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Levenberg—Marquardt Methods Based on Probabilistic Gradient Models and
Inexact Subproblem Solution, with Application to Data Assimilation

E. BergouT, S. Gratton?, and L. N. Vicente®

Abstract. The Levenberg-Marquardt algorithm is one of the most popular algorithms for the solution of non-
linear least squares problems. Motivated by the problem structure in data assimilation, we consider
in this paper the extension of the classical Levenberg-Marquardt algorithm to the scenarios where
the linearized least squares subproblems are solved inexactly and/or the gradient model is noisy
and accurate only within a certain probability. Under appropriate assumptions, we show that the
modified algorithm converges globally to a first order stationary point with probability one. Our
proposed approach is first tested on simple problems where the exact gradient is perturbed with
a Gaussian noise or only called with a certain probability. It is then applied to an instance in
variational data assimilation where stochastic models of the gradient are computed by the so-called
ensemble methods.

Key words. Levenberg—Marquardt method, nonlinear least squares, regularization, random models, inexact-
ness, variational data assimilation, Kalman filter/smoother, ensemble Kalman filter/smoother
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1. Introduction. In this paper we are concerned with a class of nonlinear least squares
problems for which the exact gradient is not available and replaced by a probabilistic or random
model. Problems of this nature arise in several important practical contexts. One example
is variational modeling for meteorology, such as 3DVAR and 4DVAR [7, 20], the dominant
data assimilation least squares formulations used in numerical weather prediction centers
worldwide. Here, ensemble methods, like those known by the abbreviations EnKF and EnKS
(for ensemble Kalman filter and smoother, respectively) [10, 11], are used to approximate the
data arising in the solution of the corresponding linearized least squares subproblems [22],
in a way where the true gradient is replaced by an approximated stochastic gradient model.
Other examples appear in the broad context of derivative-free optimization problems [6] where
models of the objective function evaluation may result from, a possibly random, sampling
procedure [1].

The Levenberg-Marquardt algorithm [12, 16] can be seen as a regularization of the Gauss—
Newton method. A regularization parameter is updated at every iteration and indirectly
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controls the size of the step, making Gauss—Newton globally convergent (i.e., convergent to
stationarity independently of the starting point). We found that the regularization term added
to Gauss—Newton maintains the structure of the linearized least squares subproblems arising
in data assimilation, enabling us to use techniques like ensemble methods while simultaneously
providing a globally convergent approach.

However, the use of ensemble methods in data assimilation poses difficulties since it
makes random approximations to the gradient. We thus propose and analyze a variant of
the Levenberg-Marquardt method to deal with probabilistic gradient models. It is assumed
that an approximation to the gradient is provided but only accurate with a certain probabil-
ity. The knowledge of the probability of the error between the exact gradient and the model
one, and in particular of its density function, can be used in our favor in the update of the
regularization parameter.

Having in mind large-scale applications (as those arising from data assimilation), we then
consider that the least squares subproblems formulated in the Levenberg—-Marquardt method
are only solved in some approximated way. The amount of inexactness in such approximated
solutions (tolerated for global convergence) is rigorously quantified as a function of the regu-
larization parameter, in a way that it can be used in practical implementations.

We organize this paper as follows. In section 2, a short introduction to the Levenberg—
Marquardt method is provided. The new Levenberg—Marquardt method based on probabilistic
gradient models is described in section 3. Section 4 addresses the inexact solution of the lin-
earized least squares subproblems arising within Levenberg—Marquardt methods. We cover
essentially two possibilities: conjugate gradients (CGs) and any generic inexact solution of
the corresponding normal equations. The whole approach is shown to be globally conver-
gent to first order critical points in section 5, in the sense that a subsequence of the true
objective function gradients goes to zero with probability one. The proposed approach is
numerically illustrated in section 6 with a simple problem, artificially modified to create (i)
a scenario where the model gradient is a Gaussian perturbation of the exact gradient, and
(ii) a scenario case where to compute the model gradient both exact/approximated gradi-
ent routines are available but the exact one (seen as expensive) is called only with a certain
probability.

An application to data assimilation is presented in section 7 where the purpose is to solve
the 4DVAR problem using the methodology described in this paper. For the less familiar
reader, we start by describing the 4DVAR incremental approach (Gauss—Newton) and the ways
to solve the resulting linearized least squares subproblems, in particular Kalman smoother
and EnKS, the latter one leading to stochastic model gradients. We then show how our
approach, namely, the Levenberg-Marquardt method based on probabilistic gradient models
and an inexact subproblem solution, provides an appropriate framework for the application
of the 4DVAR incremental approach using the EnKS method for the subproblems and finite
differences for derivative approximation. Illustrative numerical results using the Lorenz—63
model as a forecast model are provided.

A discussion of conclusions and future improvements is given in section 8. Throughout
this paper || - || will denote the vector or matrix fo-norm. The notation [X;Y] will represent
the concatenation of X and Y as in MATLAB syntax.



2. The Levenberg—Marquardt method. Let us consider the following general nonlinear
least squares problem

1
1 min —||F(x 2,
1) min f(z) = S||F()
where F': R™ — R™ is a (deterministic) vector-valued function, assumed continuously differ-
entiable, and m > n. Our main probabilistic approach to deal with nonlinear least squares
problems is derived having in mind a class of inverse problems arising from data assimilation,
for which the function f to be minimized in (1) is of the form

(2) (Iwo—xbllg 1 +Z|lmz Mi(@ia)lg +leyz 2|5 )
=1

where (xq,...,z7) corresponds to x and where the operators M; and H; and the scaling
matrices will be defined in section 7.

The Gauss-Newton method is an iterative procedure where at each point z; a step is
computed as a solution of the linearized least squares subproblem

1
in =||F; s||2
min S| Fj + Jjs||,

where F; = F(z;) and J; = J(x;) denotes the Jacobian of F' at x;. The subproblem has a
unique solution if J; has full column rank, and in that case the step is a descent direction for f.
In the case of our target application problem (2), such a linearized least squares subproblem
becomes

T
. 1 /
min __ o <||930 + 60 — wpllp1 + > Nl + 01 — M) — Mi(wi-1)dwi1})-

6ZE0,...,5ZTER7‘ —
T
=0

where (0zg,...,0zy) corresponds to s (and the other details are given in section 7).

The Levenberg-Marquardt method [12, 16] (see also [19]) was developed to deal with the
rank deficiency of .J; and to provide a globalization strategy for Gauss-Newton. At each
iteration it considers a step of the form —(JjTJj + ’yjI)_leTFj, corresponding to the unique
solution of )

2 20 o112
Snelﬁgn m;(z; + s) = HFJ + JjsllI” + 5%‘”5” ;
where 7, is an appropriately chosen regularization parameter. See [18, Notes and References of
Chapter 10] for a brief summary of theoretical and practical aspects regarding the Levenberg—
Marquardt method.

