N

N

1ti~ +iBM; ALh3 ImHIBTHB2 b 7 QK ALhR3 J
J iBM G M;? KK2'-"Q;/ MS b+ -:72;;" 2+FH2 - a2

hQ +Bi2 i?Bb p2°bBQM,

J 'iBM G M;? KK2'-"Q;/ M S b+ - :"2;; " 2+FH2 - a2 ;2v : " B#QFX 1ti" -
7°QK ALhR3 JmHIBTHB2 bX AMi2°M iBQM H *QM72 2M+2 QM 6B2H/@
a2T kyRN-" "+2HQM - aT BMX ? H@ykR93RKkN

> G A/, 2 H@YkR93RKkN
2iiTh,ff? HXb+B2M+2f? H@ykR93RKkN
am#KBii2/ QM 8 CmM kyRN

> G Bb KmHiB@/Bb+BTHBM v GOT24WB p2 Dmbp2 "i2 THm B/BbBIBTHBN
"+?Bp2 7Q i?72 /2TQbBi M/ /Bbb2KIBEBMBR MNQ@T™+B2® " H /BzmbBQM /2 /
2MiB}+ "2b2 "+?2 /Q+mK2Mib- r?2i?@+B2MMiB}2mM2b#/@ MBp2 m "2+?22 +?22- T
HBb?2/ Q° MQiX h?2 /IQ+mK2Mib MK VW+RK2Z2EF IQKHBbb2K2Mib /62Mb2B;M
i2 +?BM; M/ "2b2 "+? BMbiBimiBQWER BM?8 7M#M2I @b Qm (i~ M;2 b- /2b H
#Q /-Q 7 QK Tm#HB+ Q T ' Bp i2T2HRAB+B @2MT2BIpXib X

https://hal.science/hal-02148129
https://hal.archives-ouvertes.fr

Extracting INT8 Multipliers from INT18 Multipliers

Martin Langhammer Bogdan Pasca Gregg Baeckler Sergey Gribok
Intel Intel Intel Intel

Abstract—With the advent of machine learning as perhaps are not fully arithmetically separated in the larger multiplier.
the most high-pro le application area for FPGAs, there is a \We use the extraction of INT8 multipliers from the 18x18
compelling reason to improve the provision of smaller precision multiplier as our motivating example. Normally, if the four

arithmetic on these devices. INT8 is commonly used for Al . ¢ ds of the INT8 ltioli d that
inferencing, and along with some additional soft logic for expo- Input operands ot the mulupfiers are arranged so tha

nent handling, can be an effective solution for training as well. they are mapped to the two inputs of the 18x18 multiplier,
This paper describes techniques for ef ciently extracting INT8 the overlap in the partial products leads to considerable errors
multipliers from commonly available INT18 multipliers found in (cross contamination) in the two smaller multiplier outputs,
many modern FPGAs. A small amount of soft logic - as little yaking the results unusable. We introduce two methods for

as 7 ALMs per INT8 multiplier - is required to provide pre or tina th . dest t of soft logi
post multiplier correction to calculate two INT8 multiplies from ~ COff€CliNG nese using a modest amount ot Soft logic.

a single 18x18 multiplier. We present two con gurations for both . .
signed and unsigned representations where two multiplications One advantage of our approach is that virtually all of the

share one input operand. In addition to the individual INT8 datapath of the larger multiplier contribute to the calculated

variants, we present full device cases of 22,400 INT8 multipliers result. This will result in increased system computational

organized as DOT32 product arrays, with the soft logic tightly ~density, and considerably reduced power consumption on a

bound to the INT18 based DSP Blocks. A majority of the soft tiplier by multiplier basis. (In cases where arithmetic

logic and routing in the device is left untouched, and available ti h dr5 t Il of th ltivlier dat th

for application development, seperation is use [] most or all of the multiplier datapa
switches, but a considerable portion of the output must be
ignored).

