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Abstract. Parsing of argumentative structures has become a very active line of research in recent years. Like discourse parsing
or any other natural language task that requires prediction of linguistic structures, most approaches choose to learn a local
model and then perform global decoding over the local probability distributions, often imposing constraints that are specific
to the task at hand. Specifically for argumentation parsing, two decoding approaches have been recently proposed: Minimum
Spanning Trees (MST) and Integer Linear Programming (ILP), following similar trends in discourse parsing. In contrast to
discourse parsing though, where trees are not always used as underlying annotation schemes, argumentation structures so far
have always been represented with trees. Using the ‘argumentative microtext corpus’ [in: Argumentation and Reasoned Action:
Proceedings of the 1st European Conference on Argumentation, Lisbon 2015 / Vol. 2, College Publications, London, 2016,
pp. 801–815] as underlying data and replicating three different decoding mechanisms, in this paper we propose a novel ILP
decoder and an extension to our earlier MST work, and then thoroughly compare the approaches. The result is that our new
decoder outperforms related work in important respects, and that in general, ILP and MST yield very similar performance.
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1. Introduction

In recent years, automatic argumentation mining in natural language text has become a very active line
of research in natural language processing (NLP). For a long time, finding opinions was a very popular

task, which primarily involves detecting the target and the polarity of opinions, for instance in product
reviews. Example: “We highly enjoyed [opinion: positive] this book [target].” Being able to extract this

information from review web sites or from social media contributions turned out both commercially
relevant and interesting from the research perspective. Now, one extension of this idea is to also look

for the reasons that customers provide for their opinions, as in: “We highly enjoyed this book. It is so
awfully well-written.” This extension of opinion mining is one prominent application of argumentation

mining, but there are various others, such as identifying justifications in legal documents, or uncovering
the structure of argumentative essays for the purpose of providing feedback to students.
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In its full-fledged form, the argumentation mining problem involves the following subtasks:

• identifying argumentative (portions of) text,

• detecting central claims (theses),

• detecting supporting and objecting (attacking) statements, and

• establishing relations among all those statements.

The end result is a semantic markup added to the text, which can be mapped to a graph structure that rep-

resents a coherent structural description of the overall argumentation (cf. the example below in Fig. 1).

Most of the work in argumentation mining, however, so far addresses only some of those subtasks, for

instance the identification of claims and supporting statements, which for many practical applications

is already sufficient. Consider our example of product reviews, where it is already quite valuable if the

opinionated statement (i.e., the claim) and the reasons (i.e., the supporting statements) can be identified.

On the other hand, for more ambitious purposes it is necessary to target the more comprehensive

problem of actually constructing a structural representation of the full argument. To achieve this, early

computational approaches opted for implementing a pipeline architecture [6,17, inter alia] that uses

a series of modules, with each being responsible for one subtask and passing their intermediate result

onward to the next module. For instance, one module early in the pipeline might try to classify the stance

taken in the text: is the attitude toward the topical issue positive or negative? Using this information, the

subsequent claim detection module might look specifically for a pro or con claim statement in the text;

and so forth.

This approach, while conceptually simple and straightforward to implement, suffers from two prob-

lems: First, errors made by an early module are propagated to the subsequent ones, and can essentially

not be corrected anymore, which can lead to overall low performance. Second, in a pipeline of au-

tonomous modules, it is quite difficult to coordinate the individual analysis decisions in such a way that

global structural constraints on the overall result (such as well-formedness conditions on a tree or graph

representing the argumentation) are being met.

In response, more recent approaches adopted the computational perspective of global optimization,

where subtasks are not solved individually and sequentially but can inform each other about potential

output variants. A popular approach is a so-called global decoding over local probability distributions:

The probabilities for certain local decisions (what is the argumentative role of a text segment, what is the

probability that two argumentative units are connected, and so on) are computed by individual modules,

and then an optimization step finds the overall best (i.e., most probable) well-formed solution. This move

to more structured output prediction naturally responds to the error propagation problems, and it mirrors

activities in related NLP tasks such as discourse parsing,1 an area that argumentation parsing shares

many commonalities with. Technically, most current approaches follow what [26] categorizes under

polytope decoding, and more specifically Integer Linear Programming (ILP) [25,28]; or decoding using

specialized graph algorithms, in particular Minimum Spanning Trees (MST) [22]. More sophisticated

approaches involving structured output prediction with a logistic or hinge loss have not been proposed for

argumentation yet, mainly due to the lack of an appropriate cost function,2 although recently [19] have

used the AD3 algorithm from [15] in order to predict argumentation structures that are directed acyclic

1The goal of discourse parsing is to produce a representation of text structure by means of coherence relations holding
between spans of text; see [29, ch. 3].
2A cost function ρ(y′, y) provides the cost that a wrong prediction y′ has in relation to ground truth y. In most cases a

0–1 cost function or a Hamming cost function are used, but they cannot differentiate between more and less grave errors (e.g.
a misclassification among subtypes of support should be penalized less than mistaking an attack for a support).



graphs (henceforth DAGs) and not trees. This lack of more structured output prediction approaches is

also due to the fact that the community lacks a common relational modeling of argumentation as well as

adequate amounts of annotated data.