The Levenberg-Marquardt method can be seen as a precursor of the trust-region method [5]

in the sense that it seeks to determine when the Gauss—Newton step is applicable (in which



case the regularization parameter is set to zero) or when it should be replaced by a slower
but safer gradient or steepest descent step (corresponding to a sufficiently large regularization
parameter). The comparison with trust-region methods can also be drawn by looking at the
square of the regularization parameter as the Lagrange multiplier of a trust-region subproblem
of the form mingegrn (1/2)||Fj + J;s||? s.t. ||s|| < d;, and in fact it was soon suggested in [17]
to update the regularization parameter -; in the same form as the trust-region radius J;. For
this purpose, one considers the ratio between the actual reduction f(x;) — f(z; + s;) attained
in the objective function and the reduction m;(x;) — m;(z; + s;) predicted by the model,

given by
fl@g) — fl@) +s5)
m]‘(.’Ej) — mj(a?j + Sj) ’

i =

Then, if p; is sufficiently greater than zero, the step is accepted and ~; is possibly decreased
(corresponding to “J; is possibly increased”). Otherwise the step is rejected and +; is increased
(corresponding to “0; is decreased”).

3. The Levenberg—Marquardt method based on probabilistic gradient models. We are
interested in the case where we do not have exact values for the Jacobian J; and the gradient
J;Fj (of the model m;(z; + s) at s = 0), but rather approximations which we will denote
by Jm; and gm;. We are further interested in the case where these model approximations
are built in some random fashion. We will then consider random models of the form Mj,
where gy, and Jy; are random variables, and use the notation m; = M;(w;), gm; = gum; (w;),
and Jp,, = Ju, (wj) for their realizations. Note that the randomness of the models implies
the randomness of the current point z; = X;(w;) and the current regularization parameter
v; = I'j(w;), generated by the corresponding optimization algorithm.

Thus, the model (where F},,; represents an approximation to F})

1 1 1
mj(wj + ) = m;(w;) = 5| Fm; + I, s||* + §“y]2~||8||2 = 5l1Fm 12

J
_ T 1 T JT J 2[
- gmjs + 53 mj Y m; + 7j S

is a realization of

1
M;(X; +5) = My(X;) = glp,s + 557 (JAEJ,JMJ. + F?I) 5.

Note that we subtracted the order zero term to the model to avoid unnecessary terminology.
Our subproblem then becomes

. 1
(4) min m; (@ + ) = mj(a;) = g5+ 557 (I, Iy + 1) s

In our data assimilation applied problem (2), the randomness arises from the use of EnKS
to approximately solve the linearized least squares subproblem (~3) In fact, as we will see in
section 7, quadratic models of the form 1/2(||u||?BJ\,),1 + ||Hu — D|[3_,) will be realizations of

random quadratic models 1/2(|[ul[3-, + [ Hu — 15“%,1), where u corresponds to s, and where



it would be easy to see what are the realizations g,, and J,,, and the corresponding random
variables gy and Jyy.

We will now impose that the gradient models gy, are accurate with a certain probability
regardless of the history My,..., M;_;. The accuracy is defined in terms of a multiple of the
inverse of the square of the regularization parameter (as happens in [1] for trust-region methods
based on probabilistic models where it is defined in terms of a multiple of the trust-region
radius). As we will see later in the convergence analysis (since the regularization parameter
is bounded from below), one can demand less here and consider just the inverse of a positive
power of the regularization parameter.

Assumption 3.1. Given constants a € (0,2], keg > 0, and p € (0,1], the sequence of ran-
dom gradient models {gxs, } is (p)-probabilistically re,-first-order accurate, for corresponding
sequences { X}, {I';}, if the events

Re
Sj = {HQM]- — (X)) F(X))] < P—‘f}

satisfy the following submartingale-like condition
(5) pj = P(S|7%1) = p,

where ]-']M = o(Moy,...,M;_1) is the o-algebra generated by My, ..., M;_;.

Correspondingly, a gradient model realization g, is said to be keg-first-order accurate if

lgm; = J ()T F )| < 2L
J

The version of Levenberg—Marquart that we will analyze and implement takes a successful
step if the ratio p; between actual and predicted reductions is sufficiently positive (condition
p;j > m below). In such cases, and now deviating from classical Levenberg-Marquart methods
and following [1], the regularization parameter ~; is increased if the size of the gradient
model is of the order of the inverse of 7; squared (i.e., if [|gm,|| < 72 /732 for some positive
constant 12 > 0). Another relevant distinction is that we necessarily decrease 7; in successful
iterations when ||gpm, || > 12/ 7]2-. The algorithm is described below and generates a sequence
of realizations for the above-mentioned random variables.

Algorithm 3.1 (Levenberg-Marquardt method based on probabilistic gradient models).

Initialization
Choose the constants 71 € (0,1), 72, Ymin > 0, A > 1, and 0 < ppin < Pmax < 1. Select zy and

PYOZ’Ymin-
For j=0,1,2,...

1. Solve (or approximately solve) (4), and let s; denote such a solution.
f@j)—f(zj+s5)
mj(z;)—m;(z;+s;)

3. Make a guess p; of the probability p;f given in (5) such that ppi, < Pj < Pmax-

2. Compute p; =



If pj > m, then set x;41 = x; + s; and
A if [|gm; | < 12/77,

L . .
Vit max{ﬁ—fpj,vmm if lgm, | = m2/73-

A Pi

Otherwise, set xj11 = z; and vj41 = \y;.

If exact gradients are used (in other words, if gr;, = J(X;) " F(X})), then one always has

o Reg| rm | _
pj—P<O§FC¥]:j1>_1’
J

and the update of + in successful iterations reduces to v;11 = max{7;, Ymin} (When [|gm,|| >
72/ 7?), as in the more classical deterministic-type Levenberg-Marquart methods. In general
one should guess p; based on the knowledge of the random error incurred in the application
context. It is however pertinent to stress that the algorithm runs for any guess of p; € (0, 1]
such that p; € [Pmin, Pmax]-

4. Inexact solution of the linearized least squares subproblems. Step 1 of Algorithm 3.1
requires the approximate solution of subproblem (4). As in trust-region methods, there are
different techniques to approximate the solution of this subproblem yielding a globally con-
vergent step, and we will discuss three of them in this section. For the purposes of global
convergence it is sufficient to compute a step s; that provides a reduction in the model as
good as the one produced by the so-called Cauchy step (defined as the minimizer of the model
along the negative gradient or steepest descent direction —g,; ).

4.1. A Cauchy step. The Cauchy step is defined by minimizing m;(z; —tgm;) whent >0
and is given by
) g, I?

9o (T Iy + 72D, ™

(6) s =

The corresponding Cauchy decrease (on the model) is

I

1 | Gm;
ma(x:) —m. $+Sc = — 2 °

Since g;j(,]% Iy + 330 gm; < NG, 12 (1 Jm; [|* +73), we conclude that

1 lgm, |12
mji(z;) —mj(x; + 85) > - ——2—.

o 2 N R

The Cauchy step (6) is cheap to calculate as it does not require solving any system of

linear equations. Moreover, the Levenberg—Marquart method will be globally convergent if it
uses a step that attains a reduction in the model as good as a multiple of the Cauchy decrease.
Thus we will impose the following assumption on the step calculation.

Copyright © by STAM and ASA. Unauthorized reproduction of this article is prohibited.



Assumption 4.1. For every step j and for all realizations m; of M,

m‘(x-)—m-(x'+s-)>9f0d lgm; I
VAN VAN =9 ||ij||2+,-yj2

for some constant 6.4 > 0.