I. INTRODUCTION
. . . . The 18x18 multiplier is relatively more gate ef cient that
Earlier Altera Stratix devices contained DSP Blocks Wheli,ﬁ P y g

18x18 itioli q ble into INT9 il e 18x27 multiplier - a large contribution of this is that the
x18 multipliers were decomposable into muttip I'carry-propagate adder (CPA) on the output side is smaller. The

Ers Ejl]’ [2]. In t_he past, applli(catiofn aFrE‘%SA”ke dvi?]eo anﬁ%ternal compressors, being in redundant form, have relatively
roa casl'F we(rje 'mﬁo:am mar (;ats_dorr] ¢ _,dan tdege Pifie same ef ciency. The 18x18 multiplier is less than 60% the
cisions aligned with the required widths for video and Image, . oo nt of the 27x18 multiplier (also taking into account

proczssmg [ﬁ]’ h[4]d With newer,dmuch Ilarger]!:EGAS 'bem ﬁ? weaker gate drive requirements for timing closure of the
Introduced, the hardware cost and complexity of designing aBRallower logic of the smaller multiplier, and the much smaller

providing smaller multipliers was largely made redundant bg an of the CPA), so using the 18x18 yields a 50% greater

the provision of many thousands of 1§x;8 multipliers. Thesc mputational density and 50% improved power density in
c:nluldfactl dov;/n asdINT8 hor Il\rl]TQ mult!pher?, olr a:ternatelythe hard logic portion of our system. In addition, we describe
allow for local wordgrowth within & series of calculations. - o e fyrther methods to mitigate the cost of the soft logic

In [5], Xilinx showed methods to extract two INT8 multipli- correction, such as when used in a DOT product, as is typically
ers from the Ultrascale and Ultrascale+ DSP48E2 Blocks [Eﬂ.le case for many Al implementations.

which contain a 27x18 multiplier. Both signed and unsigned
representations are described, but in all cases, the two multi\We describe two cases: (1) the extraction of two unsigned
pliers share an input. The application note explains that maNT8 multipliers with a shared operand, using some post
Al inferencing implementations would not be disadvantaggstocessing correction, and (2) the extraction of two signed
by this restriction. Only multiplier pairs are described, antNT8 multipliers with a shared operand, using both pre-adders
systems (where many multipliers would be used) are neibedded in the DSP Blocks, along with some additional post
implemented, and only presented by calculation. One of tkerrection soft logic. We analyze the resource utilization of our
main assertions of the document is that a minimum of a 27xp8oposed multipliers in isolation, and also in the context of
multiplier precision is required to support two INT8 multi-dot-product - where correction operations can be delayed and
pliers. Implementing multiply-accumulate (MACC) operationsnerged with the dot-product adder tree. Finally we extend our
(up to 7 for each of the two INT8 multipliers) could be don&tudy to chip- lling designs where we show the scalability of
inside the DSP48E2 Block, and other DSP Blocks can be ussar multipliers by packing 700 32-element dot-products (97%
to support more accumulations. of the total DSPs) in a Stratix 10 device, and we obtain push-
In contrast, we describe two methods to extract smaller miutton a frequency of over 350MHz, and over 400MHz with
tipliers from larger multipliers, where the smaller multipliersa small amount of direction.

Bit weight 25 24 23 22 21 20 19 18 17 145 14 13 12 11 10 9 8 7 6 5 4 3 2 1
P b7 b6 b5 b4 b3 b2 bl b@M O c7 c6 c5 ¢4 ¢c3 c2 cl ¢
Q 0O 0 O OO O O O O O ar a6 a5 a4 a3 a2 a1l
y15 y14 y13 y12 y11 y10 y9 y8 y7 y6 y5 y4 y3 y2

z15 z14 213 z12 z11 z10 z9 z8 z7 z6 z5 z4 z3 z2 z1 z0

O=Px0 025 024023 022 021 020 019 018 017 aills 014 013 012 011 010 09 08 o7 06 05 04 03 02
Fig. 1: Two unsigned 8x8 multiplier with one shared input connection patterns

P Q 6LSB6, the self-explanatonBubtract and Add, and nally
L L {a5, Assemble which generates the output values by concatenating
18x18 smaller processed vectors and individual bits.
mult The methods are presented purely combinatorially. Typi-
cally, pipelining (and additional balancing registers) would be
{z5....,20} used in a real-world application. The resource cost of registers
{025""'01% ' will be included in the reported results in the next section.
% A. Unsigned INT8, Correction Method (Shared Inputs)
{¥9.....y0} {z15,...,26,y15,... y19} {z5,...,.Z Here we compute the two products= A C andZ= A

