, we
present the evolution of the volume-filling factor of H II regions

QH II in both the TESTSIM simulation and model prediction. The
evolution of this quantity is calculated by binning the cosmic time
period and by getting the cumulative sum of ionized cells at a given
cosmic time from the treion field. We report an almost perfect match
of the two curves in Fig. 8 at all cosmic times. This demonstrates the
ability of our model to predict a global reionization history during
the whole simulation. We observe some minor differences at cosmic
time 0.4 ≤ t ≤ 0.6, where QH II of the TESTSIM is somewhat above
the model prediction. Once again, this is due to the inability of
the model to perform at predicting the smallest scale in the treion

field. Overall, our deep learning model is already well designed to
emulate a global reionization history, which can be useful for a wide
range of studies.

5 D I SCUSSI ON AND CONCLUSI ON

In this section, we present and discuss our global results with their
successes and drawbacks. We finally conclude with the implications
of such a study for the near future and what it may imply for the
future of numerical simulations.

5.1 Successes

With this study, we have demonstrated that deep learning models
can emulate the physics of the radiative transfer occurring during
the reionization epoch of the Universe. We used an auto-encoder
neural network, usually designed for data compression, to create
a generative model that predicts the whole reionization history
encapsulated in a single field: the map of reionization times treion.
The built network takes the stellar number density as well as the
gas density field from a simulation at the end of the reionization as
inputs and produces the treion field as an output.

With our current optimization strategy, we achieve a determi-
nation coefficient R2 ∼ 0.83 in recovering the whole 3D field of
treion on a test simulation that was never seen during the training
of the network. The model was therefore successful at reproducing

MNRAS 490, 1055–1065 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/490/1/1055/5584889 by guest on 18 June 2023

Emulating reionization simulations 1063

a variety of scales in this field down to k = 0.1 h cMpc−1 which
is already useful for a wide range of studies. Moreover, the model
has shown its ability to generate H II bubble dynamics in good
agreement with real simulations with full radiative transfer. It gives
at the end a mean reionization history almost identical compared to
real data.

For the time being, we have therefore proved that an auto-encoder
neural network architecture for emulating radiative transfer during
reionization is a promising solution. This is really encouraging since
the prediction of a complete 2563 treion cube is produced in a much
faster way than a complete reionization simulation that includes
radiative hydrodynamics. The prediction of the total 2563 cube is
done in about 3 min on a single CPU. The prediction could be even
faster than this if we parallelize the reconstruction process of the
whole cube, and optimize the current python API. In comparison,
post-processing radiative transfer in the same way as in Chardin
et al. (2015) for a simulation with the same resolution and the
same number of cells would be done in about 1 h on a single last
generation Pascal P100 GPU.

5.2 Caveats and road to improvements

The training of the current neural network is not perfect, but we
expect a great scope of improvement. First, we have shown that the
predicted treion field is inaccurate at small scales. This is related to the
inability of the model to predict the smallest values of treion, which
correspond to the location where the first ionizing sources appeared
during the TESTSIM simulation. This is not surprising as the current
model is trained with the gas density and the stellar number density
fields taken at the end of the simulation, at z = 6. Therefore,
these data used as inputs of the model do not hold any temporal
information about the ionizing source history through the whole
simulation. However, the treion field we aim to predict is a summary
of this integrated history. We could therefore expect to gain much
accuracy in the prediction if we introduce such temporal information
when training the network. For example, we could imagine taking
a third field as an entry of the network, which could be the average
cosmic time of apparition of the ionizing sources inside each cell
throughout the whole simulation. In practice, adding such a third
field should not prove troublesome when getting access to a larger
number of GPUs for the training phase of the neural network.

We also expect improvement by increasing the quantity of data
used to train the network. Indeed, the current performance was
achieved with training on only a sample of 3000 independent images
for the training set. It is well known that increasing the training
sample increases the performance and usually training sample of
the order of 80 000 images (see e.g Gillet et al. 2019) are used,
which is much higher than what we currently have. Moreover, the
training set was built from a single simulation. However, building
the training sample from different simulations instead of a single
one should improve the performance. Indeed, the current model can
somewhat overfit in learning a biased representation of the density
field for the particular initial conditions used for the simulation
taken for the training.