Such an assumption asks from the step a very mild reduction on the model (a fraction of
what a step along the negative gradient would achieve) and it can thus be seen as a sort of
minimum first order requirement.

4.2. A truncated-CG step. Despite providing a sufficient reduction in the model and
being cheap to compute, the Cauchy step is a particular form of steepest descent, which can
perform poorly regardless of the step length. One can see that the Cauchy step depends on
J,Zj Jm; only in the step length. Faster convergence can be expected if the matrix Jn:j I
also influences the step direction.

Since the Cauchy step is the first step of the CG method when applied to the minimization
of the quadratic m;(z; + s) — m;(x;), it is natural to propose to run CG further and stop
only when the residual becomes relatively small. Since CG generates iterates by minimizing
the quadratic over nested Krylov subspaces, and the first subspace is the one generated by
gm; (see, e.g., [18, Theorem 5.2]), the decrease attained at the first CG iteration (i.e., by the
Cauchy step) is kept by the remaining.

4.3. A step from inexact solution of normal equations. Another possibility to approx-
imately solve subproblem (4) is to apply some iterative solver (not necessarily CG) to the
solution of the normal equations

(S Ty +731) 85 =~

An inexact solution sé-” is then computed such that

(7) (T Iy +3T) 857 = ~gm, 7
for a relatively small residual r; satisfying ||7;[| < €;[|gm,||. For such sufficiently small residuals

we can guarantee a Cauchy decrease.

Assumption 4.2. For some constants 3;,, € (0,1) and 6, > 0, suppose that ||} < €| gm, ||

and
€ <min< —, ¢/ Bin—5—5 7.
! {7;?‘ \/ T 12+ 7

Note that we only need the second bound on €; (see the above inequality) to prove the
desired Cauchy decrease. The first bound on ¢; will be used later in the convergence analysis.
The following result is proved in the appendix.

Lemma 4.1. Under Assumption 4.2, an inexact step sé-" of the form (7) achieves Cauchy
decrease if it satisfies Assumption 4.1 with Ofcq = 2(1 — Bin).



5. Global convergence to first order critical points. We start by stating that two terms,
that later will appear in the difference between the actual and predicted decreases, have the
right order accuracy in terms of v;. The proof is given in the appendix.

Lemma 5.1. For the three steps proposed (Cauchy, truncated CG, and inexact normal equa-
tions), one has that

2(|gm; |
55l < —=~
J
and
Al Ty 121l gm, 117 + 2605l gon; I”

min{1, 770 }y2 e

s (Vi85 + gm,)| <

(Assumption 4.2 is assumed for the inexact normal equations step s; = 33")
We proceed by describing the conditions required for global convergence.

Assumption 5.1. The function f is continuously differentiable in an open set containing
L(xzo) = {x € R" : f(x) < f(xo)} with Lipschitz continuous gradient on L(xg) and corre-
sponding constant v > 0.

The Jacobian model is uniformly bounded, i.e., there exists ., > 0 such that [|J,,, || <
Km for all j.

The next result is a classical one and essentially says that the actual and predicted reduc-
tions match each other well for a value of the regularization parameter v, sufficiently large
relatively to the size of the gradient model (which would correspond to a sufficiently small
trust-region radius in trust-region methods).

Lemma 5.2. Let Assumption 5.1 hold. Let also Assumption 4.2 hold for the inexact normal
equations step s; = sﬁ” If zj is not a critical point of f and the gradient model gm; S Keg-
first-order accurate, and if

2Keg

L 2 2+ =ed 4 920, + 8K
ki O\ K Tom.q + 20in + 87,
'yj>< J ) with &j:<1+ 2‘]m> — 5
min{1,v; " }0seq

Ymin

Y

then pj > n1.
Proof. Again we omit the indices j in the proof. Applying a Taylor expansion,

P m(z) — f(x) + f(x +s) —m(z + s) + m(z) — m(z + s)
2[m(x) — m(z + s)]
s'J(x)" F(x)+ R—5"gm —s"(J) Jm +721)s — 5" gm
2[m(x) — m(z + )]
_ R+ (J(2)"F(x) = gm) s — s (J] Jn)s — sT (425 + gm)
2[m(z) — m(z + )] '

where R < v|[s||?/2.



Now, using Lemma 5.1, Assumptions 4.1 and 5.1, and v > Yin,

sllsl® + Z2 sl + 17| Plls]* = 5" (2?5 + 9)

p
1-=<
2 = 9fz:d”9m||2
[T+~
wlgml2 | 26eqllgmll | 46Tnlgml® | 4675, lgm I +2]lgm|1*0in
74 + yita + 4 + min{1,72, " }y2+e
<
- Ofcallgm]®
V(1 Im 12 /i +1)
Rim QHEQ . 2
(1+ ﬁm) (20 + focg + 200 +843,,)
< . o < <1l-mn.
min{1, v, “}0reqv® v
We have thus proved that p > 2n; > n;. |

One now establishes that the regularization parameter goes to infinity, which corresponds
to the trust-region radius going to zero in [1].

Lemma 5.3. Let the second part of Assumption 5.1 hold (the uniform bound on Jy,; ). For
every realization of the Algorithm 3.1, lim;_,~ v; = o0.

Proof. If the result is not true, then there exists a bound B > 0 such that the number
of times that 7; < B happens is infinite. Because of the way ~; is updated one must have
an infinity of iterations such that ~;;1 < «;, and for these iterations one has p; > 7, and
Hgm]' | > 772/32' Thus,

f(xy) = floj + s5) = mlmj(x;) —my(x; + s5)]

Oed 1 2
> -
n (5 ) low

Mbed (@)2
~ 2(k%,, + B?) \B?

Since f is bounded from below by zero, the number of such iterations cannot be infinite, and
hence we arrive at a contradiction. |

Now, if we assume that the gradient models are (p;)-probabilistically r.,-first-order ac-
curate, we can show our main global convergence result. First we will state an auxiliary
result from the literature that will be useful for the analysis (see [8, Theorem 5.3.1] and [8,
Exercise 5.3.1]).

Lemma 5.4. Let G; be a submartingale, in other words, a set of random variables which
are integrable (E(|G;|) < oo) and satisfy E(G;|F;—1) > Gj—1 for every j, where Fj_q1 =
0(Go,...,Gj-1) is the o-algebra generated by Gy, ...,Gj—1 and E(G;|F;-1) denotes the con-
ditional expectation of G given the past history of events F;_1.

Assume further that there exists M > 0 such that |G —Gj—1| < M < oo for every j. Con-
sider the random events C' = {lim;_, o, G; exists and is finite} and D = {limsup,_,,, G; = oo}.
Then P(CUD) = 1.