MST and ILP decoding mechanisms both have been proposed in discourse parsing, too [1,13,24],

where ILP has been used as decoder only for DAG structures [24] while MST has only been used for

tree structures [13]. In argumentation mining, both approaches have been employed for predicting tree

structures.

So far, no conclusive results have been obtained as to which of the two decoding approaches is better-

suited for the (full) argumentation mining task. In this paper, we report on experiments that show that

ILP does not have any per se advantage over the MST approach. Hence, for predicting tree structures,

employing ILP as decoding should essentially emulate a minimum spanning tree approach, unless con-

straints that are not limited to structural properties of the output object are coded into the ILP constraints.

In order to show this, we use for both approaches the same local model learned from a dataset that has

commonly been used in the community. For a fair comparison of the optimization approaches, we first

replicate the MST decoder from [22] and the ILP decoders from [25] and from [28], which all are known

to produce competitive results for the tree prediction task on this dataset. Furthermore, as additional con-

tributions of this paper, we provide an improved version of the MST-decoding ‘evidence graph’ model

of [22], as well as a new ILP decoder, which for most configurations outperforms earlier approaches

using ILP. Accordingly, our results in almost all respects improve on the earlier ones and thus can be

considered state of the art for these types of approaches.

The paper is structured as follows: In Section 2, we present the schema that forms the basis for our

annotation of argumentation structure, and we introduce the corresponding dataset. Section 3 explains

how we have transformed our data into dependency structures, and describes our local models for the

various argumentation mining subtasks. These models provide the local common input to all the de-

coders, which are presented in Section 4. Experiments and results are presented in Section 5. Finally,

Section 6 discusses related work, and Section 7 concludes the paper.

2. Argumentative structures and data

Our annotation of argumentation structure follows the scheme outlined in [21], which in turn is based

on the work of [7]. The building blocks of such an analysis are Argumentative Discourse Units (ADUs):

text segments that play an argumentative role.3 Hence the initial step of an analysis is to demarcate

ADU boundaries in the text; for the purposes of this paper, we do not implement this step but assume it

as already given (and our various parsers will all start from the same segmentation).

The annotation scheme posits that every ADU be labeled with a “voice”, which is either the “pro-

ponent” of the argument or the imaginary “opponent”. Each text is supposed to have a central claim

(henceforth: CC), which the author can back up with statements that are in a Support relation to it. This

relation can be used recursively, which leads to “serial support” in Freeman’s terms. A statement can

also have multiple immediate Supports; these can be independent (each Support works on its own) or

linked (only the combination of two statements provides the Support). The CC as well as all the Support

statements bear the “proponent’s” voice: The author of the text is putting forward his or her position.

3Typically, most of these units are sentences. They can sometimes consist of more than one “elementary discourse unit”
(EDU) as they are used in discourse parsing.



Fig. 1. Argumentation structure of the example text.

When the text mentions a potential objection, this segment is labeled as bearing the role of “opponent’s

voice”; this goes back to Freeman’s insight that any argumentation contrasts the author’s view with that

of an imagined opponent. The segment will be in an Attack relation to another one of the proponent’s

voice; the scheme distinguishes between “rebut” (attack the validity of a statement) and “undercut”

(attack the relevance of a premise for a conclusion). In turn, the proponent can then use a segment to

counter-attack the proponent’s objection.

For illustration, below we give a sample text from the corpus we use (see next Section), and its analysis

is shown in Fig. 1. Proponent ADUs are in circle nodes, the opponent’s ADU 2 appears in a box. An

arrowhead denotes Support, a bullet or square-head denotes Attack. In our example the CC presented in

ADU 1 is attacked by ADU 2, an instance of Rebut. This relation is then undercut by ADU 3. Finally,

ADUs 4 and 5 provide a linked Support for the CC 1.

