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Variational formulation of the ideal

Reynolds averaged equations

Sergey L. Gavrilyuk ∗ and Henri Gouin †

Aix Marseille Univ, CNRS, IUSTI, UMR 7343, Marseille, France.

Abstract

The system of equations for turbulent barotropic flows is composed of the mass

conservation law, the equation of average momentum and the equation for the

Reynolds stress tensor evolution. The momentum evolution equation consists of

a non-dissipative part and source terms. In the limit of conservative motions, we

neglect the source terms. This non-dissipative model of turbulence admits a vari-

ational formulation where the Reynolds stress tensor evolution is considered as a

non-holonomic constraint.

Résumé

Le système d’équations des écoulements turbulents barotropes est constitué de la

loi de conservation de la masse, de l’équation moyennée de la quantité de mouvement

et de l’équation d’évolution du tenseur de Reynolds. L’équation de la quantité de

mouvement comprend des termes non dissipatifs et des termes sources. Dans la

limite des mouvements conservatifs, nous ngligeons les termes sources. Ce modle

non dissipatif de turbulence permet une formulation variationnelle pour laquelle l’

équation d’évolution du tenseur de Reynolds peut être considérée comme une liaison

non-holonome.

Keywords: Reynolds averaged equation, Hamilton’s principle, non-holonomic con-
straint

1 Introduction

The reason for considering the simplified model of turbulence without source terms is
twofold. First, in numerical studies the treatement of the homogeneous part of Reynolds-
averaged equations is a natural step in applying the splitting-up technique [1, 2].
Second, there is a mathematical analogy between the homogeneous Reynolds-averaged
equations and an exact asymptotic model of shear flows of long waves over flat bottom
[3, 4, 5, 6].
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When source terms of the averaged momentum equation are not taken into account, the
model can be considered as reversible: it admits the momentum and energy balance laws.
Nonetheless, the equation of Reynolds stress tensor evolution cannot be considered in bal-
ance form and cannot be integrated in Lagrangian coordinates. Such an equation can be
compared with a non-honolomic constraint in analytical mechanics. The comparison al-
lows us to formulate the Hamilton principle for “ideal turbulence” with the non-holonomic
constraint governing the Reynolds stress tensor evolution.

2 Ideal Reynolds averaged equations

The governing equations of barotropic turbulent compressible fluids are in the form (see,
for example [7, 8, 9]) :























〈ρ〉t + (〈ρ〉 Ui),i = 0,

(〈ρ〉Ui)t + (〈ρ〉 UiUj + 〈p〉 δij + 〈ρ uiuj〉) ,j = 0,

〈ρ uiuj〉t + 〈ρ uiuj〉 Uk,k + 〈ρ ukuj〉 Ui,k + 〈ρ uiuk〉 Uj,k = Sij ,

(1)

where the “ brackets” mean the averaging, “coma” in subscript means the derivation
with respect to the Eulerian coordinates x = {xi}, i ∈ {1, 2, 3}, subscript t means
the partial derivative with respect to the time, ρ is the fluid density, U = {Ui}, i ∈
{1, 2, 3} is the mass average velocity, 〈p〉 is the averaged pressure which depends only
on 〈ρ〉, u = {ui}, i ∈ {1, 2, 3} is the velocity fluctuation verifying 〈ρu〉 = 0, δij denotes
the Kronecker symbol and repeated indices mean summation. The term S = {Sij},
i, j ∈ {1, 2, 3} represents turbulent sources. The Reynolds stress tensor is defined as
R = 〈ρu⊗ u〉, or {Rij} = 〈ρuiuj〉, i, j ∈ {1, 2, 3}.
The system (1) can be rewritten in tensorial form :











































∂ 〈ρ〉

∂t
+ div (〈ρ〉U) = 0,

∂(〈ρ〉U)

∂t
+
[

div
(

〈ρ〉U⊗U+ 〈p〉 I+R
)]T

= 0,

dR

dt
+R divU+

∂U

∂x
R+R

(

∂U

∂x

)T

= S,

(2)

where d/dt is the material derivative with respect to the mean motion :

d

dt
=

∂

∂t
+UT ∇,

superscript “ T ” means the transposition, and I denotes the identity tensor. Using the
mass conservation law, the equation for the volumic Reynolds stress tensor R can be
rewritten for the specific (or per unit mass) Reynolds stress tensor P :

dP

dt
+

∂U

∂x
P+P

(

∂U

∂x

)T

=
S

〈ρ〉
where P =

R

〈ρ〉
.
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We concentrate on the governing equations of mass conservation, momentum equation
and specific Reynolds stress evolution without the source terms :











































∂ 〈ρ〉

∂t
+ div (〈ρ〉U) = 0,

∂(〈ρ〉U)

∂t
+
[

div
(

〈ρ〉U⊗U+ 〈p〉 I+ 〈ρ〉P
)]T

= 0,

dP

dt
+

∂U

∂x
P+P

(

∂U

∂x

)T

= 0.