Theorem 5.1. Let Assumption 5.1 hold. Let also Assumption 4.2 hold for the inexact nor-
mal equations step s; = s;”



Suppose that the gradient model sequence {gMj} is (pj)-probabilistically keq-first-order ac-
curate for some positive constant keq (Assumption 3.1). Let {X;} be a sequence of random
iterates generated by Algorithm 3.1. Then almost surely,

liminf |V £(X,)]| = 0.
]—}OO

Proof. The proof follows the same lines as [1, Theorem 4.2]. Let

J
1
-3 (L),
i=o \Pi

where 5; is as in Assumption 3.1. Recalling p; = P(Sﬂ]-";‘fl) > p;, we start by showing that
{W;} is a submartingale:

1
E(W,|FM) =W, + FP(Sjlff\fl) —1>W;_1.
J

Moreover, min{1,1/p; — 1} < |[W; — W;_1| < max{(1 — p;)/pj,1} < max{1/p;,1} = 1/p;.
Since 0 < Ppmin < Pj < Pmax < 1, one has 0 < min{1,1/pmax — 1} < |W; — W;_1] < 1/pmin-
Thus, from 0 < min{1, 1/pmax — 1} < |W; —W;_4|, the event {lim;_,o, W; exists and is finite}
has probability zero, and using Lemma 5.4 and |W; — W;_1| < 1/pmin, one concludes that
P(limsup,_, W; = o0) = 1.

Suppose there exist € > 0 and j; such that, with positive probability, ||V f(X;)|| > € for
all j > ji. Let now {z;} and {v;} be any realization of {X,} and {I';}, respectively, built by
Algorithm 3.1. By Lemma 5.3, there exists jo such that Vj > js

1 1 1
2 o 2 2 - a
8 v > b6 — max —Kag s 7772 ,)\ppl’Ymin, 7’{6 )
J
€ € 1—m

where

K%m 2v + M% + 20, + 8/6?]
Ke= |1+ ~ 7—a -
’Ymin mln{17 ’ymin }efcd
For any j > jo = max{j1, jo} two cases are possible.
If 15, = 1, then, from (8),

T K €
lgm; = J (@) F(ay)| < =3 < 3
U
yielding [[gm, || > €/2. From (8) we also have that [|gm,|| > €/2 > n2/77. On the other hand,
Lemma 5.2, (8), and ||gm, || > €/2 together imply that p; > 7;. Hence, from this and step 3
of Algorithm 3.1, the iteration is successful. Also, from ||gm;|| > 72 /732 and (8) (note that
(1 — x)/x is decreasing in (0, 1]), v is updated in step 3 as
i
Vi1 = %pj
AP




Let now B; be a random variable with realization b; = logy (b:/7;). In the case 1g, = 1,

1—p;
bjy1="0b; + L.
J+ J pj

If 15, = 0, then b1 > bj — 1, because either ;11 < v; and therefore b1 > bj, or vj11 =
Av; and therefore b1 > b; — 1. Hence B; — Bj, > W; — Wj,, and from P(limsup;_,. W; =
o0) = 1 one obtains P(limsup,_,., Bj = c0) = 1 which leads to a contradiction with the fact
that B; < 0 happens for all j > jo with positive probability. |

6. A numerical illustration. The main concern in the application of Algorithm 3.1 is to
ensure that the gradient model is (p;)-probabilistically accurate (i.e., p; > pj; see Assump-
tion 3.1) or at least to find a lower bound puyi, > 0 such that p;f > Pmin. However, one can,
in some situations, overcome these difficulties such as in the cases where the model gradient
(i) is a Gaussian perturbation of the exact one, or (ii) results from using either the exact one
(seen as expensive) or an approximation. In the former case we will consider a run of the
algorithm under a stopping criterion of the form v; > Ymax.

6.1. Gaussian noise. At each iteration of the algorithm, we consider an artificial random
gradient model, by adding to the exact gradient an independent Gaussian noise, more precisely
we have gy, = J(X;) VF(X;) +e;, where (gj); ~ N(0,0%,) for i = 1,...,n. Let 5; be a

Jit
diagonal matrix with diagonal elements oj;, i = 1,...,n. It is known that
n (&) 2
2
et =3 (E2) ~ o
=1 \ T

where x2(n) is the chi-squared distribution with n degrees of freedom. To be able to give
an explicit form of the probability of the model being k.g-first-order accurate, for a chosen
Keg > 0, we assume also that the components of the noise are identically distributed, that is,
0j; = 0j Vi € {1,...,n}. Because of the way in which ~; is updated in Algorithm 3.1, it is
bounded by M~y and, thus, r; < min{)\j Y0, Ymax |, Where ymax is the constant used in the
stopping criterion. One therefore has

M 1)

2
K
> P 24542<< VA > Ba )
<| J JH gjmln{/\J’)’Oa'Ymax}a o

Using the Gaussian nature of the noise ¢; and the fact that it is independent from the filtration
Fjj‘f 1, we obtain

2
9 £ > ODF < ez
9) pj = x2(n) ((Uj min{)\J’YOaﬁYmax}a> ) b

where C' DF,
of freedom.

* "ie
pj="F <|9Mj —J(X) T F(X)|| < =
J

»(n) 18 the cumulative density function of a chi-squared distribution with n degrees
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Figure 1. Average results of Algorithm 3.1 for 60 runs when using probabilities p; = 1 (dotted line), p; = p;
(solid line), and p; = pmin (dashed line). The z-axis represents number of iterations.

The numerical illustration was done with the following nonlinear least squares problem
defined using the well-known Rosenbrock function

1 1
Fwy) = 5 (Il = 12 + 100y — 22|%) = [P, )]

The minimizer of this problem is (z*,y*)" = (1,1)7.

Algorithm 3.1 was initialized with 29 = (1.2,0)" and vy = 1. The algorithmic parameters
were set to 71 = 12 = 1073, Ymin = 1076, and A\ = 2. The stopping criterion used is Yj > Ymaxs
where Ymax = 106. We used a = 1/2, 0; = 0 = 10 V4, and k¢4 = 100 for the random gradient
model.

Figure 1 depicts the average, over 60 runs of Algorithm 3.1, of the objective function
values, the absolute errors of the iterates, and the percentages of successful iterations, using,
across all iterations, the three choices p; = 1, p; = p;, and p; = puin. In the last case, pyin is
an underestimation of p; given by

2
_ -1 Keg _ -3
Pmin = CDF_{ ( ) =5-107%

e
U’Ymax



Table 1
For three different runs of Algorithm 3.1, the table shows the values of the objective function and relative
error of the solution found for the three choices p; = 1, pj = P, and pj = Pmin = 5 - 1073,

Run number 1 2 3
(=, y) = (" )/ NEy) (s =1) 1.0168 0.3833 0.7521
flz,y) (pj =1) 0.5295 0.0368 1.47
|z, y) = (@, y)/I "yl (ps = Bj) 0.0033 0.0028 0.0147
f,y) (p; = D)) 2.6474e-006 | 1.9778e-006 | 4.3548e-005
(@, y) = @ y)I/IE" y ) (p; = Pmin) 0.1290 0.1567 0.0068
f(x,y) (pj = Pmin) 0.0036 0.0059 9.1426e-006

The final objective function values and the relative final errors are shown in Table 1 for the
first three runs of the algorithm. One can see that the use of p; = p; leads to a better
performance than p; = pyin (because pj > pmin is a better bound for pj than pmin is).

In the case where p; = 1, Algorithm 3.1 exhibits a performance worse than for the two
other choices of p;. The algorithm stagnated after some iterations, and could not approximate
the minimizer with a decent accuracy. In this case, 7; is increasing along the iterations, and
thus it becomes very large after some iterations while the step s; ~ 1 /7]2 becomes very small.