The dataset we are targeting is the ‘Argumentative Microtext Corpus’ [23]. It consists of 112 short

texts originally written in German by students in response to a trigger question. These questions concern

issues of public debate, such as whether all citizens should pay fees for public broadcasting, or whether

health insurance should cover alternative medical treatments. The texts consist of five to six sentences;

writers have been asked to state their position, back it up with arguments, and if possible also mention

a potential objection to the position. All texts have been professionally translated to English, and have

been annotated according to the scheme previously explained (cf. the example in Fig. 1).

The annotation process (described in detail in [23]) was based on written guidelines, which are avail-

able from the corpus website.4 The process began with experiments on inter-annotator agreement, to

verify that the scheme is used consistently by different annotators. It has been found that on the basis

of brief guidelines (eight pages), three trained annotators achieved an agreement of Fleiss k = 0.83 for

the full task when the segmentation is given (i.e., annotators perform the segment-wise annotation of

full argument graph features) and even higher agreement for the basic distinctions between proponent

and opponent, or supporting and attacking moves. A more detailed explanation of this agreement study

and its results is given in [20]. Since its publication, the corpus has also been annotated with additional

4http://angcl.ling.uni-potsdam.de/resources/argmicro.html



layers of information (discourse structure, annotation schemes) by ourselves and by other researchers.
See the corpus website for details.
In automatic argumentation mining, fine-grained distinctions such as those between linked sup-

port/normal support and between rebut/undercut are usually not accounted for. In order to facilitate
comparison to the related work, for the experiments reported below we thus use a “coarse-grained” ver-
sion of the annotations, which reduces the aformentioned pairs to just Support and Attack, respectively.
Notice that in the dataset, the argumentation covers the text completely; i.e., there are no text segments

that do not belong to an ADU. For the parser this implies that each text segment has to be mapped to
a node in the graph. In the 112 texts, there are 579 argumentative units, of which 454 (78%) are in
the “proponent’s voice”, and 125 (22%) in the “opponent’s voice”. Of the 464 relations, 286 (62%) are
Support, and 178 (38%) are Attack.

3. Underlying model

Assigning the argumentation structure to a microtext involves the tasks of segmentation into ADUs,
assigning voice to each ADU, and determining its relation to other ADUs. For our present purposes, we
leave out the segmentation task and thus assume pre-segmented texts. In order to perform structured out-
put prediction for this problem, ideally one would like to learn a model h : XAn 7→ YG where XAn is the
domain of instances representing a collection of nADUs for the input text andYG is the set of all possible
argumentation graphs. Directly predicting argumentation structures, though, is a very difficult task that
requires a large amount of training data. We currently lack this data in the argumentation community,
since, in a sense, every document is considered as a single instance. Moreover, no appropriate logistic
or hinge loss function [26] has been proposed in the community for argumentation nor for discourse
structures. Standard approaches thus aim at the more modest goal of learning a model h : XA2 7→ YR

where the domain of instances XA2 represents features for a pair of ADUs and YR represents the set of
argumentative relations. In essence, we are building a local model that yields a probability distribution
of relations between pairs of individual ADUs.
Note that we do not directly make a classifier out of this model. In other words, we do not try to directly

extract relations from the above model by searching for a threshold that will have optimal local results.
Had we done so, we might have had good enough local results, but the global structure resulting from
simply concatenating the relations predicted by a local classifier would not necessarily be well-formed:
There is no guarantee that the resulting structure would be a cycle-free single connected component, as
required by our data. Instead, we thus use the probability distribution that this model yields as input to a
decoder that tries to globally optimize the argumentation structure.

3.1. Local models

For our experiments and in line with those of [22], we use the dependency conversion of the microtext
corpus with the coarse-grained relations of Support and Attack: The graphs have first been converted
to dependency trees by serializing more complex configurations such as Undercuts or linked relations,
a proceedure which is reversible for our graphs. The set of relations is then reduced to Support and
Attack, a lossy transformation. For more details and a motivation for this conversion, we refer the inter-
ested reader to [22,30]. Figure 2 illustrates the dependency graph for the argumentation structure of the
example text shown in Fig. 1.
[22] proposed the following four subtasks for predicting the argumentation structures:



Fig. 2. Dependency conversion for the argumentative structure of the example text shown in Figure 1.

• attachment (at): Given a pair of ADUs, are they connected? [yes, no]

• central claim (cc): Given an ADU, is it the central claim of the text? [yes, no]

• role (ro): Given an ADU, is it in the [proponent]’s or the [opponent]’s voice?

