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Abstract

We investigate the k-path coloring problem, a variant of vertex coloring arising in the context of
integrated circuit manufacturing. We devise a direct (i.e. not relying on Courcelle’s celebrated theorem)
polytime dynamic programming algorithm for graphs of bounded treewidth and we provide computa-
tional evidences, on true instances from the company Mentor Graphics, that the corresponding algorithm
is suitable for practice, which is quite unusual for “bounded treewidth”-based dynamic programming
approaches.

Keywords: k-path coloring, dynamic programming, bounded tree-width, Integrated circuit
manufacturing

1. Introduction

Integrated circuits are made of several layers. In a nutshell, the bottom layers contains the transistors,
while the other layers (called metal layers) are used to connect the different components to comply with
the designed functionalities of the device. We usually distinguish two types of components in metal layers:
vias and ‘wires’. The former components are used for vertical connections and the latter for horizontal
ones, see Fig. 1 for an illustration.

‘wires’

vias

Figure 1: a 3D view of an integrated circuit (source: https://commons.wikimedia.org/wiki/File:Silicon_chip_3d.png)

Integrated circuit manufacturing involves the production of each layer of the circuit iteratively. The
core technique used in production is lithography. In brief, the idea is to etch each layer by exposing a
photosensitive material to a light source through a mask: this creates a kind of mould, which is then filled
with an appropriate conductor material (the mould is later removed through some chemical process).
Optical distortion might however result in the fusion of components if attention is not paid to keep the
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minimum distance between any two components above a certain threshold, called the lithography distance.
When some components are below this distance, the production of the mould is typically decomposed into
several rounds of lithography: sub-masks are defined for (feasible) subsets of components, and the mould
is produced in sequence, a process called multiple patterning. The process requires the proper alignment
of the sub-masks which is a major challenge as the number of rounds increases. Hence multiple patterning
induces additional costs and time in the production process and the industry tries to keep the number
of patterning steps small. The problem of finding the minimum number of patterning steps readily
translates into a vertex coloring problem. Indeed, one can build a graph G whose node set is the set of
components and two components are adjacent if they are at a distance less or equal to the lithography
distance. This graph is sometimes called the conflict graph. The minimum number of rounds needed to
produce the mould is the chromatic number of G.

DSA-aware Multiple Patterning (DSA-MP) is a technique that combines Directed Self-Assembly
(DSA) technology with lithography in order to go beyond the resolution limit imposed by lithogra-
phy alone in the fabrication of integrated circuits. Due to the nature of the process, it is particularly
useful for the manufacturing of vias. DSA-MP allows to introduce within a same sub-mask some vias
that are closer to the lithography distance, under certain conditions. The main idea is to intentionally
fuse some vias within larger objects, called guiding patterns, and then to correct the corresponding design
with DSA in a second step. More precisely, the mould, possibly obtained after applying several rounds of
lithography, is filled with a block copolymer in a random state that self-organize in a structured way after
a chemical reaction is triggered: if the guiding patterns are designed appropriately, and thus if the vias
that are fused satisfy some specific properties, one of the two polymers assembles into a set of cylinders
that can then be turned into vias. We refer the reader to [3] for more details about integrated circuit
manufacturing and DSA-aware multiple patterning.

One of the core problem in DSA-MP is again the problem of minimizing the number of lithography
steps as the production time and costs are still dominated by lithography. We showed in [3] that several
variants are of interest in the industry. One such variant consists in fusing “small chains of vias” and it
reduces to the following variant of vertex coloring: given a graph G = (V,E), a subset F of edges of E
and an integer k ≥ 0, color the vertices of G with a minimum number of colors so that each color induces
in G a disjoint union of paths of length less or equal to k and such that each arc in the path belongs to
F . We call the problem the k-path coloring problem. Concretely, the node set of G is the set of vias in a
layer, the edges correspond to the pairs of vias that are closer than the lithography distance, F are the
pairs of vias whose distance is within a certain range specific to the DSA technology used (but smaller or
equal to the lithography distance), and k is a small number. The Electronic Design Automation (EDA)
industry is especially interested in the 1-path and the 2-path coloring problems as they correspond to
the current technological capabilities. Regular (vertex) coloring is equivalent to 0-path coloring, which
proves that (i) k-path coloring is NP-hard in general and (ii) that we can only improve upon standard
multiple patterning by choosing k ≥ 1. The problem was introduced under the same name in [4] in the
special case where F = E (note that some authors use the same terminology for another variant of graph
coloring, see for instance [13, 17, 20]). In particular it is known that k-path L-colorability is already hard
for L = 2 and k = 1 [15] and for L = 3 and k = 2 [16].