Other numerical experiments (not reported here) have shown that, when the error on the
gradient is small (0 < 1), the two versions p; = p; and p; = 1 give almost the same results,
and this is consistent with the theory because when o — 0, from (9),

b — CDFX‘;(n) (00) = 1.

Note that, on the other extreme, when the error on the gradient is big (¢ > 1), version p; = p;
approaches version p; = puyin since p; >~ puin-

6.2. Expensive gradient case. Let us assume that, in practice, for a given problem, one
has two routines for gradient calculation. The first routine computes the exact gradient and
is expensive. The second routine is less expensive but computes only an approximation of the
gradient. The model gradient results from a call to either routine. In this section, we propose
a technique to choose the probability of calling the exact gradient which makes our approach
applicable.

Algorithm 6.1 (Algorithm to determine when to call the exact gradient gy, ).

Initialization
Choose the constant puyin € (0,1) (Pmin is the lower bound of all the probabilities p;‘)
For a chosen probability p; such that p; > punin

1. Sample a random variable U ~ U([0,1/p;]), independently from Fj]v_f17 and U([0,1/p;]) is
the uniform distribution on the interval [0,1/p;].
1.1 If U <1, compute gps; using the routine which gives the exact gradient.
1.2 Otherwise, compute gps; using the routine which gives an approximation of the exact
gradient.

Lemma 6.1. If we use Algorithm 6.1 to compute the model gradient at the jth iteration of
Algorithm 3.1, then we have pj > Pj > Pmin-
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Figure 2. Awverage results of Algorithm 3.1 for 60 runs when using probabilities p; = p; (solid line),
p; = max{1/10,p;} (dotted line), and p; = max{1/50,p;} (dashed line). The x-axis represents number of

iterations.
M

> P (llgw, = J(X5)TF (X))l = 0|}, )

Proof. By using inclusion of events, we have that

% K
pj =P <|9Mj — J(X;)TF(X))| < T
J

and from Algorithm 6.1 we conclude that

1
P (llaw, = TC6G)TEG) = 0[FYL ) 2 P < 1) = 7,
j
and thus p; > pj. The other inequality, p; > pmin, is imposed in the algorithm. |

For the experiments we use the same test function and the same parameters as in sec-
tion 6.1. In step 1.2 of Algorithm 6.1, we set the model gradient gps; to the exact gradient
of the function plus a Gaussian noise sampled from N(0,107). Across all iterations, we use
Algorithm 6.1 to compute gy, with the three following choices of p;:

e p; = 1/10, i.e., at iteration j the model gradient coincides with the exact gradient
with probability at least p; = 1/10. Moreover, we have p; > pj, where p; is the same
as in (9), and thus one can choose p; = max{1/10,p; }.

e p; = 1/50, with the same analysis as before and one can choose p; = max{1/50,p;}.

e p; ~0(p; = 10719 in the experiment below), i.e., at iteration j the probability that
the model gradient coincides with the exact gradient is very small. Thus one can
choose p; = p;.

Figure 2 depicts the average of the function values and the absolute error of the iterates
over 60 runs of Algorithm 3.1 when using the three choices of the probability p;. As expected,
the better the quality of the model is the more efficient Algorithm 3.1 is (fewer iterations
are needed to “converge” in the sense of sufficiently reducing the objective function value



and absolute error). We can clearly see that Algorithm 3.1 using the models for which p; =
max{1/10,p;} provides a better approximation to the minimizer of the objective function
than using the models for which p; = max{1/50,p;}, and this latter one is better than the
case when p; = p;.

7. Application to data assimilation. Data assimilation is the process by which observa-
tions of a real system are incorporated into a computer model (the forecast) to produce an
estimate (the analysis) of the state of the system. 4DVAR is the data assimilation method
mostly used in numerical weather prediction centers worldwide. 4DVAR attempts to recon-
cile a numerical model and the observations, by solving a very large weighted nonlinear least
squares problem. The unknown is a vector of system states over discrete points in time. The
objective function to be minimized is the sum of the squares of the differences between the
initial state and a known background state at the initial time and the differences between the
actual observations and ones predicted by the model.

7.1. 4ADVAR problem. We want to determine z,...,x, where x; is an estimator of the
state X; at time 4, from the background state Xo = z + Wp, Wy, ~ N (0, B). The observations
are denoted by y; = Hi(X;) + Vi, Vi ~ N(0,R;), i = 0,...,T, and the numerical model
by X; = M;i(X;—1) + Wi, W; ~ N(0,Q;), i = 1,...,T, where M, is the model operator
at time ¢ and #; is the observation operator at time i (both not necessarily linear). The
random vectors Wy, V;, W; are the noises on the background, on the observation at time 1,
and on the model at time ¢, respectively, and are supposed to be Gaussian distributed with
mean zero and covariance matrices B, R;, and @);, respectively. Assuming that the errors
(the background, the observation, and the model errors) are independent from each other and
uncorrelated in time [9], the posterior probability function of this system (in other words, the
pdf of Xo,..., Xy knowing v, ...,yr) is proportional to

=4 (loo-anlly 4TI oMo + S el )
k2

(10) exp z
and therefore the maximizer of the posterior probability function estimator is defined to be
the minimizer of the weak constraint 4DVAR problem [20] defined as the minimizer of the
function defined in (2), which is the negative logarithm of (10).

7.2. Incremental 4DVAR. To find the solution of the nonlinear least squares problem
(2), one proceeds iteratively by linearization. At each iteration, one solves the auxiliary linear
least squares subproblem defined in (3) for the increments dzg,...,d0xp. Such an iterative
process is nothing else than the Gauss—Newton method [2] for nonlinear least squares, known
in the data assimilation community as the incremental approach [7].

Deno,te z = 0wy, 2 = Ty — X0, 2 = [20;...527], mi = M(xi—1) — zi, di = yi — Hi(zi),
M; = M;(zi—1), and H; = H,(z;). Then (3) becomes

T T
1
(11) min <|Zo—zb||231 +> 2 — Mizia = millg +> ld; —Hz‘zz‘@il)-

1 —
T+1) 2
Z€RMTHD i—1 =0

It is known that the solution of the linear least squares problem (11) is exactly the same as



the Kalman smoother estimator for the following linear system (see [21])

(]‘2) ZO:Zb+Wb7 WbNN(O7B)7
(13) Zl:M2Z1—1+m2+WZ7 ‘/I/ZNN(O)Q’L), L= 1)5Ta
(14) d; =H;Z; +'V,, V;NN(O,RZ), 1=0,...,T.

For simplicity, we now rewrite the linear system (12)—(14) as

(16) D=HZ+V, V~N(0,R),
where

Z = [Zy;...; Zr] is the joint state of the states Zy, ..., Zr,

D = [do; dy; ... dr],

Zy = [zp; Myzp + ma; Mo(Mizy +ma) +ma; ... i Mp(--- Myzy +my -+ ) + mr],

H = diag(Hy, ..., Hr) is the joint observation operator,

W = [Wy; MiWy, + Wy Mo (MyWy + W) + Wos ..oy Mp(- - MyWy + Wy -+ ) + W],
By =cov(W), V =[Vo;Vi;...;Vp], and R = cov(V).