We also expect some improvement with the properties of the
network itself. First of all, the optimization of hyperparameters
was only briefly investigated in the current training of the model.
We can expect to get even better performance by focusing more
on hyperparameter tuning. Other choices for the loss function to
minimize could also be investigated such as a customized loss
function tuned to perform this particular task. Moreover, we could

also reconsider our network architecture. We could imagine adding
layers and changing the number of filters in each layer. The size
of the convolution filters in each layer could also be changed, and
systematic studies for tuning these parameters could be investigated
more carefully.

Furthermore, the predictions of our neural network are currently
done in two dimensions, as we are limited by hardware consider-
ations. Therefore, we had to smooth the gas density field and the
stellar field in the transverse direction to the plane we are trying
to predict. However, we could expect better performance of the
network by using 3D convolutions instead of 2D as currently done,
providing a direct prediction for 3D cubes and getting rid of the
additional process of reconstructing the volume from 2D maps.

Finally, for the time being, the neural network has only been
trained on a given simulation, with a particular box size and
resolution as well as with a specific set of parameters for the
input physics. Therefore, the network trained this way is only
adequate when predicting treion maps on top of hydrosimulations
with the same properties. We briefly tested the prediction of treion

maps associated with simulations with different parameters with
the current version of the network. Unsurprisingly, the model failed
to perform satisfyingly on simulations with different parameters
compared to the one used for training. However, We see clear
avenues of improvement to pursue, and hope to train networks
that could perform on a variety of hydrosimulations with a large
range of parameters. For the time being, we have shown that the
methodology is feasible, and we plan to work on more generic
networks for forthcoming studies.

5.3 Conclusion

With this study, we lay the groundwork for developing emulators of
reionization simulations. We have shown that deep learning meth-
ods should help to emulate realistic simulations very efficiently.
Such techniques could considerably speed-up our way to predict
the ionization field associated with a hydrodynamic simulation,
when compared to full radiative transfer calculations. The model
presented in this study still suffers from disparities with actual
simulations, but we expect great possibilities of improvement. Of
course, training such models requires a large sample of existing
simulations, but many of these simulations have already been run
by the community and constitute a data base that could be used
for the systematic training of neural networks (see Wise & Abel
2011; Chardin et al. 2012; Gnedin 2014; Gnedin & Kaurov 2014;
Chardin et al. 2015; Ocvirk et al. 2016; Ocvirk et al. 2018a;
Rosdahl et al. 2018, among others). We plan to use large sets of
existing simulations with different parameters and different sizes
and resolutions, thus aiming at creating a data base of networks
that could be used by the community to emulate the radiative
transfer on a variety of hydrosimulations with different parameters.
Finally, a long-term objective would be to end up with a neural
network model that could emulate a complete simulation at once
using only the initial conditions of the original simulation. Such
an idealistic network could perhaps emulate all the ingredients of
cosmic reionization simulation at once: the dynamic of dark matter
(see e.g. Rodrı́guez et al. 2018), the hydrodynamic of the gas (see
e.g. Zamudio-Fernandez et al. 2019) and the radiative transfer. More
realistically, one could imagine replacing specific modules within
existing simulation codes with trained neural networks. With the
data base of simulations currently at our disposal, and the promise
of more to come, a very exciting time for deep learning science
applied to cosmology is upon us.

MNRAS 490, 1055–1065 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/490/1/1055/5584889 by guest on 18 June 2023

1064 J. Chardin et al.

AC K N OW L E D G E M E N T S

We thank contributors to SciPy, Matplotlib, pyDOE, and the
PYTHON programming language. We thank the KERAS and Talos
API for deep learning machinery and optimization in PYTHON.
This work was granted access to the HPC resources of CINES
(Centre Informatique National de l’Enseignement Supérieur) under
the allocation 2019- A005041061 attributed by GENCI (Grand
Equipement National de Calcul Intensif).