The company Mentor graphics has developed in-house heuristics to solve the problem quickly. A
typical design can be made of several hundred thousands of vias per layer and Mentor Graphics’ heuristics
can solve (approximately) these instances in less than a second. However the company has interest in fast
exact algorithms as well. Initially, their main interest for exact approaches lay in the possibility to assess
the quality of their heuristics. However, because of our first encouraging results with integer programming
[3], the company understood that exact approaches might actually find their way to production. While
testing different integer programming models in [3], we observed that typical industrial instances exhibit
some structure. We indeed noticed that most instances are extremely sparse and typically ‘tree-like’.
The main reason is that the design of the circuit (and the placement of vias in particular) is made
with lithography constraints in mind so that distances between vias is kept as large as possible. In this
project, we decided to test whether exact algorithms exploiting the ‘tree-like’ property could be suitable
(computationally wise) for production. A well-known measure of “tree-likeness” is the notion of treewidth
introduced by Robertson and Seymour [21].

Definition 1. (Tree decomposition [21]). Let G = (V,E) be a graph. A tree decomposition of G is
a pair (X,T ) where T is a tree and X = {X1, . . . , Xn} is the set of nodes of T , called bags such that
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∀i ∈ {1, . . . , n}, Xi ⊆ V and the three following conditions are verified:

1. ∪i∈{1,...,n}Xi = V .

2. ∀(u, v) ∈ E,∃Xi ∈ X such that u, v ∈ Xi.

3. ∀u ∈ V , the bags containing u is a connected sub-tree of T .

The width of a tree decomposition is the size of the largest bag minus one. The treewidth of a graph
G is the minimum width over all possible tree decomposition of G. In particular the treewidth of a tree
is 1 (each edge can be used as a bag).

There are many combinatorial optimization problems that are hard in general but that can be solved
in polynomial time on graphs of bounded treewidth (see for instance [12]). Such problems include
stable set, dominating set, vertex coloring, Steiner tree, feedback vertex set, hamiltonian path, etc...
Besides, Courcelle [11] has shown that a large class of problems on graphs can be solved in linear time
when restricted to graphs of bounded treewidth. Courcelle’s theorem essentially states that every graph
property that can be formulated in monadic second order logic (MSOL) can be decided in linear time
when restricted to graphs of bounded treewidth (monadic second order logic in graphs is a formulation
of a property of a graph using logical connectors (∧, ∨ ¬, ⇐⇒ , etc...), quantification on vertices and
sets of vertices (∀v ∈ V , ∃v ∈ V , ∀V ′ ⊆ V , ∃V ′ ⊆ V ), quantification on edges and sets of edges (∀e ∈ E,
∃e ∈ E, ∀E′ ⊆ E, ∃E′ ⊆ E), membership tests (e ∈ F , v ∈ W , etc...) and incidence tests (v endpoint
of e, (u, v) ∈ E)). It is possible to prove that k-path L-colorability falls under Courcelle’s theorem
umbrella, for a fixed L, see [2]. It then follows that k-path coloring is polynomial in graphs of bounded
treewidth: indeed, it is part of folklore that the chromatic number of a graph of treewidth w is at most
w + 1 (we can ‘greedily’ color the vertices as there is always a vertex of degree less or equal to w, see
for instance [9]); hence the k-path chromatic number is also bounded by w + 1; we can in particular
restrict testing for k-path L-colorability to L = 1, ..., w + 1. Unfortunately Courcelle’s theorem, albeit
linear in the graph size, is considered impractical [12]: “Courcelle’s theorem and its variants should be
regarded primarily as classification tools, whereas designing efficient dynamic-programming routines on
tree decompositions requires ‘getting your hands dirty’ and constructing the algorithm explicitly”. Such
‘explicit’ implementations are rare, see [5, 23, 7, 22, 19] for examples, and usually turn out to still be
impractical unless instances are of small size. In this paper, we develop such an ‘direct’ algorithm (that is,
one not relying on Courcelle’s theorem) for the k-path L-coloring problem and we test the performances
of the corresponding algorithm on real-world instances from Mentor Graphics arising from DSA-aware
Multiple Patterning for k = 1 and k = 2 (the cases of interest in the industry) and show that, somewhat
surprisingly, the corresponding approach turn out to be practical (even though a bit less performant
computationally than the best integer programming approach developed in [3] as will be discussed later).