• function (fu): Given an ADU, what is its argumentative function? [support, attack or none]

We reproduced this approach and trained a log-loss SGD classifier for each of these tasks. Note that

relation labels are classified using only the source segment. We also reimplemented their feature set,

which consists of lemma uni- and bigrams, the first three lemmata of each segment, POS-tags, lemma-

and POS-tag-based dependency parse triples, discourse connectives, main verb of the sentence, and all

verbs in the segments, absolute and relative segment position, length and punctuation counts, linear order

and distance between segment pairs. Note that most of these features are also applied to the left and right

context of the segment of interest.

For the syntactic analysis, we use the spacy parser [9] (instead of the Mate parser [3] that was origi-

nally employed by [22]). Both parsers provide pre-trained models for English and German. The spacy

parser comes with Brown-clusters and vector-space representations, which we want to test in addition

to the features proposed in the earlier work. We also extended the underlying list of English discourse

connectives with the connectives collected in the EDUCE project.5

New features. In addition to the reimplemented feature set, we test the impact of the following new

features: We add Brown cluster unigrams (BC) and bigrams (BC2) of words occurring in the segment.

We completed the discourse relations features (DR): While the lexicon of discourse connectives for

German used in experiments of [22] was annotated with potentially signaled discourse relations, their

English lexicon was lacking this information. We extended the English connective lexicon by those col-

lected by EDUCE which also have been annotated with signaled discourse relations. Also, a feature

representing the main verb of the segment was added (VS); the already existing verb features either fo-

cused on the verb of the whole sentence which might be too restrictive, or on all possible verbal forms in

the segment which might not be restrictive enough. Furthermore, we added features for better capturing

the inter-sentential structure, i.e. for relations with subordinate clauses: One feature representing that the

source and target segments are part of the same sentence (SS) and one representing that the target is the

matrix clause of the source (MC).

In order to investigate the impact of word embeddings for this task, we add the 300-dimensional

word-vector representations provided by the spacy parser, averaged over all content words of the seg-

ment, as a feature for segment wise classifiers (VEC). Moreover, we derive scores of semantic distance

between two segments using these vectors: We measure the cosine distance between the average word

vector representations of the segment and its left and right antecedents (VLR). Also, for the attachment

classifier, we measure the cosine distance between the average word vectors of the source and target

segment (VST). Table 1 provides a summary of the all aforementioned features.

5https://github.com/irit-melodi/educe



Table 1

Summary of the features. The last column provides a short reference for each feature. Those marked with (base) are our
reimplementation of the features of [22] and serve as a baseline. For all other features a short acronym is given. These will be
tested separately in a feature study, see Section 5.2.

Category Description Reference

Positional absolute and relative segment position (base)

linear order and distance between segment pairs (base)

source and target are in same sentence (SS)

Lexical lemma uni- and bigrams (base)

first three lemmata of each segment (base)

POS-tags (base)

length and punctuation counts (base)

Syntactic lemma- and POS-tag-based dependency parse triples (base)

main verb of the sentence (base)

all verbs in the segment (base)

main verb in the segment (VS)

target is the matrix clause of the source (MC)

Semantic Brown cluster unigrams (BC)

Brown cluster bigrams (BC2)

vector-space representation of the segment (averaged word embeddings) (VEC)

vector-space distance between left and right antecedents (VLR)

vector-space distance between source and target (VST)

Discourse discourse connectives (base)

discourse relations signalled by connectives (DR)

4. Decoders

4.1. MST decoder

In a classic MST decoding scenario, one uses a matrix 5 ∈ R
n×n representing the attachment prob-

ability distribution of the local model. The Chu–Liu–Edmonds algorithm [4,5] is then used in order to

find the maximum spanning tree. The predicted edges could finally be labelled in a subsequent step

using a separate classifier. In contrast to that, [22] opt in jointly predicting attachment and the other

levels using MST methods. They first set up a fully connected multigraph with as many parallel edges

as relation-types (in their case two, for Support and Attack relations), calling that the “evidence graph”.

A local model is trained for each of the four levels (attachment, central claim, role and function). From

the scores of the local models, four probabilities are derived which are linearly combined to one edge

score in the multigraph: the probability of attachment, the probability of having the corresponding ar-

gumentative function, the probability of the source not to be the central claim and the probability of

switching the argumentative role from the source to the target segment (for attacks) or of preserving it

(for supports). The multigraph is reduced to a graph, for which the maximum spanning tree is found.

The combination of these probabilities constraints some typical interactions between the different levels

in the argumentation structure. We replicate this decoder using the exact same procedure and the results

of the local models described in Section 3.



4.2. ILP decoders

Integer Linear Programming (ILP) can also be used as another decoder. In ILP one needs to provide

an objective function which needs to be maximized under specific constraints. The objective function is

a combination of linear equations of n variables each of which should take integer values. In the general

case solving an ILP problem is NP-hard but efficient implementations are capable of producing very

good approximations of the solution in an amount of time provided by the user.