. : . o : B using an 18x18 multiplier, a 6x6 LSB multiplier, and a
E;]%r(zaa,?;gg:ecture of two unsigned 8x8 multipliers using or]goft. logic subtractor. All three inputs, B e.md.C are 8-bit
unsigned numbers, and the 18x18 multiplier is con gured as
an unsigned multiplier as well. The 8 bits corresponding to
each of the 3 inputsA, B andC) are applied on the input ports

Il. MULTIPLIER METHODS P andQ of the 18x18-bit multiplier, which then generates the

All of the four following methods assume that an embedd (gsult 0= P Q. Figure 1 deplct_s the connection pa_tterns.
18x18 multiplier is available in the FPGA. Later in this € ca? [t)ge; E()alxtrch. amlj Z V\;]h'Ch are \‘7‘\70\'\/2 as vrllrtusl
paper, we will report results for Intel Stratix 10 [7], wher(%nte_r_rl"fI _ fogc_)?__;(')gn;rseég t I(ri ogrgreerl 0 ree(?O\t/ZIrntrgeebit!sts
a DSP contains either two 19x18 signed multipliers, or twfcyisyogli_ - 0V ke th Y- b tion:
18x18 unsigned multipliers. Our methods only require 18x1g"> Y 0g we use make the observation:

functionality, which will allow this method to be ported to a

In the case of Intel FPGAs, the two (_ambedded multipliers per = f215,:::76;y15; ;11 y10g + f 25; 12 20g

DSP can be accessed completely independently; four INT8

multipliers can therefore be extracted from a single DSP Therefore:

Block. fz15;:::;76;y15;:::;y10g = f025;:::;010g9 f 75;:::20g
Most of our correction methods will use what we refer to o .)

as an LSB multiplier. We will need an-bit LSB result from Summarizing, the steps of this algorithm are as follows:

an n n multiplication. This will be inexpensive, in terms of Create two 18 bit input vectors® and Q.

both area and depth: rst, the LSB multiplier will only operate — Q= fa7;::;a0g (zero extended)
on a small precision, typically in the range of 3 to 6 bits, and — P=fc7;:::;,¢00;"00";f b7;:::;b0g
secondly, calculating only the LSBs will require a small subset Multiply

of the full multiplication. We do not discuss the structure of ~_0=P Q

these multipliers in this paper, but they can be built by several
methods: (i) the smallest precisions can be mapped directly o))
to look up tables, (ii) standard soft multiplier IP can be used, — Use an LSB multiplier to obtain the lower 6 bits of
relying on the synthesis tools to optimize away the unneeded z 125209 = fa5;:;a00f €5;::c0g[5 : O]

portions of the operation, or (iii) speci c multiplier circuits Extract

Multiply LSB6 :

can be designed, knowing that carries into the upper bits will ~ — The lower 10 bits ofy are obtained directly from the
never be needed, giving more optimization points to consider. 18x18 multiplier:fy9;::;y0g = f09;::;00g
We use several types of operations in our meth@isate, Subtract

which generates input vectors to the circuits, usually by ap-
pending smaller vectors and individual bits togetivutiply ,
using the 18x18 or speci ed LSB multipliere:: Multiply AssembleY = fyl5;:::;y10g;fy9;:::;y0g.

p CONFIGURATION 1 07 b6 b5 b4 b3 b2 bl b&7 c7 c7 c6 c5 c4 c3 c2 cl d
Q operation C7 ¢7 ¢7 ¢7 c7 ¢7 ¢7 ¢c70 0 0 0 0 0O 0 0 00
fR (P+QR a7 a7 a7 a7 a7 a7 a7 a7 a7 a7 a7’ a6 a5 a4 a3 a2 al ,
P CONFIGURATION2 b7 b6 b5 b4 b3 b2 bl b&7 c7 c7 c6 c5 c4 ¢3 c2 cl ¢

operation 00000000700000000003
R (P-QR a7 a7 a7 a7 a7 a7 a7 a7 a7 a7 a7 a6 a5 a4 a3 a2 al |

y15y15y15y15y15y15y15y15y15y15y15y14 y13 y12 y11 y10 y9 y8 y7 y6 y5 y4 y3 y2
715714 213 z12 z11 z10 z9 z8 z7 26 25 z4 z3 z2 zDz® O O O O 00 0 O