(3)

Equations (3) admit the energy conservation law :

∂

∂t

(

〈ρ〉

(

1

2
|U|2 + ε(〈ρ〉) + eT

))

(4)

+div

(

〈ρ〉U

(

1

2
|U|2 + ε(〈ρ〉) + eT

)

+ 〈p〉U+ 〈ρ〉PU

)

= 0,

where

eT =
trP

2
,

and ε(〈ρ〉) is the specific internal energy satisfying the Gibbs identity :

dε =
〈p〉

〈ρ〉2
d 〈ρ〉 .

The Gibbs identity yields the definition of pressure 〈p〉 as a function of 〈ρ〉. As proven in
[4], the last conservation law can be written in the form :

∂

∂t
(〈ρ〉Ψ) + div (〈ρ〉ΨU) = 0, with Ψ =

detP

〈ρ〉2
.

System (3), coming from system (2), can be seen as the Reynolds averaged system for
barotropic turbulent flows where the third order correlations of the velocity fluctuations
and the correlations of the velocity fluctuations with the pressure gradient are omitted
[1, 2, 9]. In addition, system (3) is an asymptotic 2D model of weakly sheared shallow
water flows where 〈ρ〉 should be replaced by the fluid depth h, and the specific energy can
be taken as ε(h) = gh/2), [3, 4, 5, 6].

Even if equations (3) of “ideal turbulence” [10] admit the mass, momentum and energy
conservation laws, they cannot be written in conservative form: the number of unknowns is
larger that the number of conservation laws (for a proof in the case of shear shallow water
flows, see [11]). This means that the mathematical methods developed for quasi-linear
systems of conservation laws cannot be applied here : non-classical Rankine-Hugoniot
relations are needed to describe the shocks in system (3) (see [11] where such additional
relations are formulated for the case of shear shallow water flows).
The specific Reynolds stress tensor can be integrated in the particular case rotU = 0
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[12]. In such a case (∂U/∂x)T = ∂U/∂x and Eq. (3)3 corresponds to a two-covariant
tensor convected by the mean flow. This means that P has a zero Lie derivative dL with
respect to the velocity field U and the tensor P0, image of P in Lagrange coordinates
(t,X), only depends on X = {Xi}, i ∈ {1, 2, 3}

dLP ≡
dP

dt
+

∂U

∂x
P+P

∂U

∂x
= 0, which implies P =

(

F T
)

−1
P0 (X)F−1,

where F = ∂x/∂X is the deformation gradient of the mean motion [13].
Nonetheless, even if condition rotU = 0 is satisfied at a particular time, the property
is not conserved along the mean motion (one can verify that the Kelvin conservation
theorem is not satisfied). So, the equation for P cannot be integrated in the Lagrangian
coordinates.

In this paper, we ask for the following question: since the system is conservative, are
we able to derive the governing equations from the Hamilton principle of stationary action
as in cases of classical non-dissipative models? Indeed, the energy equation (4) allows us
to formulate the Hamilton action in the form :

a =

∫ t1

t0

L dt where L =

∫

Ω(t)

〈ρ〉

(

1

2
|U|2 − ε (〈ρ〉)−

trP

2

)

dω.

Here t0 and t1 are two fixed times, Ω(t) is the material volume associated with the
average velocity U and dω denotes the volume element in Ω(t). We have to set which
equations can be considered as imposed constraints and which equations are derived from
Hamilton’s principle.

3 Variational formulation of the governing equations

3.1 Virtual motion

We introduce the notion of virtual motion and virtual displacement. Let a one-parameter
family of virtual motions :

x = Φ (t,X, λ)

where x denotes the Eulerian coordinates, X denotes the Lagrangian coordinates, t is the
time, and λ ∈ O is a real number (O is an open interval containing 0). When λ = 0,

Φ (t,X, 0) = φ (t,X) ,

where φ (t,X) denotes the real motion associated with the averaged velocity field U.
As usually, we assume that,

Φ (t0,X, λ) = φ (t0,X) , Φ (t1,X, λ) = φ (t1,X) ,

and at the boundary of [t0, t1]×Ω(t), one has Φ (t,X, λ) = φ (t,X). The virtual displace-
ment of the particle denoted δ̃x is defined as [13, 14, 15] :

δ̃x(t,X) =
∂Φ(t,X, λ)

∂λ
|λ=0.

4



In the following, symbol δ̃ means the derivative with respect to λ, when λ = 0, at fixed
Lagrangian coordinates X. We denote by ζ(t,x) the virtual displacement expressed as a
function of the Eulerian coordinates :

ζ(t,x) = ζ (t,φ(t,X)) = δ̃x (t,X) .

For the sake of simplicity, as for ζ, we use the same notation in both Eulerian and
Lagrangian coordinates for all the quantities as 〈ρ〉, U etc.

3.2 Lagrangian

Let us consider the Lagrangian in the form :

L =

∫

Ω(t)

〈ρ〉

(

1

2
|U|2 − ε (〈ρ〉)−

trP

2

)

dω .

We consider two constraints :

• The first one corresponds to the mass conservation law ,

∂ 〈ρ〉

∂t
+ div (〈ρ〉U) = 0,

which can be integrated in the form :

〈ρ〉 detF = ρ0(X)

and is a holonomic constraint for the motion.