Additional definitions and notations

Given a graph G = (V,E) and a subset E′ of edges of E, we call a E′-neighbor of a vertex v, a vertex
u such that (u, v) ∈ E′. Also a E′-path denotes a path with edges in E′. For a graph G, we sometimes
denote by V (G) the set of vertices of G, by E(G) the set of edges of G, and, for U ⊆ V (G), by E[U ] the
set of edges of G induced by the vertices in U (that is with both extremities in U).

We call a pair (G, f), where G = (V,E) is a graph and f is a positive weight function on its edge set,
a weighted graph. We can represent a weighted graph by its (weighted) adjacency matrix, that is a matrix
A of size |V | × |V | such that A(u, v) = f((u, v)) > 0 for all u, v ∈ V : (u, v) ∈ E and A(u, v) = 0 for all
u, v ∈ V : (u, v) 6∈ E. Note that the support of A, that is, the 0/1 matrix of same dimension as A whose
ones indicate pairs (u, v) for which A(u, v) > 0, is the (standard) adjacency matrix of G. A graph G can
be considered as a weighted graph with weight function f = 1.

Let P be a path of G with node set v0, ..., vp, for some integer p ≥ 0, and edge set {(vi, vi+1) for
i = 0, ..., p − 1} and let U ⊆ V . We call v0, vp the extremities of P . We call a node of P internal if it
is not an extremity. Given a path P such that V (P ) ∩ U 6= ∅ and a function f : E(P ) 7→ R+ \ {0} , we
define the trace on U of the weighted path (P, f) as the weighted graph obtained from P by ‘shrinking’
the internal nodes of P not in U . More formally, if i1 < ... < il are the indices of the vertices of U on
P , for some integer l ≥ 1, the trace of (P, f) on U is the weighted graph (P ′, f ′), where P ′ is the path
with vertex set {v0, vi1 , ..., vil , vp} and edge set {(v0, vi1), (vil , vp)} ∪ {(vij , vij+1) for j = 1, ..., l − 1}, and
for any edge e of P ′, f ′(e) is the length with respect to f of the (sub)path of P in-between the two end
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points of e. We define the trace on U of a union of disjoint paths as the union of the traces of each path
intersecting U .

A rooted tree decomposition is a tree decomposition where a bag is chosen as a root and the edges
of the tree are oriented in the direction of the root bag. In a rooted tree decomposition (X,T ), we can
naturally define children and parent bags and then, for a bag Xi, we denote by Vi the union of the bags in
the subtree of T rooted at Xi, and by Gi the subgraph of G induced by the nodes in Vi. It is convenient
to present dynamic programming algorithms on nice tree decompositions. We give the definition below.
Note that Kloks [18] proved that a tree decomposition can be converted into a nice tree decomposition
(with at most four times the number of vertices in G) in linear time, while preserving the same treewidth.

Definition 2. (Nice tree decomposition). Let G = (V,E) be a graph. A nice tree decomposition is a
rooted tree decomposition of G where every bag Xi of the tree has at most two children and is one of the
four following types:

• Leaf bag: Xi has no children and contains only one vertex v ∈ V , i.e. |Xi| = 1.