025 024023 022 021 020 019 018 017 alls 014 013 012 011 010 09 08 o7 06 05 04 03 o:

Fig. 3: Connection Patterns for two signed 8x8 multipliers with one shared input

The architecture is depicted in Figure 2. The vectBrs
and Q feed the 18x18-bit unsigned multiplier, with an out-

directly to fy9;:::;y0g, and are therefore forwarded to the
output. The LSB multiplier (which produces the correct 6
LSBs of Z) operates in parallel with the 18x18 hardened

subtracted fronf 025;:::;010g to produce both the upper bits
of Y, fyl5;:::;y10g and the upper bits o, f Z15;:::;z6g. The
correction bits then form the 6 lower bits @f

B. Signed INT8, Correction Method (Shared Inputs)

The calculationy¥ = A C andZ = A B use the three inputs
A, B and C as 8-bit signed numbers. The 18x18 multiplier
is now con gured as a signed multiplier, with one of the
inputs connected to the pre-adder. Refer to Figure 3 for the
connection patterns. The algorithm steps are given below:

Create
— R=fa7;::;a0g, (sign extended). Connect this to one

f25;::;20g = fab;::;a0gfb5;::;b0g[5 : O]
Extract

— The low 10-bits ofy can be read directly on the
multiplier output.

There are two possible output subtract/add types:
— Type 1:Subtract

fz15;::; 26, y15; ::;y10g = f 025; ::; 010y
f 10815, 25, ::; 209
— Type 2:Add

fz15;:::;26g = f025;:::;016g+ fyl5;:::y15g+ cOut

Assemble

— Y = fyl5;:y10g;fy9;:::;y0g

pre-adder input. of the subtractor. This architecture is shown in Figure 4a, with
— There are two possible con gurations of tlevector the feedback connections g15 detailed in Figure 5.

depending on the pre-adder con guration:

Figure 4b shows the second add type, which is instead

1) Con guration 1: expressed as a chaining of operations, which converts the
Create Q = f8%7;10b0g. The pre-adder is con- feedback ofy15 into a feedforward - using two adders, each
gured as an adder. with about half the precision as the other subtraction. The

2) Con guration 2: overall cost of the post processing is therefore approximately
Create Q = f7%0;c7;10b0g The pre-adder is the same in both cases, although additional pipelining may be
con gured as a subtractor. required for the second one.

— There are two possible con guratitons for the multi- AS in the unsigned case, the LSB multiplier computes the

plication, depending on the pre-adder: low 6 LSBs ofZ= A B.

1) Con guration 1:Multiply O=(P+ Q)R
2) Con guration 2:Multiply O=(P Q)R
Multiply 6LSB :

Ill. RESULTS

We will analyze the area and performance at three levels.
First, the relationship between individual INT8 multipliers,

— Use an LSB multiplier to obtain the lower 6 bits ofDSP Blocks, and soft logic will be examined. Next, we will

subtractor

{v9,...,yo} y{z15,...,z6,y15,...,y10 y9,...,yOly {z15,...,26){y15,...,y10}
(@ a (b) b

Fig. 4: Extraction Architecture for two signed INT8 multipliers with one shared input

1

z15 z14 z13 z12 z11 z10 29 z8 z7 85 yl4 y13 vyl2 yll yl0

Fig. 5: Application of the Y15 bit for Figure 4a.

construct a single DOT product for a performance baseliremd the correction ta b can be accumulated separately, and
and understand the additional soft logic required. Finally, waibtracted as a single value at the end of the DOT product. The
will show some large system designs, where a large FPGAmediate, or local cost of this method is therefore 12 ALMs
is lled with DOT products. This should give the reader8 for the LSB multiplier and 3 for thec correction). An

con dence that our methods scale, maintaining a reasonaBleM is required to calculate the carry in to tre b upper

full chip performance, and managing routing stress so thait correction, and on average, another ALM to bring this
additional functions can also be implemented in the remaindexlue forward to the next level, by adding it to the adjacent

of the device. carry forward. For a typical application, 7 ALMs are needed
o _ to extract an INT8 multiplication from an 18x18 embedded
A. Multiplier Sizes multiplier. For high performance (i.e. high clock frequency)