RE FERENCES

Alvarez M. A., Busha M., Abel T., Wechsler R. H., 2009, ApJ, 703, L167
Aubert D. et al., 2018, ApJ, 856, L22
Aubert D., Teyssier R., 2010, ApJ, 724, 244
Aubert D., Deparis N., Ocvirk P., 2015, MNRAS, 454, 1012
Barkana R., Loeb A., 2001, Phys. Rep., 349, 125
Barry N., Hazelton B., Sullivan I., Morales M. F., Pober J. C., 2016, MNRAS,

461, 3135
Benson A. J., Sugiyama N., Nusser A., Lacey C. G., 2006, MNRAS, 369,

1055
Bouwens R. J. et al., 2015, ApJ, 803, 34
Chardin J., Aubert D., Ocvirk P., 2012, A&A, 548, A9
Chardin J., Aubert D., Ocvirk P., 2014, A&A, 568, A52
Chardin J., Haehnelt M. G., Aubert D., Puchwein E., 2015, MNRAS, 453,

2943
Chardin J., Kulkarni G., Haehnelt M. G., 2018, MNRAS, 478, 1065
Chiu W. A., Ostriker J. P., 2000, ApJ, 534, 507
Chollet F., 2015, Available at: https://github.com/keras-team/keras
Choudhury T. R., Ferrara A., 2005, MNRAS, 361, 577
Choudhury T. R., Haehnelt M. G., Regan J., 2009, MNRAS, 394, 960
Datta K. K., Ghara R., Majumdar S., Choudhury T. R., Bharadwaj S., Roy

H., Datta A., 2016, J. Astrophys. Astron., 37, 27
Dayal P., Ferrara A., 2018, Phys. Rep., 780, 1
Deparis N., Aubert D., Ocvirk P., Chardin J., Lewis J., 2019, A&A, 622,

A142
Furlanetto S. R., Zaldarriaga M., Hernquist L., 2004, ApJ, 613, 1
Gillet N., Mesinger A., Greig B., Liu A., Ucci G., 2019, MNRAS, 484, 282
Gnedin N. Y., 2000, ApJ, 535, 530
Gnedin N. Y., 2014, ApJ, 793, 29
Gnedin N. Y., 2016, ApJ, 833, 66
Gnedin N. Y., Abel T., 2001, New A, 6, 437
Gnedin N. Y., Kaurov A. A., 2014, ApJ, 793, 30
Hassan S., Liu A., Kohn S., La Plante P., 2019, MNRAS, 483, 2524
Iliev I. T., Mellema G., Pen U., Merz H., Shapiro P. R., Alvarez M. A., 2006,

MNRAS, 369, 1625
Kamdar H. M., Turk M. J., Brunner R. J., 2016a, MNRAS, 455, 642
Kamdar H. M., Turk M. J., Brunner R. J., 2016b, MNRAS, 457, 1162
Katz H., Kimm T., Sijacki D., Haehnelt M. G., 2017, MNRAS, 468, 4831
Labach A., Salehinejad H., 2019, preprint (arXiv:1904.13310)
Ntampaka M. et al., 2019, BAAS, 51, 14
Ocvirk P. et al., 2016, MNRAS, 463, 1462
Ocvirk P. et al., 2018a, preprint (arXiv:1811.11192)
Ocvirk P., Aubert D., 2011, MNRAS, 417, L93
Ocvirk P., Aubert D., Chardin J., Knebe A., Libeskind N., Gottlöber S.,

Yepes G., Hoffman Y., 2013, ApJ, 777, 51
Ocvirk P., Aubert D., Chardin J., Deparis N., Lewis J., 2019, A&A, 626, 77
Parks D., Prochaska J. X., Dong S., Cai Z., 2018, MNRAS, 476, 1151
Planck Collaboration XIII, 2015, A&A, 594, 63
Rasera Y., Teyssier R., 2006, A&A, 445, 1
Rodrı́guez A. C., Kacprzak T., Lucchi A., Amara A., Sgier R., Fluri J.,

Hofmann T., Réfrégier A., 2018, Comput. Astrophys. Cosmol., 5, 4
Rosdahl J. et al., 2018, MNRAS, 479, 994
Rosdahl J., Blaizot J., Aubert D., Stranex T., Teyssier R., 2013a, MNRAS,

436, 2188
Rosdahl J., Blaizot J., Aubert D., Stranex T., Teyssier R., 2013b, MNRAS,

436, 2188

Schaefer C., Geiger M., Kuntzer T., Kneib J.-P., 2018, A&A, 611, A2
Shimabukuro H., Semelin B., 2017, MNRAS, 468, 3869
Stanway E. R., Eldridge J. J., Becker G. D., 2016, MNRAS, 456, 485
Thomas R. M. et al., 2009, MNRAS, 393, 32
Ucci G. et al., 2019, MNRAS, 483, 1295
Ucci G., Ferrara A., Pallottini A., Gallerani S., 2018, MNRAS, 477, 1484
Wang L. et al., 2019, BAAS , 51, 399
Windhorst R. A., Cohen S. H., Jansen R. A., Conselice C., Yan H., 2006,

