SL(2,$\mathbb Z$)-action for ribbon quasi-Hopf algebras - Archive ouverte HAL Access content directly
Journal Articles J.Algebra Year : 2019

SL(2,$\mathbb Z$)-action for ribbon quasi-Hopf algebras

Vanda Farsad
  • Function : Author
Azat M. Gainutdinov
Ingo Runkel
  • Function : Author

Abstract

We study the universal Hopf algebra L of Majid and Lyubashenko in the case that the underlying ribbon category is the category of representations of a finite dimensional ribbon quasi-Hopf algebra A . We show that L=A⁎ with coadjoint action and compute the Hopf algebra structure morphisms of L in terms of the defining data of A . We give explicitly the condition on A which makes Rep   A factorisable and compute Lyubashenko's projective SL(2,Z) -action on the centre of A in this case.
Fichier principal
Vignette du fichier
1702.01086.pdf (810.53 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-02148033 , version 1 (25-11-2020)

Identifiers

Cite

Vanda Farsad, Azat M. Gainutdinov, Ingo Runkel. SL(2,$\mathbb Z$)-action for ribbon quasi-Hopf algebras. J.Algebra, 2019, 522, pp.243-308. ⟨10.1016/j.jalgebra.2018.12.012⟩. ⟨hal-02148033⟩
270 View
63 Download

Altmetric

Share

Gmail Facebook X LinkedIn More