To simplify it even more, we make the change of variables U = Z — Z;,, and then (15)—(16)
becomes

U ~ N(0, By),
D—HZ,=HU+V, V~N(0,R),

and the linear least squares problem (11) becomes (with z replaced by u + Z)

(17) min E

2 _ _ 2
S (||UHBJV1 +||D—HZ, HUHR*1>-

To solve problem (17), we propose to use the EnKS as a linear least squares solver instead
of the Kalman smoother. The ensemble approach is naturally parallelizable over the ensemble
members. Moreover, the proposed approach uses finite differences from the ensemble, and no
tangent or adjoint operators are needed (i.e., the method is free of derivatives).

7.3. Kalman and EnKS. The Kalman smoother gives the expectation and the covariance
of the state U (equivalently Z) knowing the data D, in other words it calculates U* = E(U|D)
and P* = cov(U|D), and is described by

U= K(D—HZ),
P® = (I — KH)By,
K =BwH (HByH" +R)™.

For Z one has Z* = E(Z|D) = Zy + K(D — HZ). In the data assimilation community, the
vector U® (equivalently Z¢) is called the analysis and the matrix K is called the Kalman gain.



The EnKS [9, 10] consists of applying Monte Carlo to generate an ensemble following
N (0, By) and then use its corresponding empirical covariance matrix instead of By to ap-
proximate U“?. Let us denote by k the ensemble members index, running over k = 1,..., N,
where N is the ensemble 5ize We sample an ensemble U"“ from N(0, By) by first sampling
w} according to N (0, B), wl accordlng to (0 Q1),- wT according to (0 QT) and then
by setting U* as follows: Uo =wy, Ul Mywf +w1, o UR = Mp(-- Mywl +wh o) + k.
Let U* = [UF; UF;...;Uk] and

N 1
Tk N
nglU and B =

be the empirical mean and covariance of the ensemble Uk , respectively. One has

1 ~ = ~ =
N—ccCT, where C:ﬁ[Ul—U,U2—U,...,UN—U].

or —0)7

(]~
=
el

T

k=1

We then build the centered ensemble U* = UF — U. Note that the empirical mean of the
ensemble U¥ is equal to zero and that its empirical covariance matrix is BY.
Now one generates the ensemble U*® as follows:

(18) Ukt =uUk + KN(D - HZ, — V%),
where V¥ is sampled from N (0, R), and
KN =BYHT(HBNYHT + R)™*

In practice, the empirical covariance matrix BV is never computed or stored since to
compute the matrix products BNH " and HBNHT only matrix-vector products are needed:

N N
1 T 1
BYH" = —=>"U*U* H' = ——> "U*n],
N-14 N—-14&

N N
1 Z 1 Z
.I‘_.]—.B]\/v.ly—r — Hm l']'l{:(]'lc—r.l'fl_—r — m hkhT7

—1
,1ZUkhk ( thhk +R> )

k 1

where h, = HU* = [HoUk; ... HrUE].
We denote by U?® and V the empirical mean of the ensembles U¥® and V¥, respectively.
One has from (18)

(19) U*=KN(D—-HZ, - V).

It is known that when N — oo, U% — U in LP (see [13, 15]) and, thus, asymptotically, U® is
the solution of the linearized subproblem (17) (and U® + Z, is the solution of the linearized
subproblem (11)).



7.4. The linearized least squares subproblems arising in EnKS. From (19) we conclude
that U“ is the Kalman smoother estimator for the following system,

U~ N(0,B"),
D:

(20) HU+V, V ~N(0,R), where D=D—HZ,— V.

Hence, for a large N (such that BY is invertible), U® is the solution of the following linear
least squares problem

1 -
(21) (Nul2y s + I Hu = DI3s)

min  —
weRn(T+1) 2

From the above derivation, we conclude that when we use the EnKS (until now with exact
derivatives) to approximate the solution of the linearized subproblem (11), what is obtained
is the solution of the linear least squares problem (21). The least squares model in (21) can
be seen, in turn, as a realization of the following stochastic model,

1 ~
(22) 5 (s + [ Hu = D)

where B~! and D are random variables, with realizations (B")~! and D, respectively.

Both the incremental method and the method which approximates the solution of the
linearized subproblem (11) using EnKS may diverge. Convergence to a stationary point of (2)
can be recovered by controlling the size of the step, and one possibility to do so is to consider
the application of the Levenberg-Marquardt method as in Algorithm 3.1. As in [14], at each
step, a regularization term is then added to the model in (21),

1 _
(23 m(e+u) = 5 (2, + 1 Hu = DIy + 2 ul?)
which corresponds to adding a regularization term to the model (22)
1 ~
(24) M@ +u) = 5 (Il + | Hu = DIy + T uf?).
We now provide the details about the solution of (23). For this purpose let
(25) PN = (1 - KNH)BY.

Note that by using the Sherman—Morrison-Woodbury formula one has

(26) PN = (BY)'+ HTR'H) ",

in other words, PV is the inverse of the Hessian of model in (21).

Proposition 7.1. The minimizer of the model (23) is u* = U* — PN (PN + (1/+*)1,,)~1U*.



Proof. Since U® is the solution of problem (21), a Taylor expansion around U of the
model in (21) gives

1 > 1 rra rTa » rra
5 (Nl oy + 1w = Dlfer ) = 5 (102 ) + IHO® = Dlfies + = U Epy 1) -

Hence, the minimizer of the model (23) is the same as the minimizer of

1/ _ _ - _

5 (101 y-1 + 1HO® = DI3es + llu = Oy -1 ++2lul?)
and thus given by
(27) wt = ((PM) L+ 420 (P Lo

By using the Sherman—Morrison-Woodbury formula, one has

1 1

(PMY 4420 = PN = PN (PN 4 (1/92)1,) " PN

)

which together with (27) concludes the proof. [ ]

7.5. Derivative-free LM-EnKS. The linearized model (LM) and observation operators
appear only when acting on a given vector, and therefore they could be efficiently approxi-
mated by finite differences. The linearized observation operator H; = H;(xz) appears in the
action on the ensemble members and can be approximated by

where 7 > 0 is a finite differences parameter. Originally, in EnKS, to avoid the derivatives
of H;, the quantity H;0x; = H;(z;+dx; —x;) is approximated by H;(x;+0x;) —H;(x;), which is
equivalent to using finite differences with the parameter 7 = 1. The LM M; = M/l (x0) appears
in the action on a given vector (in this case zp), and so do the remaining ones Ms, ..., Mp.
Such actions can be approximated by finite differences in the following way:

Mlzb = Mll($0)2b ~ Ml(‘rO + TZb) — Ml($0)7

T

’ M M -M
My (M2 +my) = Mo(a1)(Myzy +my) ~ == (w1 +7( 1Zb7-+ mi)) 2(21)

N My (1 + My (o + 72) — Mi(z0) + Tm1) — Ma(x1)

T

Since our approach is derivative free, we replace all the derivatives of the model and of the
observation operators by approximation by finite differences. The quantities using derivatives



then become

k=1 k=1
(29) Zy = | 2; M (2ot TZ:) — M (20) +mq;.. } ~ 7y,
HZ = [HO (@0 ¥ 720) = Hho (20), ] ~ HZ,
T
U*=KND-HZ,—V)~0U",
N
. A 1 - T
(30) PN:BN—KNmthU’“ ~ PN,
k=1
~ N N -1 .
(31) @t =0 — PN (PN + (1/72)In) 0% ~ u,

Since u* is an approximation to u* using finite differences for derivatives, there exists
a constant M > 0, which depends on the second derivatives of the model and observation
operators, such that [le|| < M7, where e = u* — 4*. Moreover, the minimizer u* of the
weighted least squares model (23) is the solution of the normal equations

((B™) "+ HTR™H +9*T) u* = H'R™'D,
where H'R™'D = Vm(z) = g, and thus
((B™) "+ HTRH +9°1) @ = g — ((BY) " + HTR™H + 421 ) e,
and so ©* can be seen as an inexact solution of the normal equations, with a residual equal to
r=—((BY)"'+ H'RH +~°I)e.