The soft logic cost of an INT8 multiplier can be considered€signs, we also need to pipeline appropriately. This requires
in multiple ways: rst, the cost of an individual multiplier additional balancing registers. These add another 19 ALMs
- or in this case, a pair of multipliers, second, the cofe’ DSP Block.
of extracting 4 multipliers per DSP Block, and nally the Table | shows the resource utilization for all our proposed
average cost of implementing a typical use-case kernel, siigired-input multipliers, both for signed and unsigned con g-
as a INT8 DOT32 function. As the number of multipliers irHrations. Since we were unable to nd multipliers built with
a local group increases, the correction circuit can itself @mparable techniques, we list independent-input soft-core
extracted, and shared between all operators in the group. Thigltipliers constructed for the same sizes. We use information
amortization of the correction circuit can lead to signi canfrom [8] since it normalizes the data for Virtex6 [9] on the
average logic savings. We will illustrate this by analyzing Cagéchitectures from [8], [10] and [11]. We also list [12] which
A from Section Il (Unsigned INT8, Correction Method, Share@ives the cost of an 8x8 soft-logic multiplier for LUT6-
Inputs). based FPGAs and [13] which shows area for a soft-logic 8x8

There are two soft-logic components of the multiplier pafultiplier on Stratix 10.
structure: the LSB multiplier, and the subtractor to apply it)
to the left multiplier in the pair. The LSB multiplier requires: DOT Product Sizes
8 ALMs, and the 16 bit subtractor also needs 8 ALMs. In We used a pair of 16-element INT8 dot-products (pair-
most cases, however, several (or many) multipliers are sumnuetot16s) as an instance for our system-level designs. A
together, and the correction can be amortized over the ensimpli ed structure for a pair-of-dot4s using two DSP Blocks
reduction operation. Only the correction to the upper bits illustrated in Figure 6. The compute kernel is that of Figure 2
of a c is needed at the output of the embedded multiplidout with changes for making the dot-product more ef cient -

16 96 0 bl 91 al b2 (‘:2 a2 b3 \03 a3 b4‘ c4 a4
. E pol ol e
| 18x18 6 18x18 6 18x18 JG 18x18 6
! (A ? 0[15:10 0[25:16 : 0[25:16] 0[15:10| 0[25:16] 0[15:10

n

& b 0[9:0] 0[9:0] br 0[9:0] br 0[9:0]

0 6 6 {10 10 (10 10 6 6] {10 10 6 6 {10

>, E1 Y] Z 73 E3 Y3 74 E Y

® ®
@ ®
+ 11 +
17 () 17
8 8
O
o)
9 18
+ msh3
1 Isb6_
18
albl+a2b2+a3b3+a4b4 alcl+a2c2+a3c3+adcd

Fig. 6: Two 4-element shared dot-products using eight 8x8u multipliers

Arch. | Case Type (1&);1)8 gosupr) iﬁ%\"y left of this 6 bits to produce a 2s complement value (on 7
Standalonell 16 ALMs | 32 ALMS T 8 bits)._On_e additional adder is required _to sum the ove_rlapping
A Local 12 ALMs | 24 ALMs | 6 contribution of the red tree over the pink tree (the alignment
ours e Stscg'eld 12 ﬁtms gg ﬁtms g is shown on the left of Figure 6, bottom left).
. a anaalone S S
LB (b) [Standalone|| 17 ALMs | 34 ALMS | 85 We compiled the pa|r-0f-DOT16s into an Intel Stratix 10
8] 8x8 Standalone|| 15 SLICES, 0 DSPs | 60 1SG280LN2F43E1VG, and achieved 581 MHz for exactly 600
LUT6/int8 | ALMs (and 8 DSP Blocks, as expected). We can analyze the
(10] 8@ | Standalone|| 18 SLICES, 0 DSPs Z6T6/int8 expected resource count using the architecture of Figure 6.
1] 8x8 Standalone|| 21 SLICES, 0 DSPs | 84 There are three reduction trees, starting with 16, 10, and 7
LUT6/int8 | bits respectively, each with 8, 4, 2, and 1 adders per level.
(12] 8x8 | Standalone|| 43/44 LUT6, 0 DSPs fg’?gﬁms Each adder level does grows the adder size by 1 bit. The
4] 8x8 | Standalone|| 36 LUT6, 0 DSPs | 36 numper of bits per individual tree are: 251 for blue, 161
LUTe/int8 | for pink and 116 for red - which translates to 264ALMs
[13] 8x8 | Standalone|| 36 ALMs, 0 DSPs | 36 using 1ALM=2bits. Additionally, we count 3.5x16=56ALMs
[5] 8x8 Standalone|| 2 8x8 per 27x18 DSP| 0