• The second one is :

dP

dt
+

∂U

∂x
P+P

(

∂U

∂x

)T

= 0,

which is not integrable along the motion [15].

Two types of variations for unknowns ρ, U and P can be used [14, 15] :

• The previous one, at fixed Lagrangian coordinates (denoted by δ̃),

• Another equivalent variation at fixed Eulerian coordinates (denoted by δ̂).

These variations are related : for any variable f , the connection between the two variations
writes,

δ̂f = δ̃f −∇f · ζ. (5)

We consider that the gradient operator, as all space operators, is taken in Eulerian coor-
dinates. The mass constraint allows us to obtain the variation of ρ at fixed Lagrangian
and Eulerian coordinates in the form [14, 15] :

δ̃ 〈ρ〉 = −〈ρ〉 div(ζ) and δ̂ 〈ρ〉 = −div(〈ρ〉 ζ). (6)
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The variations of the velocity U at fixed Lagrangian (or Eulerian) coordinates are given
respectively as [14, 15] :

δ̃U =
∂δ̃x

∂t
=

dζ

dt
and δ̂U =

dζ

dt
−

∂U

∂x
ζ. (7)

However, equation (3)3 for P is not integrable in Lagrangian coordinates. It can be
considered as a non-holonomic constraint. Let us recall m non-holonomic constraints in
analytical mechanics for a system with n degrees of freedom q = (q1, q2, ..., qn)

T , m < n,
are in the form :

A(q, t)
dq

dt
+ b(t) = 0.

Matrix A is a matrix with n columns and m lines and b is a time dependent vector in R
n.

Even if the system of constraints cannot be reduced to pure holonomic constraints, the
variations of q corresponding to these non-holonomic constraints are expressed as [16] :

A(q, t) δq = 0.

Similarly, the equation for P can be seen as a non-holonomic constraint, and consequently
the Lagrangian variation of P can be written in the form :

δ̃P = −
∂ζ

∂x
P−P

(

∂ζ

∂x

)T

.

It implies :

δ̃(〈ρ〉P) = −〈ρ〉
∂ζ

∂x
P− 〈ρ〉P

(

∂ζ

∂x

)T

− 〈ρ〉P divζ.

Since the operator tr and variation δ̃ commute, we obtain:

δ̃ [tr(〈ρ〉P)] = −2 tr

(

〈ρ〉P
∂ζ

∂x

)

− tr(〈ρ〉P) divζ.

Its Eulerian variation δ̂ (considered at fixed Eulerian coordinates) is obtained according
to relation (5) :

δ̂ [tr(〈ρ〉P)] = −2 tr

(

〈ρ〉P
∂ζ

∂x

)

− tr(〈ρ〉P) divζ − {∇ [tr(〈ρ〉P)]}T ζ

= −2 tr

(

〈ρ〉P
∂ζ

∂x

)

− div [tr(〈ρ〉P)ζ] . (8)

The Hamilton action is :

a =

∫ t2

t1

L dt.

The variation of Hamilton’s action in Eulerian coordinates is :

δ̂a =

∫ t2

t1

∫

Ω(t)

(

δ̂ 〈ρ〉

2
|U|2 + 〈ρ〉UT δ̂U−

∂(〈ρ〉 ε)

∂ 〈ρ〉
δ̂ 〈ρ〉 −

δ̂ tr(〈ρ〉P)

2

)

dω dt.
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Using the formula for Eulerian variations (6), (7) and (8), we obtain :

δ̂a =

∫ t2

t1

∫

Ω(t)

[

−
div(〈ρ〉 ζ)

2
|U|2 + 〈ρ〉UT

(

dζ

dt
−

∂U

∂x
ζ

)

+
∂(〈ρ〉 ε)

∂ 〈ρ〉
div(〈ρ〉 ζ)

+ tr

(

〈ρ〉P
∂ζ

∂x

)

+
1

2
div [tr(〈ρ〉 P)ζ ]

]

dω dt.

The Gauss-Ostrogradsky formula and the fact that the variations vanish at the boundary
of the domain [t1, t2]× Ωt imply :

δ̂a = −

∫ t2

t1

∫

Ω(t)

[

∂(〈ρ〉U)T

∂t
+ div

(

〈ρ〉U⊗U + 〈p〉 I+ 〈ρ〉P
)

]

ζ dω dt.

Using the fact that, for all vector field ζ, the variation of Hamilton’s action in Eule-
rian coordinates vanishes, the fundamental lemma of variation calculus yields momentum
equation (3)2.

The case of compressible non-isentropic turbulent flows can be treated in the same
way.

4 Conclusion

We have seen that the momentum equation of the non-dissipative model of turbulence
can be obtained through the Hamilton principle of stationary action. As usually, the mass
conservation law corresponds to a holonomic (or integrable) constraint, but the evolution
equation of the Reynolds stress tensor which is not integrable, can be considered as a
non-holonomic constraint. This equation implies an expression for the variation of the
Reynolds stress tensor which makes possible to obtain the momentum equation of the
“ideal” turbulence.
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