• Introduce bag: Xi has exactly one child bag noted Xj such that Xi = Xj ∪ {v} for some v ∈ V
(and v 6∈ Vj).

• Forget bag: Xi has exactly one child bag noted Xj such that Xi = Xj\{v} for some v ∈ Xj.

• Join bag: Xi has exactly two children noted Xj1 and Xj2 such that Xi = Xj1 = Xj2 .

2. Dynamic programming

We now develop a dynamic programming algorithm to solve the k-path L-coloring problem on graphs
of bounded treewidth. We assume that we are given a nice tree decomposition (by the result of Kloks
[18] mentioned above). We start with providing the general idea of the algorithm.

Let G = (V,E) be a graph, let F ⊆ E, and let us consider a nice tree decomposition (X,T ) of G of
width w. The general idea behind a dynamic programming approach to a decision problem on graph of
bounded treewidth is to evaluate in each bag Xi whether there is a solution to the problem restricted
to Gi, and to store enough information about the corresponding solutions, to propagate and extend the
solutions from the children bag(s) to the parent node iteratively. Hence, in our setting, for each bag Xi,
we would like to know if there exists a k-path L-coloring of Gi. A k-path L-coloring of Gi is obviously
a k-path L-coloring of its children bag(s). Hence we can try to identify the k-path L-coloring of Gi by
checking which k-path L-coloring of the children bag(s) can be extended to a k-path L-coloring of Gi.
Now, because we want to design an efficient algorithm for testing k-path L-colorability of G, we cannot
keep a full list of all k-path L-colorings of Gj for all bags Xj as the list could grow exponentially as we
move up the tree. Because each color of a k-path L-coloring induces a disjoint union of F -paths, and
because of the structure of a tree decomposition, it is enough, as we will discuss in the proof of Theorem
1, to keep the colors of the vertices in Xi and the trace on Xi of the F -paths in each color. We call such
a solution a partial solution (this is the standard terminology in the field) as it can be extended to build
a k-path L-coloring of Gi. We can encode, for each bag Xi, the (disjoint) union of the traces on Xi of
the F -paths of each color as a weighted graph with at most 3w vertices (we call this weighted graph the
trace of the solution): indeed each path in the trace contains at least one node from Xi by definition and
thus there are at most w such (disjoint) paths and, in the worst case, each path contains exactly two
additional neighbors representing the extremities outside Xi (and each path may contain only one node

from Xi). Hence the number of partial solutions is bounded by O(Lw · k(3w)2) for each bag, which is

constant for k and w bounded (O(k(3w)2) corresponds to the number of (weighted) adjacency matrices of
a weighted graph with at most 3w vertices and weights in {0, ..., k}: we could obviously use better data
structures to improve upon this value). The dynamic programming algorithm and the (inductive) proof
of its validity is given in Theorem 1.

Theorem 1. There exists an algorithm that, given a graph G = (V,E), a set of edges F ⊆ E, and a nice

tree decomposition (X,T ) of G of width w solves the k-path L-coloring problem in time O(Lw · k2(3w)2 ·
(3w)2 · |T |).
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Proof. Let G = (V,E) be a graph, let F ⊆ E, and let us consider a nice tree decomposition (X,T ) of
G of width w. For conciseness, we simultaneously give the dynamic programming algorithm and the
(inductive) proof that the procedure is correct. We need to distinguish according to the different types
of bag.

• Leaf bag: In a leaf bag Xi, we have |Xi| = {v} for some v ∈ V and we can enumerate all k-path
L-coloring of Gi by enumerating all possible colorings of v. The partial solutions coincide with the
solutions for Gi so the trace is trivial in this case: it consists in the graph with vertex set {v} and
edge set {}, and any weight function as the set of edges is empty.