We have seen that the solution of the normal equations can be inexact as long as As-
sumption 4.2 is met. The residual r is then required to satisfy ||| < €[|gy || for some € > 0,
to fulfill the global convergence requirements of our Levenberg—Marquardt approach, and for
this purpose we need the following assumption.

Assumption 7.1. The approximation @* of u* satisfies ||e]| < M7, where e = u* — @*, for
some constant M > 0.

The Jacobian of the observation operator H is uniformly bounded, i.e., there exists kg > 0
such that || H](x;)|| < kg for all ¢ € {0,...,T} and for all iterations j.

We note that the iteration index j has been omitted from the notation of this section until
now. In fact, the point x has been denoting the iterate x;.



Proposition 7.2. Under Assumption 7.1, if the finite differences parameter T is such that

€llgm |
M (IBN)=H + w3 IR +97)

(32) T<
then |[r|| < €llgm|-
Proof. One has
Irll < [|(BM)~" + HT R H + 41| |le]
< (IBM) 7+ w3 IRH +7*) M7 < €llgml. u

Now, from (24) the gradient of the stochastic model is gy, = —H TR™'D and from (17)
the exact gradient of the function to be minimized in problem (2) is —H"R™YD — HZ).

Thus,
FM )

But we know that D — HZ, — D = V = (1/N) Zl 1 Vi, where V; are 1ndependently and
identically distributed and follow N (0, R), and thus D — HZ, —D ~ N (0, R/N) and R~'(D

HZ,—D) ~ E2N(0,1). Thus
FM )

=P (HHTRl(D —~HZ,—D)| < Fej

i

o p [(EalB) Fe
b= P (Tnmo,m <

SN
(nmo DIl < 7
where k = ﬁ. Since I'; < min{ M0, Ymax }»
VN ’
(33) * > CDF.} — © 5,
x2(m) mln{/\] Y0, meaX}a

where m = Z;TFZO m;, m; is the size of y;, and ~ymax is the tolerance used in the stopping
criterion. Note that limy_ o p; = 1, thus limy_ p; = 1, and hence when N — oo the
gradient approximation using ensemble converges almost surely to the exact gradient.

We are now ready to propose a version of Algorithm 3.1 for the solution of the 4ADVAR
problem (2) when using EnKS as the linear solver.

Algorithm 7.1 (Levenberg-Marquardt method based on probabilistic gradient models for
data assimilation).

Initialization

Choose the constants 71 € (0, 1), M2, Ymin, Ymax > 0, and A > 1. Select 29 and Yo € [Vmin, Ymax]-
Choose all the parameters related to solving the 4DVAR problem (2) using EnKS as the linear
solver.



For j =0,1,2,... and while ; < ypax

1. Let = ;. Choose 7 satisfying (32). Compute the increment ¢* using (31) and set
2* = u* + Zy, where Z is computed as in (29). Let s; = 2*.

_ _f@i)—f(mits;)
2. Compute pj = it ==

and my is the model (23).
3. If pj > m, then set xj,1 = x; + s; and

ik where f is the nonlinear least squares model in (2)

A if [|gm; | < 12/73,

Vil = max{lv—jpjﬁmin} if [l gm, || = 772/7327
A Pi

where p; = p; is computed as in (33).
Otherwise, set z;11 = z; and ;41 = ;.

7.6. Derivative-free LM-EnKS in practice. In sections 7.4-7.5, we have assumed that
the ensemble size N was large enough for the empirical covariance matrix BY to be invertible
(holding Proposition 7.1). However, for the EnKS to be relevant the ensemble size has to be
smaller than the dimension of the state space. In this subsection, we explain how we circum-
vent this problem in practice. The theoretical extension of our method to small ensemble sizes
as well as its performance for large and realistic problems is the subject of future research.

For small values of the ensemble size (N < n), the matrix BY is no longer invertible.
In particular, the Sherman—Morrisson—Woodbury formula is no longer applicable, as it was
before to establish (25)—(26) in terms of (BY)~!. However, following the spirit of (26), we
could think of using pseudoinverses instead, and approximating the matrix PV defined in (25)
by

PN = ((BN)T + HTR_1H>T.
In practice what we do is simply to replace inverses by pseudoinverses in all calculations,
namely, in (28) and in (31).

Another concern when using a small ensemble size is how to ensure Assumption 3.1 (gradi-
ent model being (p;)-probabilistically accurate). When N is sufficiently large, we have shown
that the formula (33) provides a value of p; that satisfies the assumption. This formula can,
however, still be used in practice for small values of V.

7.7. Computational experiments with Lorenz—63 model. To evaluate the performance
of Algorithm 7.1 for data assimilation, we will test it using the classical twin experiment
technique used in the data assimilation community. This technique consists on fixing an
initial true state (denoted by truthg) and then to integrate it over time using the model to
obtain the true state at each time ¢ (denoted by truth;). We then build the data y; by applying
the observation operator #; to the truth at time ¢ and by adding a Gaussian perturbation
N(0, R;). Similarly, the background x is sampled from the Gaussian distribution with mean
truthg and covariance matrix B. Then we try to recover the truth using the observations and
the background.



For the 4DVAR problem (2), we consider the Lorenz—63 model, a simple dynamical system
with chaotic behavior. The Lorenz equations are given by the nonlinear system

dx dy dz
=—olw—y). Z=pr—y-az ad —=ay— bz,

dt

where © = z(t), y = y(t), z = z2(t), and o, p, § are parameters. The state at time t
is X; = (2(t),y(t),2(t))" € R3. This nonlinear system is discretized using a fourth order
Runge-Kutta method. The parameters o, p, § are chosen as 10, 28, and 8/3, respectively.
The initial truth is set to (1,1,1)T and the truth at time 4 to truth; = M (truth; ;) + W;,
where W; is sampled from N(0,Q;) and M is the model obtained by discretization of the
Lorenz—63 model. The model error covariance is given by @Q; = 021 , where o, = 10~%. The
background mean z; is sampled from N (truthg, B). The background covariance is B = ng ,
where o, = 1. The time step is chosen as dt = 0.11 > 0.01. (Note here that the model at
time ¢t + 1, as a function of the model at time ¢, becomes more nonlinear as dt increases, and
this justifies having chosen dt larger than in [3].) The time windows length is 7" = 40. The
observation operator is H; = 10/. At each time 4, the observations are constructed as follows:
y; = H;(truth;) + Vi, where V; is sampled from N(0, R), R = 021, and o, = 1.