4.2.1. Novel ILP decoder

Objective function. Using as input the same local model as before, we try to construct a DAG G =

〈V, E, R〉. Vertices (ADUs) are referred by their position in textual order, indexed starting from 1. The

argumentative functions central_claim, attack, support are referred by their respective indexes νcc =

1, νa = 2, νs = 3. Let n = |V |. We create four sets of core variables corresponding to the levels of

prediction:

cci = 1 ≡ adui is a central claim

roi =

{

1 if adui is a proponent node

0 if adui is an opponent node

fuik = 1 ≡ adui has function label k

atij = 1 ≡ (i, j) ∈ E.

The local models described above provide us with four real-valued functions:

scc : {1, . . . , n} 7→ R

sro : {1, . . . , n} 7→ R

sfu : {1, . . . , n} × {νcc, νa, νs} 7→ R

sat : {1, . . . , n}2 7→ R.

The objective function that we try to maximize is a linear combination of the four functions:

S =

n
∑

i=1

scc(i)cci +

n
∑

i=1

sro(i)roi +

n
∑

i=1

3
∑

k=1

sfu(ik)fuik +

n
∑

i=1

n
∑

j=1

sat(ij)atij .

We define different sets of constraints and will investigate different combinations, in order to evaluate

the individual impact of each set.

Tree constraints on the attachment predictions (tree). The predicted graphs are trees: All nodes

have one or no outgoing arc (1) and as many arcs as nodes, except for the root node (2). Also, to rule out

cycles, we introduce an auxiliary set of integer variables ci and impose constraints on them (3 and 4).

∀i 0 6

n
∑

j

atij 6 1 (1)



n×n
∑

i,j

atij = n − 1 (2)

∀i 1 6 ci 6 n (3)

∀i, j cj 6 ci − 1+ n(1− atij ) (4)

Relation labelling through function predictions (label). The constraints above only yield an unla-

belled tree. We want to use the prediction of the function classifier and assign one argumentative function

to every node (5). Furthermore, we only want to predict Support or Attack as relation label, since the

central claim function is not a relation label, and the decoded tree might have another root than the

segment predicted to have the function central claim (6).

∀i

3
∑

k=1

fuik = 1 (5)

∀i fuiνcc = 0. (6)

Interaction between central claim and attachment (cc-at). Turning to the predictions on the other

levels, we first integrate the predictions of the designated CC classifier, and describe the relation between

the identified CC and the root of the attachment tree. Only one central claimmay be chosen (7). Secondly,

all vertices have exactly one outgoing edge with the exception of the central claim, which is a sink

node (8): If adui is the central claim, all atij will be set to 0. If not, there will be only one atij set to 1.

Note that once these constraints are added, the root constraints for attachment (1 and 2) are redundant.

n
∑

i=1

cci = 1 (7)

∀i

(

cci +

n
∑

j=1

atij

)

= 1. (8)

Interaction between central claim and role (ro-cc). Integrating the predictions of the role clas-

sifier gives the requirement that the central claim must be a proponent node (9). This bans the case

cci = 1, roi = 0, where the central claim is an opponent node. All other cases are allowed.

∀i cci 6 roi . (9)

Interaction between role and function (ro-fu). The following constraint represents the intuition that

every argumentative role (proponent or opponent) will only support itself, not the other; and only attack

the other, not itself. Hence, supporting relations are role-preserving, and attacking relations are role

inverting. Consider an edge from adui to aduj . We build the following table, that represents which role

and function configurations are valid:



atij roi fuiνs roj valid? Comments
0 * * * yes No attachment,

no restrictions
1 0 0 0 no OPP attacks OPP
1 0 0 1 yes OPP attacks PRO
1 0 1 0 yes OPP supports OPP
1 0 1 1 no OPP supports PRO
1 1 0 0 yes PRO attacks OPP
1 1 0 1 no PRO attacks PRO
1 1 1 0 no PRO supports OPP
1 1 1 1 yes PRO supports PRO

We now define Sij = roi + fuiνs
+ roj . The table can be reduced to:

atij Sij valid?
0 * yes
1 0 no
1 1 yes
1 2 no
1 3 yes

We introduce a set of auxiliary variables pspij , which are set to 1 if and only if adui and aduj form a
“PRO supports PRO” pattern. In this case the ADUs need not to be attached and the defining constraint
is as follows:

∀i, j 0 6 Sij − 3pspij 6 2 (10)

If 0 6 Sij 6 2, then pspij must be 0, or the sum will be negative. If Sij = 3, then pspij must be 1, or
the sum will be greater than 2. We now define Kij = Sij − 2pspij . The table can be completed:

atij Sij pspij Kij valid?