• Introduce bag: In an introduce bag Xi, we add a vertex v from a child bag Xj i.e., Xi = Xj ∪{v}
for some v ∈ V (and v 6∈ Vj). In order to check whether a k-path L-coloring Sj of Gj can be
extended to a k-path L-coloring of Gi, we only need to check which coloring c(v) of v is compatible
with Sj . Adding v to a color set adds edges in the subgraph of G induced by the nodes of color
c(v). We want the resulting graph to be a union of disjoint F -paths of Gi of length at most k. Let

G
c(v)
i (resp. G

c(v)
j ) be the subgraph of Gi (resp. Gj) induced by the node of color c(v). Because of

the structure of a tree decomposition, v is only adjacent to vertices of Xi in Gi. It follows that in
order to check whether Sj can be extended, it is enough to check whether the set of edges E ⊆ E
incident to both v and a node of color c(v) in Xi are all in F and that adding v and E (with weight

one) to the trace (H, f) of G
c(v)
j on Xj yields a weighted graph (H ′, f ′) whose support H ′ is a

union of disjoint paths of weight at most k with respect to f ′ (note that adding v might merge
two previously disjoint paths). This can be checked in linear time by checking that: (i) v has no
more than two neighbors of color c(v) in Xi (and that they are linked by an edge of F ), (ii) those
neighbors are the extremities of different paths in the trace graph (H, f), and (iii) the weight of
the F -path containing v is no more than k (for this we need to know the weight of the path(s)
starting at the neighbors of v in (H, f), which can be easily computed by traversing the edges of
the corresponding path(s) in (H, f)). In case of a positive result, substituting the trace (H ′, f ′) by
(H, f) actually yields the trace on Xi of the extension of Sj to Gi.

• Forget bag: In a forget bag Xi, we delete a vertex v from a child bag Xj i.e., Xi = Xj \ {v}
for some v ∈ V . In such a node of the tree decomposition, any partial solution Pj for Xj yields a
partial solution Pi for Xi. Indeed, any k-path L-coloring for Gj that would be consistent with Pj

would again be a k-path L-coloring of Gi as Gi and Gj coincide. The traces of the solution on Xi

and Xj differ though, but we can easily recover the trace on Xi from the trace on Xj . Indeed, we
can update the coloring and the trace as follows: the coloring is kept identical but it is restricted
to the nodes of Xi and the new trace is simply the trace on Xi of the trace in Pj (that is we simply
‘shrink’ v).

• Join bag: In a join bag Xi, we want to check, for every pair (Pj1 , Pj2) of partial solutions for
Xj1 and Xj2 , whether the union of any possible extensions of Pj1 , Pj2 to solutions of Gj1 and Gj2

yield a solution for Gi. More precisely, let Pj1 and Pj2 be two partial solutions for Xj1 and Xj2

respectively and Sj1 , Sj2 any two extensions. We first need to check that common vertices in Gj1

and Gj2 are colored in the same way in both Sj1 , Sj2 . Because common vertices are vertices in Xi

(by the property of tree decompositions), it is enough to check that the partial solutions agree on
the colors of the vertices in Xi. Then we need to check that the union of the F -paths induced by
a same color c in Sj1 and Sj2 is a (disjoint) union of F -paths of length at most k (the union of
the F -paths is actually the graph induced by color c in Gi as the only edges in common are edges
in E[Xi] - which are in both Gj1 and Gj2). Now it is enough to look at the multi-union of the
traces associated with color c in Pj1 and Pj2 respectively (formally, the multi-union is defined as
follows: we take the union of the two corresponding traces (union of the vertices and edges, with
same weight), and we allow parallel edges, except for ‘original edges’ in E[Xi] - that is, edges that
are in both trace graphs and of weight 1: edges of the traces of weight 2 or more are not edges from
E[Xi]). Indeed we simply need to check that the multi-union of the traces induces a disjoint union
of paths of weight at most k. Note that we do not consider parallel edges for ‘original edges’ in E[Xi]
in the definition of the multi-union as, in contrast with the other edges in the trace (which cannot
appear as ‘subpaths’ in both solutions Sj1 and Sj2 because they include a vertex in Vj1 \ Xi or
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Vj2 \Xi that was shrunk (and thus cannot appear in the other solution because of the properties of
tree decompositions)), they correspond to edges that could (and will) be in the F -paths associated
with color c in both Sj1 and Sj2 . In case of a positive outcome, the trace of the solution for the
join bag Xi is simply the union of the two traces (as defined above).