New A Rev., 50, 113
Wise J. H., Abel T., 2011, MNRAS, 414, 3458
Xiao J. M., Shen C., Yang Y., 2016, Advances in Neural Information

Processing Systems 29, 2802
Zahn O., Lidz A., McQuinn M., Dutta S., Hernquist L., Zaldarriaga M.,

Furlanetto S. R., 2007, ApJ, 654, 12
Zahn O., Mesinger A., McQuinn M., Trac H., Cen R., Hernquist L. E., 2011,

MNRAS, 414, 727
Zamudio-Fernandez J., Okan A., Villaescusa-Navarro F., Bilaloglu S., Derin

Cengiz A., He S., Perreault Levasseur L., Ho S., 2019, preprint (arXiv:
1904.12846)

A P P E N D I X A : AU TO - E N C O D E R
A R C H I T E C T U R E D E TA I L S

Here, we detail the architecture of our auto-encoder neural network.
Our neural network is composed of a series of four hidden layers
for both the encoder and decoder. Table A1 gives the details on the
number of filters and their size in all four hidden layers. To improve
our model architecture, we also add what we call skip connections
in the decoder part. Skip connections are here to add information
when inputting maps into a layer of the network. In practice, it is
a merging of multiple layer outputs to construct an input which is
not only the output of the previous layer. In our case, we merge the
outputs of every layer in the decoder with the corresponding outputs
in the encoder in both the gas density and stellar branches. It allows
us to combine information from the current decoded version and the
one at the corresponding step in the encoded version. In practice,
training with skip connections improves the results compared to
training without (Xiao, Shen & Yang 2016).

To avoid overfitting during the training (i.e. the fact of achieving a
good fit for our model on the training data, while it does not general-
ize well on new, unseen data), we also add batch normalization plus
dropout regularization right after the convolution/deconvolution,
respectively, in the encoder/decoder in each layer. Batch normal-
ization is a transformation that maintains the mean output of a
layer close to zero and its standard deviation close to one. Dropout
regularization is performed right after batch normalization and
is what prevents overfitting. Dropout regularization is activated
through a value between zero and one that corresponds to a
probability to shut down certain neurons (i.e. a given filter in a
given layer). The fact of randomly shutting down neurons at every
epoch is known to improve the accuracy of the model on unseen
data (Labach & Salehinejad 2019).

We use the Talos2 tool with KERAS to tune our hyperparameters.
Talos allows to marginalize over the hyperparameter space and gives
correlations between them. In our case, we only marginalize over
the learning rate and the dropout regularization values. We delay
further improvement on hyperparameters to upcoming studies as
we want to highlight the proof of concept of predicting treion maps
in this study.

Finally, we use the usual ReLU activation function in every layer
except in the last one. We use the Linear activation function in

2https://github.com/autonomio/talos

MNRAS 490, 1055–1065 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/490/1/1055/5584889 by guest on 18 June 2023