for the 6-bit subtracters with borrow, and 7 ALMs for the

TABLE I: Resource utilization of our proposed architectures, o, < \btracter required fo& Z;. These total 327 ALMs and
[8], [10], [11] give results for 8x8 multipliers on Xilinx Virtex6 remaining logic up to 600 ALMs is used for pipelining

registers.

these will be explained below. The reduction ow consistS: Chip Scale Application Examples

of three adder trees, which are then combined at the outpuflo be ef cient, these small cores must scale to system level.
level. The rst adder tree (pink) sums the potentially pollutediVe demonstrate this by instantiating many into a larger device
upper 10 bits ofZ; = a;b; that we denote bg;. These bits are while maintaining a usable operational frequency. We also
available directly at the 18x18 multiplier output. The seconshow that the remaining logic and routing are left untouched,
adder tree (blue) sums the= a;c; products. The lower 10 bits and are available for other functionality.

of Y; correspond to bit§09;::;00g from the 18x18 multiplier ~ Our rst design t 500 DOT32 cores into the Stratix 10
output. The upper 6 bits of are obtained by subtracting thelSG280LN2F43E1VG device. We used the Quartus 18.1 tool
overlappingf z5; ::; 20g bits from f 015;::;010g (see Figure 2). ow, with the Fractal Synthesis directive turned on (in order
The borrow bit that is potentially produced by this subtractioto pack the arithmetic logic as tightly as possible). We used a
indicates that the overlap has contaminaBdThis bit has completely pushbutton approach, with no oorplanning. This
weight 2% brw and should added t&. We show next how required 4000 DSP Blocks out of the 5760 available (16000
this can be integrated with the third adder tree with a minim&{T8 multipliers). Maximum clock frequency was 457.9 MHz.
cost. Finally, the third adder tree (red) sums the bottom Mot including the virtual pins used for tting, the 300,347
bits of Z; which are computed using the LSB multiplier. WeALMs represent 32% of the available logic - in other words,
integrate thebrw-bit to eachz; by concatenating it to the the logic required for the arithmetic datapaths as a ratio of

; i I ; Wi-E
(a) 500 DOT32 Floorplan (b) DOT32 Routing Heatmap (c) 700 DOT32 Floorplan

(d) Detail of 500 DOT32 Design (e) Detail of 700 DOT32 Design
Fig. 7: Floorplan of various-size dot-product densities

the multiplier count is less than half of the logic available. Ito local routing stress and congestion, performance increased
arithmetically dense use cases such as machine learning, wherd16.1 MHz. The additional registers increased the size of
we may need the maximum capability of the device, datapathch DOT to 645 ALMSs, for a total logic use of 452K ALMs
(consisting of a mix of DSP Blocks and logic) compared ton the device - still less than half the logic available. High
application and control (logic only) percentage of the desigiensity Al applications should therefore be easily realizable.
may be 80% to 20% [15]. This INT8 method will thereforaVe believe that with more careful oorplanning, 500MHz
be suitable for these type of designs, with a modest amoym@rformance is readily achievable. Figure 7c shows the device
of logic required compared to what is available. oorplan with 700 DOTSs, and Figure 7e a local detail of this

Figure 7a shows a oorplan of the 500 DOT32 designdesign. Empty LABs are visible. Note that about 20% of the

Figure 7d zooms into show the detail of a small number &sed LABs cpntain virtua} pins, which in an actual design
DOTs. The unused logic is clearly visible, and large grouyygOUId be available for logic.