The discussion above shows that we do not miss any partial solution as we move up the tree (and
that each partial solution we build is actually valid). Hence there exist a k-path coloring of G if and only
if there exists a partial solution in the root node of the tree decomposition when applying the procedure
above.

The computational time at each node of the nice tree decomposition is dominated by the join bag
case. For each coloring of the vertices of Xi we then need to check whether the union of the support
graph of the trace of each possible partial coloring for Xj1 and Xj2 are compatible: in the worst case we

need to check Lw coloring, and k(3w)2×k(3w)2 pairs of traces, and checking that the union of the traces in
each color still yields a union of disjoint paths of length at most k can be done in time O((3w)2), by first
building the weighted adjacency matrix of the union of the trace (and checking that it does not contain
multi-edges) and by then adapting the depth first search algorithm, since each weighted adjacency matrix

has size at most (3w)2. The overall complexity is thus bounded by O(Lw · k2(3w)2 · (3w)2 · |T |).

3. Numerical Experiments

In [6], Arnborg et al have proved that deciding if the treewidth of a graph G is at most w, where
w ≥ 0, is NP-complete. However, there are good heuristics to determine a tree decomposition of a given
graph G with a width ‘close to’ the treewidth. Different heuristics are presented and compared in [10].
Moreover, Bodlaender [8] showed that for every fixed value of w, there is a linear-time algorithm that
finds a tree decomposition of width w (if it exists).

We propose to solve DSA-MP on real instances arising from integrated circuit manufacturing by
first using a heuristic to get a ‘small’ tree-decomposition of the graph, and by then using the dynamic
programming algorithm described in the previous section to solve the problem (actually, we tailored the
algorithms to the case where k = 1 and k = 2 to make them slightly simpler to implement, see [2] for the
details about the corresponding implementations). We used D-FLAT to implement the corresponding
algorithm [1]. D-FLAT is a software system that allows for rapid prototyping of dynamic programming
algorithms for graphs of ‘small’ treewidth. It has the advantage to implement different state-of-the-art
heuristics to find a close-to-optimal nice tree decomposition and offers a generic langage (Answer Set
Programming) to describe how to extend solutions for each type of nodes of the nice tree decomposition.
We ran D-FLAT iteratively to solve the k-path L-colorability problem starting from L = 2 and increasing
L until a solution was found. All tests were done on a machine equiped with an Intel(R) Xeon(R) CPU
E5-2640 2.60 GHz and a memory of 529GB. As already observed, the typical industrial designs are made
of several hundred thousands of vias, but because the placement of the vias is made as to anticipate as
much as possible conflicts that may arise from lithography, the ‘conflict graph’ is usually extremely sparse
and contains only hundreds or thousands of different connected components. Since the optimization of
each connected component can be parallelized, we focus attention on the computational time for each
connected component individually.

We report computational experiments on 23 connected components of increasing size arising from true
industrial instances in Table 1. We can see that the linear time complexity is confirmed experimentally.
All instances could be solved in less than 30 seconds.

The 23 industrial instances used in this study share similar properties with some pseudo-industrial
instances generated in [3] (instances where the resolution limit is set to 31nm). We thus compared
the dynamic programming approach developed in this paper to the best integer programming model
developped in [3] on the same set of instances (and on the same machine) and the results are reported in
Table 2.