0 * * * yes
1 0 0 0 no
1 1 0 1 yes
1 2 0 2 no
1 3 1 1 yes

If atij = 1, then the case is valid iff Kij = 1. If atij = 0, then Kij can take any value between 0 and 2.
Therefore, we build the following constraint:

∀i, j atij 6 Kij 6 2− atij (11)

4.2.2. ILP approach by Stab/Gurevych [28]

Stab and Gurevych [28] primarily work on a corpus of persuasive essays but also report results on the
argumentative microtext corpus mentioned above, also using ILP. They strip the original argumentative
graphs from their roles supporting only central claims, claims and premises and build local classifiers
for argumentative relations and detection of argument components. They do not use structured output
prediction but create matrices representing the local classification results. These matrices are linearly
combined with another matrix derived from a combination of incoming and outgoing links on the non-
decoded graph, thus providing a new matrix which is used to maximize their objective function. Con-
straints guarantee a rooted tree without cycles. We replicated their work using probability distributions
from our local models as input; below, we refer to this decoder as repl. ILP S&G.



4.2.3. ILP approach by Persing/Ng [25]

Persing and Ng [25] work on the corpus by [27], which contains 90 essays, essentially using the same

annotation scheme as the data that we use here. In contrast to our ILP approach, Persing/Ng [25] use

an objective function that maximizes the average score over two probability distributions representing

the types of argumentative components (major claim, claim, premise or none) as well as the relation

type between two argumentative components (Support, Attack or no relation). They achieve that by

estimating the expected values of TP, FP and FN values from the results of the two classifiers. Their

constraints pertain to major claims (exactly one, in the first paragraph, no parents), premises (at least

one parent from the same paragraph), claims (at most one parent which should be a major claim). Other

constraints ask for at most two argumentative components per sentence, etc. We replicated their objective

function and constraints using probability distributions from our local models as input. In a variant, we

used their objective function but our own set of constraints. The results are shown in Table 3 as repl. ILP

P&N and new ILP objective 2, respectively.

5. Experiments and results

5.1. Evaluation procedure

In our experiments, we follow the setup of [22]. We use the same train-test splits, resulting from

10 iterations of 5-fold cross validation, and adopt their evaluation procedure, where the correctness of

predicted structures is assessed separately for the four subtasks, reported as macro averaged F1.

While these four scores cover important aspects of the structures, it would be nice to have a unified,

summarizing metric for evaluating the decoded argumentation structures. To our knowledge, no such

metric has yet been proposed, prior work just averaged over the different evaluation levels. Here, we

will additionally report labelled attachment score (LAS) as a measure that combines attachment and the

argumentative function labelling, as it is commonly used in dependency parsing. Note however, that this

metric is not specifically sensitive for the importance of selecting the right central claim and also not

sensitive for the dialectical dimension (choosing just one incorrect argumentative function might render

the argumentative role assignment for the whole argumentative thread wrong).

For significance testing, we apply the Wilcoxon signed-rank test on the series of scores from the 50

train-test splits and assume a significance level of α = 0.01.

5.2. Local models

The results of the experiment with the local models are shown in Table 2. We first repeat the reported

results of [22] and [28] for comparison. Below is our re-implementation of the classifiers of [22] (base),

followed a feature analysis where we report on the impact of adding each new feature to the replicated

baseline, reported as the delta.

Our replication of the baseline features (base) already provides a substantial improvement on all levels

for the English version of the dataset. We attribute this mainly to the better performance of spacy in pars-

ing English. For German, the results are competitive. Only for central claim identification our replicated

local models do not fully match the original model, which might be due to the fact that the spacy parser

does not offer a morphological analysis as deep as the mate parser and thus does not derive predictions

for sentence mood.



Table 2

Evaluation scores for the local models, the base classifiers, reported as macro avg. F1. The first two rows report on earlier
results. Against this we compare the new classifiers using the new linguistic pipeline (base), followed by a feature study
showing the impact of adding the new features (described in Section 3.1). Finally, we show the results of the final classifiers
combining these features.