Following the spirit of Assumption 4.2, the finite difference parameter is set as

€jl1gm; |

M (BN + w31 R + 21BN

Tj = min 1073

where the value of 1 is chosen for the unknown constants M and rp (see Assumption 7.1).
In this experimental framework, the model gradient is given by gm,;, = —H TR™'D = 10D,
where D is computed according to (20). Then, following the spirit of Assumption 4.2, €j is

chosen as
€ =minq —,/Bin———5 ¢
=i g

where G;, = 1/2, 0;, = 1, and a = 0.5. The unknown constant xj,, (see Assumption 5.1) is
set to 1.

The basic algorithmic parameters are set to 1 = 179 = 1070, Ymin = 107, Ymax = 105, and
A = 8. The initial regularization parameter is 79 = 1. Finally, we set x = 1 in the calculation
of p; given in (33).

Figure 3 depicts the plots of the objective function values for one run of Algorithm 7.1,
using the choices p; = p; and p; = 1 and four ensemble sizes N = 4,40, 80,400. A single
run shows well the behavior of the algorithm on this problem, thus there is no need to take
averages over several runs. For all ensemble sizes used, the version using p; = 1 stagnated after
some iterations, and could not approximate the minimizer with a decent accuracy. One can
see that the version with p; = p; performs much better than the one with p; = 1, regardless
of the size of the ensemble. As expected, the larger this size, the better is the accuracy of the
final solution found (which can be further confirmed in Table 2). These results illustrate the
importance of using probability p; = p; to update the regularization parameter ~.
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Figure 3. Results of one run of Algorithm 7.1, using probabilities p; = 1 (dotted line) and p; = p; (solid
line), for different ensemble sizes. The z-axis represents number of iterations.

Table 2
The table shows the final values of the objective function found for the two versions p; = 1 and p; = p;
and the four ensemble sizes.

Ensemble size 4 40 80 400
Final f (p; = 1) | 1.5e5 | 1.2¢5 | 1.2¢5 | 1.1€5
Final f (p; =p;) | 304.7 | 65.7 62.1 63.1

8. Conclusions. In this paper we have adapted the Levenberg—Marquardt method for
nonlinear least squares problems to handle the cases where the gradient of the objective
function is subject to noise or only computed accurately within a certain probability. The
gradient model was then considered random in the sense of being a realization of a random
variable, and assumed first order accurate under some probability p} (see (5)). Given the
knowledge of a lower bound p; for this probability (see Assumption 3.1), we have shown how
to update the regularization parameter of the method in such a way that the whole approach



is almost surely globally convergent. The analysis followed similar steps as in the theory in [1].
The main difficulty in the application of Algorithm 3.1 is to ensure that the models are indeed
(pj)-probabilistically accurate, but we presented a number of practical situations where this
is achievable.

The last section of the paper was devoted to the well-known 4DVAR problem in data
assimilation. We have shown that a lower bound for the probability of first order accuracy
can also be provided here (to be used in our Levenberg—Marquardt framework) when using the
EnKS method for the formulation and solution of the corresponding linearized least squares
subproblems.

We have also covered the situation where the linearized least squares problems arising in
the Levenberg—Marquardt method are solved inexactly, which then encompasses a range of
practical situations, from inexactness in linear algebra to inexactness in derivatives. This is
particularly useful in the 4DVAR application to accommodate finite differences of the nonlinear
operators involved.

A number of issues need further and deeper investigation, in particular, the study of the
performance of our approach when applied to large and realistic data assimilation problems.

After we had submitted our paper, Bocquet and Sakov [4] extended their previous ap-
proach [3] to 4DVAR and used finite difference approximations for the tangent operators,
similarly to our paper. Bocquet and Sakov [3, 4] nest the minimization loop for the 4DVAR
objective function inside the EnKS and minimize over the span of the ensemble, rather than
nesting EnKS as a linear solver inside the 4DVAR minimization loop over the full state space,
as we do. Moreover, they use a classical version of the Levenberg-Marquardt method to per-
form their minimization without any control or assumption on the derivative approximations
arising from the use of ensembles. Their method was designed for strong-constraint 4DVAR,
i.e., for the case Q; = 0Vi.

Appendix.

Proof of Lemma 4.1. In the proof we will omit the indices j. One has

‘ | ; 1 ;
m(z) = mlz +5") = —g5" = S (=gm +1) 5" = = (g +1) 5"

1 _
= §(gm_T)T(‘]n—EJm+721) 1(gm+r)'
Since J,| J,,, is positive semidefinite,
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Thus, using Assumption 4.2, we conclude that

1 €2
2 2 92 ||gm||2
[Jmll* +9% v

21— Bin) __llgm|®
T2 w2

m(x) — m(z 4 s™)

Proof of Lemma 5.1. We will again omit the indices j in the proof.
If s = s¢ is the Cauchy point, since J,}, J,, is positive semidefinite, ||g,, (J,} Jon +721)gml| >
2|lgm > and we have that ||s¢|| < [|gm||/7?. To prove the second inequality,

I°

T (e B 72 lgm lomI*
O +90) = g ST + 72D~ o] ol T D

Hgm ||4(9m)—r=]r—r|;=]mgm
((gm)T(J;sz + 'YZI)gm)Q 7

and then using a similar argument and v > Yuin,

||JmH2||gmH2 < 4||JmH2Hgm||2+20in||gm”2
7t T min{ly T e

(59 (2 (5°) + gm)| <

If s = s is obtained by truncated CG, then there exists an orthogonal matrix V' with a
first column given by —g¢,,,/||gm|| and such that

—1 —1
s =V (VT(J,IJm + VZI)V) Vg, =V (VTJnZJmV + 721) llgmlle,

where e is the first vector of the canonical basis of R"™. From the positive semidefiniteness
of VT J,,V, we immediately obtain |[s%9|| < ||gim||/7%. To prove the second inequality we
apply the Sherman—Morrisson-Woodbury formula, to obtain

11 (JWJ/)(JmV)T>_1
9 =V [_JmVT<I—|— IV Imll€1-

(72 74( ) 72 ( )] lgmlier
Since Ver = —gm/|lgmlls

(T V) (T V)T

-1
1
V25 + g = —?V(va)T (I - . ) ) (V) gmlle1-

Now, from the fact that (J,,V)(J,, V) /4?2 is positive semidefinite, the norm of the inverse of
I+ (JnV)(JnV) T /42 is no greater than one, and thus (since V is orthogonal)

1T |2 [l |
S
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¥



Finally (recalling v > ~Ymin),

[Tl gm
,},4
AT [l g 1* + 260:nlgm |
min{1, 575}y 2t

()T (v (%) + gm)| < 1515 + guml| <

If s = s is an inexact solution of the normal equations, and the residual satisfies Assump-

tion 4.2, ||s™(| < (|lgm|l + 171D /72 < 2[lgmll/7?. Applying the Sherman-Morrisson-Woodbury
formula,

Thus,

: 1 1
st = I ——J) <I+
72 ,74
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2

S >_1 I | (=gm + 7).

' 1 T I\
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Using the fact that the norm of the inverse above is no greater than one, Assumption 4.2, and
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