of contiguous LABs are completely untouched. The routing

heatmap of Figure 7b shows that there is no routing required IV. CONCLUSION

OUtS.'de the |mmed|ate area of any DOT, with only some We have demonstrated that INT8 multipliers can be very
routing congestion over some of the DSP Blocks. ef ciently extracted from commonly available FPGA 18x18
We then increased the number of DOT32s to 700, whichultipliers, using only a small amount of soft logic. This soft
required 5600 out of the 5760 DSP Blocks on the devidegic, which can be as little as 7 ALMs per INT8 on average,
(97%). A rst pushbutton compilation yielded 356MHz, whichis much smaller than the die area required for the additional
was largely due to a small number of routes spanning diswltiplier datapath logic - a 50% increase - to support a direct
continuities (/O regions) on the device. We then added IBT8 extraction. In a typical application scenario, where DOT
single level of registers immediately after the DSP Blocks, anmtoducts are assembled with soft logic, the 7 ALMs forms only
introduced a oorplanning constraint to force each dot produet small portion of the total resources required. In terms of
to stay within a sector boundary. While this undoubtedly addeekibility, power consumption, and cost, the error correction

methods can be considered the best for INT8 implementations
in current FPGAs.

(1]
(2]
(3]

(4

(5]

(6]

(7]

(8]

(9]

(20]

[11]

[12]

[13]

[14]

[15]

REFERENCES

StratixV Device Handbook2011, http://www.altera.com/literature/hb/
stratix-v/stratix5 handbook.pdf.

Stratix|V Device Handboqk2011, http://www.altera.com/literature/hb/
stratix-iv/stx4 5v1.pdf.

A. Corporation, “Broadcast video infrastructure implementation using
FPGASs,” Altera White PaperMar. 2007, https://www.intel.com/content/
dam/wwwi/programmable/us/en/pdfs/literature/wp/wp-brdcst0306.pdf.
——, “Video and image processing design using FPGA#|-
tera White PaperMar. 2007, https://www.intel.com/content/dam/www/
programmable/us/en/pdfs/literature/wp/wp-video0306.pdf.

Deep Learning with INT8 Optimization on Xilinx Devices
2017, https://www.xilinx.com/support/documentation/whtepers/
wp486-deep-learning-int8.pdf.

UltraScale Architecture and Product Data Sheet: Overyiew
2018, https://www.xilinx.com/support/documentation/dateets/
ds890-ultrascale-overview.pdf.

Intel Stratix 10 GX/SX Device Overview 2018, https:
/Iwww.intel.com/content/dam/www/programmable/us/en/pdfs/literature/
hb/stratix-10/s10-overview.pdf.

M. Kumm, S. Abbas, and P. Zipf, “An efcient softcore multiplier
architecture for xilinx fpgas,” in2015 IEEE 22nd Symposium on
Computer ArithmeticJune 2015, pp. 18-25.

Virtex-6 FPGA Con gurable Logic Block User Guid2009, http://www.
xilinx.com/support/documentation/usguides/ug364.pdf.

H. Parandeh-Afshar and P. lenne, “Measuring and reducing the per-
formance gap between embedded and soft multipliers on FPGAS,” in
2011 21st International Conference on Field Programmable Logic and
Applications Sep. 2011, pp. 225-231.

LogiCORE IP Multiplier v11.22011, https://www.xilinx.com/support/
documentation/ipdocumentation/muligen ds255.pdf.

E. G. Walters, “Partial-product generation and addition for multiplication
in FPGAs with 6-input LUTs,” in2014 48th Asilomar Conference on
Signals, Systems and Computedev 2014, pp. 1247-1251.

M. Langhammer and G. Baeckler, “High density and performance
multiplication for FPGA,” in 25th IEEE Symposium on Computer
Arithmetic, ARITH 2018, Ambherst, MA, USA, June 25-27, 2018
2018, pp. 5-12. [Online]. Available: https://doi.org/10.1109/ARITH.
2018.8464695

E. G. Walters, “Array multipliers for high throughput in xilinx FPGAs
with 6-input LUTs,” Computersvol. 5, no. 4, 2016. [Online]. Available:
http://www.mdpi.com/2073-431X/5/4/20

J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu, D. Lo,
S. Alkalay, M. Haselman, L. Adams, M. Ghandi, S. Heil, P. Patel,
A. Sapek, G. Weisz, L. Woods, S. Lanka, S. K. Reinhardt, A. M.
Cauleld, E. S. Chung, and D. Burger, “A con gurable cloud-scale
DNN processor for real-time Al,” in2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture (ISCipe 2018,
pp. 1-14.