It appears that the best integer programming formulations from [3] outperform the dynamic pro-
gramming approach on these instances. However, from an application point of view, the computation
times of the dynamic programming approach are very satisfactory (both on the true industrial instances
and on the pseudo-industrial ones). Indeed the manufacturing process is defined before the launch of
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Instance name |V | |E| |F | ω(G) ∆(G) DFLAT TW(G) χ1
path cpu time (sec) χ2

path cpu time (sec)

industrial 1 54 56 52 3 4 2 2 0.35 2 0.92
industrial 2 61 86 85 3 5 2 2 0.75 2 1.62
industrial 3 89 112 107 3 5 2 2 0.51 2 1.5
industrial 4 90 113 109 3 5 2 2 0.98 2 1.21
industrial 5 96 111 105 3 4 2 2 0.55 2 1.73
industrial 6 98 126 120 3 5 3 2 0.84 2 3.45
industrial 7 102 144 141 3 5 2 2 0.94 2 1.47
industrial 8 111 140 137 3 5 2 2 1.45 2 2.21
industrial 9 114 131 125 3 4 2 2 0.79 2 2.21
industrial 10 116 155 151 3 5 3 2 1.15 2 2.5
industrial 11 119 142 136 3 4 3 2 1.41 2 4.02
industrial 12 128 159 149 3 5 2 2 1.17 2 2.83
industrial 13 137 167 160 3 5 3 2 1.22 2 3.05
industrial 14 159 196 188 3 5 2 2 1.42 2 3.53
industrial 15 173 224 216 3 5 3 2 1.83 2 3.44
industrial 16 382 396 339 3 4 2 2 2.57 2 4.95
industrial 17 969 1001 900 3 3 2 2 7.26 2 12.52
industrial 18 993 1009 927 3 4 2 2 6.19 2 12.63
industrial 19 997 1047 906 3 4 2 3 8.86 2 12.82
industrial 20 998 1024 924 3 4 2 3 8.65 2 12.95
industrial 21 1900 1937 1804 3 4 2 3 21.09 2 26.87
industrial 22 1912 1960 1809 3 4 2 3 18.22 2 26
industrial 23 1937 1996 1812 3 4 2 2 6.29 2 27.02

Table 1: Industrial instances characteristics and results: ω(G) is the size of the maximum clique in G, ∆(G) is the maximum
degree of G, DFLAT TW(G) is the width of the tree decomposition returned by D-FLAT heuristics, and χk

path is the k-path

chromatic number.

Instance |V | |E| |F | ω(G) ∆(G) DFLAT TW(G) χ1
path DFLAT 1 time (sec) IP 1 time (sec) χ2

path DFLAT 2 time (sec) IP 2 time (sec)

clip1 31 191 242 242 3 5 3 2 2,71 0,8 2 465,74 1,93
clip2 31 139 188 188 3 5 3 3 21,15 1,54 2 64,89 2,11
clip3 31 98 117 108 3 4 2 2 0,8 0,11 2 1,69 0,34
clip4 31 120 147 139 3 4 3 2 0,87 0,49 2 9,45 0,46
clip5 31 170 213 213 3 5 3 3 5,45 0,99 2 9,57 1,52
clip6 31 178 229 229 3 5 3 2 2,1 0,68 2 38,45 1,89
clip7 31 203 256 223 3 5 3 3 8,83 0,94 2 92,05 0,73
clip8 31 122 162 160 3 5 3 2 0,83 0,45 2 2,89 1,35
clip9 31 152 193 193 3 4 3 2 2,8 0,28 2 31,13 1,96
clip10 31 139 175 175 4 4 3 2 0,91 0,51 2 2,3 0,64

Table 2: Pseudo-industrial instances characteristics and results: ω(G) is the size of the maximum clique in G, ∆(G) is the
maximum degree of G, DFLAT TW(G) is the width of the tree decomposition returned by D-FLAT heuristics, DFLAT k
time (resp. IP k time) represents the time used by DFLAT (resp. IP) to solve the k-path coloring problem, and χk

path is

the k-path chromatic number.

the production and obtaining optimal solutions in a few minutes is perfectly fine. Besides, the dynamic
programming approach offers the additional benefit of not requiring the use of expensive licenses (the
license fees for advanced programming software such as CPLEX or Gurobi, can reach prohibitive amounts
when the algorithm must run in parallel on thousands of instances and this has not been considered a
viable alternative by the company). The algorithm is now implemented in the company’s toolbox. They
run the corresponding algorithms both to compare and improve their heuristics and also to find the op-
timal solution in cases where the algorithm ends within a certain time (beyond the limit, they use their
heuristics).
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