http://dx.doi.org/10.1088/0004-637X/703/2/L167
http://dx.doi.org/10.3847/2041-8213/aab14d
http://dx.doi.org/10.1088/0004-637X/724/1/244
http://dx.doi.org/10.1093/mnras/stv1896
http://dx.doi.org/10.1016/S0370-1573(01)00019-9
http://dx.doi.org/10.1093/mnras/stw1380
http://dx.doi.org/10.1111/j.1365-2966.2006.10426.x
http://dx.doi.org/10.1088/0004-637X/803/1/34
http://dx.doi.org/10.1051/0004-6361/201219992
http://dx.doi.org/10.1051/0004-6361/201322355
http://dx.doi.org/10.1093/mnras/stv1786
http://dx.doi.org/10.1093/mnras/sty992
http://dx.doi.org/10.1086/308780
https://github.com/keras-team/keras
http://dx.doi.org/10.1111/j.1365-2966.2005.09196.x
http://dx.doi.org/10.1111/j.1365-2966.2008.14383.x
http://dx.doi.org/10.1007/s12036-016-9405-x
http://dx.doi.org/10.1016/j.physrep.2018.10.002
http://dx.doi.org/10.1051/0004-6361/201832889
http://dx.doi.org/10.1086/423025
http://dx.doi.org/10.1086/308876
http://dx.doi.org/10.1088/0004-637X/793/1/29
http://dx.doi.org/10.3847/1538-4357/833/1/66
http://dx.doi.org/10.1016/S1384-1076(01)00068-9
http://dx.doi.org/10.1088/0004-637X/793/1/30
http://dx.doi.org/10.1111/j.1365-2966.2006.10502.x
http://dx.doi.org/10.1093/mnras/stv2310
http://dx.doi.org/10.1093/mnras/stv2981
http://dx.doi.org/10.1093/mnras/stx608
https://arxiv.org/abs/1811.11192
http://dx.doi.org/10.1093/mnras/stw2036
http://dx.doi.org/10.1111/j.1745-3933.2011.01128.x
http://dx.doi.org/10.1088/0004-637X/777/1/51
http://dx.doi.org/10.1093/mnras/sty196
http://dx.doi.org/10.1051/0004-6361:20053116
http://dx.doi.org/10.1186/s40668-018-0026-4
http://dx.doi.org/10.1093/mnras/stt1722
http://dx.doi.org/10.1093/mnras/stt1722
http://dx.doi.org/10.1051/0004-6361/201731201
http://dx.doi.org/10.1093/mnras/stx734
http://dx.doi.org/10.1093/mnras/stv2661
http://dx.doi.org/10.1111/j.1365-2966.2008.14206.x
http://dx.doi.org/10.1093/mnras/sty2894
http://dx.doi.org/10.1093/mnras/sty804
http://dx.doi.org/10.1016/j.newar.2005.11.018
http://dx.doi.org/10.1111/j.1365-2966.2011.18646.x
http://dx.doi.org/10.1086/509597
http://dx.doi.org/10.1111/j.1365-2966.2011.18439.x
https://arxiv.org/abs/1904.12846
https://github.com/autonomio/talos

Emulating reionization simulations 1065

Table A1. Details of the architecture the auto-encoder convolutional neural network used to predict maps of the cosmic
reionization time treion. Each row shows the properties of a given layer in the encoder or the decoder. The different columns
show different properties of the corresponding layers. The layers of the encoder are applied both to the input composed of
the gas density and stellar field (see Fig. 2 and Section 3.3 for explanations). The outputs of the encoder are averaged before
entering the layers composing the decoder.

Network branch Layer #/step name Number of filters/data Filter size/data dimension Activation function

Input 3000 128 × 128 –
1 32 3 × 3 Relu

Encoder 2 64 3 × 3 Relu
3 128 3 × 3 Relu
4 128 3 × 3 Relu

1 128 3 × 3 Relu
2 128 3 × 3 Relu

Decoder 3 64 3 × 3 Relu
4 32 3 × 3 Linear

Output 3000 128 × 128 –

the last layer because we want to predict continuous values as an
output of the network instead of discrete ones. This is different
from common neural networks that aim to predict discrete values
for classification problems.

APPENDIX B: tR E I O N C U B E R E C O N S T RU C T I O N

Here, we describe our procedure to reconstruct a complete 3D treion

cube with our network. Our neural network predicts 2D slices of
size 128 × 128 cells from maps of the gas density and the stellar
density fields with the same size. However, we choose to only keep
the central submap of size 64 × 64 cells from a complete 128 × 128
prediction. This procedure ensures we do not miss sources nearby
that are just outside the slice we are trying to predict. Therefore, we
need to make 16 predictions to reconstruct the whole 256 × 256
slice for the simulations studied here.

To reconstruct the whole 2563 cube, we repeat the 2D re-
construction of a slice 256 times. Since the stellar and density

fields used as inputs of the neural network are smoothed along
the transverse direction to the plane we aim to predict, we re-
construct the cube by piling up reconstructed slices along this
particular direction. However, in practice, it generates spurious grid
artefacts when looking at slices taken along directions different
from this direction. Therefore, instead of reconstructing the cube
along only one particular direction, we reconstruct three different
cubes along the three main directions. Then, we take, for each
cell, the minimum and maximum values of treion from these three
cubes. We then take the average of these two values to get our
final 3D reconstruction. Such a procedure has the advantage of
eliminating the grid artefacts during the reconstruction proce-
dure.

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 490, 1055–1065 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/490/1/1055/5584889 by guest on 18 June 2023