English German

model cc ro fu at cc ro fu at

[22] 0.817 0.750 0.671 0.663 0.849 0.755 0.703 0.679

[28] 0.830 0.745 0.650

base 0.832 0.762 0.710 0.690 0.827 0.757 0.709 0.696

base + BC +0.008 −0.005 +0.001 +0.004 +0.008 +0.005 −0.001 −0.003

base + BC2 −0.003 −0.002 +0.001 −0.001 +0.003 −0.001

base + DR +0.005 +0.018 +0.019 +0.003 +0.002 −0.002 −0.001

base + VS −0.001 −0.002 −0.001 +0.002 +0.001 +0.001 −0.001

base + VEC −0.002 −0.002 −0.002 +0.001 +0.004 −0.003 +0.002 +0.002

base + VLR −0.002 +0.001 −0.001 +0.001 −0.002

base + VST −0.001

base + SS +0.009 +0.009

base +MC +0.012 +0.016

all − VEC 0.840 0.782 0.723 0.711 0.837 0.765 0.709 0.711

all 0.840 0.780 0.724 0.710 0.836 0.762 0.712 0.711

Investigating the impact of the new features, the highest gain is achieved by adding the features for
subordinate clauses (SS and MC) to the attachment classifier. Brown cluster unigrams give a moderate
boost for central claim identification. Interestingly, the word-vector representation did not have a sig-
nificant impact. The averaged word embeddings themselves (VEC) lowered the scores minimally for
English and improved the results minimally for German, but increased the training time considerably.6

The distance measures based on word vectors (VST and VLR) yielded no improvement likewise.
Taking all features together, excluding only the time-costly word embeddings (all − VEC), provides

us with local models that achieve state of the art performance on all levels but fu for English and cc for
German. We use this set of classifiers as the local models in all decoding experiments.

5.3. Global model

The results of the experiments with the decoders are shown in Table 3. Consider first the novel ILP
decoder and the impact of adding the different constraint sets to the baseline, which just predicts labelled
trees without exploiting any interaction. Adding the cc-at interaction constraints yields an improvement
on the CC and function level. The ro-cc interaction does not increase the scores on its own, but it helps a
little when combined with the cc-at interaction constraint set. A strong improvement in role classification
and a smaller one in function classification is achieved by adding the ro-fu interaction. The full constraint
set with all three interactions yields the best novel ILP decoder model. Changing our objective function
against that of [25] (objective 2) does not significantly affect the results.
When we compare the replicated decoders (repl ILP S&G) and (repl ILP P&N) against our novel ILP

decoder, we observe that they perform worse by nearly 10 points F1 in role classification. This is to some
degree expected, as these approaches do not involve a role classifier and thus cannot exploit interactions

6One explanation for the missing impact of the raw word embeddings could be that we used pre-trained word embeddings
and did not learn representations specific for our task, as advised by [10] in the context of discourse parsing.



Table 3

Evaluation scores for the global models, the decoders, reported as macro avg. F1 for the cc, ro, fu, and at levels, and as labelled
attachment score (LAS). The first two rows report on earlier results. In the following block of rows, we present the novel ILP
decoder model with different sets of constraints used: The first only produces labelled trees without exploiting interactions. We
then report on the impact of adding the interaction constraints. In the final row block, we report on our replication of related
approaches and on the evidence graph model serving as a baseline.

English German

model cc ro fu at LAS cc ro fu at LAS

[22] (EG-equal) 0.860 0.721 0.707 0.692 0.481 0.879 0.737 0.735 0.712 0.508

[28] 0.857 0.745 0.683

new ILP (no interaction, just labelled trees) 0.844 0.689 0.733 0.715 0.494 0.858 0.656 0.719 0.722 0.490

new ILP (cc-at) 0.870 0.699 0.752 0.716 0.502 0.865 0.651 0.725 0.722 0.493

new ILP (ro-cc) 0.844 0.689 0.733 0.715 0.494 0.858 0.656 0.719 0.722 0.490

new ILP (ro-fu) 0.846 0.770 0.742 0.718 0.516 0.852 0.745 0.726 0.729 0.517

new ILP (cc-at + ro-cc) 0.870 0.701 0.752 0.716 0.503 0.872 0.654 0.730 0.724 0.497

new ILP (cc-at + ro-cc + ro-fu) 0.862 0.783 0.750 0.720 0.524 0.870 0.753 0.740 0.733 0.528

new ILP (cc-at + ro-cc + ro-fu) objective 2 0.866 0.782 0.753 0.722 0.526 0.867 0.756 0.739 0.733 0.529

repl. ILP S&G 0.837 0.673 0.727 0.687 0.456 0.834 0.654 0.704 0.690 0.451

repl. ILP P&N 0.869 0.699 0.751 0.716 0.502 0.866 0.653 0.726 0.723 0.494

new EG equal 0.876 0.766 0.757 0.722 0.529 0.861 0.730 0.725 0.731 0.523

involving that level. The novel ILP decoder, however, also yields better results in attachment and (for

German) in function classification. The results of (repl ILP P&N) are nearly equal to that of new ILP

(cc-at): This is expected, as their constraints are very similar, and the special objective function of P&

N has been shown to not have a significant effect here. To our surprise, the (repl ILP S&G) performs

worse than the labelled tree baseline, although it adds a variant of the cc-at interaction, that the labelled

tree baseline does not have.7

While the novel ILP decoder gives the best result of all ILP decoders, the EG model and the new ILP

decoder are generally on par, but have different strengths: The EG model is better at CC identification;

the new ILP decoder is better at role classification. Both perform equally for attachment. Function clas-

sification, on the other hand, varies depending on the language. This is also shown by the LAS metric,

where new-EG-equal scores best for English, and the new ILP decoder for German. The differences in

cc, ro & fu between both models are all statistically significant. However, they are spread across different

levels and partly depend on the modeled language. We therefore cannot conclude that one approach is

superior to the other.

Finally, it is worth pointing out that our replication of the MST-based model of [22] for English and

the novel ILP decoder for German represent the new state of the art for automatically recognising the

argumentation structure in the microtext corpus.

6. Related work

Our work on globally optimizing an argumentation graph started out with the previous results of

[22] who learned local models that yield local probability distributions over ADUs, and then perform

7Keep in mind, though, that our replications only amount to characteristic features of their decoders and constraints that are
applicable on the microtext corpus. The result we obtained here do not represent what their whole system (including their local
models and domain-specific constraints) might predict.



global decoding using Minimum Spanning Trees (MST). In contrast to this work, we have developed an

improved local model which outperforms their local model in every aspect but role identification, and

we also built an improved decoding mechanism that employs Integer Linear Programming (ILP) and

yields better results for role identification. Two other works that use ILP decoding are that of [28] and

[25], which have been re-implemented in this paper.

While these approaches try to globally optimize an argumentation structure via decoding, others have

focused more on local elements of argumentation. We mention here [17], who experimented with the

classification of sentences into non-/argumentative by using a variety of input documents such as news-

papers, parliamentary records and online discussions. Binary classification of sentences into having an

argumentative role or not was also the focus of [6]. [12] used boosting in order to classify sentences into

non-/argumentative and to further separate argumentative sentence into Support, Oppose and Propose

categories. Finally, [16] worked on documents describing legal decisions and used SVMs in order to

classify decisions as claims or premises.

7. Conclusions

We presented a comparative study of various structured prediction methods for the extraction of argu-

mentation graphs. The methods we compared are all based on the decoding paradigm [26] where a local

model is learned from input data but final decisions are taken upon decoding which imposes structural

constraints on the output. We have used two different decoding mechanisms. The first is the classic MST,

which has been extensively used in discourse parsing as well [1,8,18], while the second falls under the

polytope decoding paradigm and employs ILP in order to impose constraints while maximizing a given

objective function. This approach has also been used in discourse parsing in the past [1].

In order to be able to meaningfully compare the various decoding mechanisms, we used the same un-

derlying corpus [23] and the same local model. Specifically, we constructed a new and improved version

of the base model presented in [22], which is our first contribution of this paper. We reimplemented three

different recent approaches and also presented a novel ILP approach with two variations on the objective

function (our second contribution). It turned out that both our novel ILP decoder and the replicated MST

decoder yield the best results in comparison to previous approaches, as they exploit all structural inter-

actions. The differences between our ILP and the MST approach are, however, not decisive. They appear

to have individual strengths on different levels, but we found no evidence in our experiments to consider

one approach to be generally superior to the other, as long as the goal is to predict tree structures.

Both decoding approaches are general enough in order to be able to be used with other corpora. As

far as the underlying local model is concerned, if the data are i.i.d., then the local model can be used

as is; otherwise a training corpus should be provided in order to be able to have appropriate probability

distributions. Regarding the decoders, the only assumption that they make is that the structures that we

want to predict are trees, so as long as this is the case there is nothing to change.

In the future we plan to extend these experiments to discourse parsing, using two different theories,

namely RST (Rhetorical Structure Theory, [14]) and SDRT (Segmented Discourse Representation The-

ory, [2]). The first uses tree structures for the representation of discourse while the second uses directed

acyclic graphs when converted into dependency structures. Moreover we plan to use other structured

prediction methods combining deep neural architectures with structured prediction [11]. Finally we plan

to study the interplay between discourse and argumentation, trying to jointly learn both structures using

the corpus presented in [30] which contains annotations for both discourse structure and argumentation.
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