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a b s t r a c t

In the gossip problem information (‘secrets’) must be shared among a certain number of agents using the 
minimum number of calls. We extend the gossip problem to arbitrary epistemic depths. For example, we 
may require not only that all agents know all secrets but also that all agents know that all agents know all 
secrets. We give optimal protocols for various versions of this epistemic gossip problem, depending on the 
graph of com-munication links, in the case of two-way communication, one-way communication and 
parallel communication. We show, among other things, that increasing epistemic depth from 1 (all agents 
know all secrets) to 2 (so that all agents know that all agents know all secrets) does not double the required 
number of calls but increases this number by 3/2 (for a complete graph). We also show that the 
following counter-intuitive result generalises to the epistemic gossip problem: asymptotically the same 
number of calls are required whether calls are two-way or one-way.

1. Introduction

We consider communication problems concerning n agents. We consider that initially, for i = 1, . . . , n, agent i has
some information si, also known as this agent’s secret since, initially, the other agents do not know this information. This
corresponds to information that agent i wishes to share with all other agents, such as agent i’s signature on a contract or
the dates when agent i is available for a meeting. More mundanely, it could simply be some gossip that agent i wants to
share. Indeed, the basic (non-epistemic) version of the problem in which all agents want to communicate their secrets to all
other agents (using the minimum number of communications) is traditionally known as the gossip problem. A probabilistic
version of that problem is relevant in distributed databases [9]. Several variants have been studied in the literature, and a
survey of these alternatives and the associated results has been published [16].

The gossip problem and its variants are of great interest in the conception of communication networks [16] and in parallel
and distributed computing, but there are other less obvious applications like themanagement of data on storage devices [18],
or the computation of the syntenic distance between two genomes (minimumnumber of fusions, fissions, and translocations
required to transform one into the other) [27].

The original gossip problem is due to A. Boyd in the early 1970s: ‘‘There are n ladies, and each of them knows some
item of gossip not known to the others. They communicate by telephone, and whenever one lady calls another, they tell
each other all that they know at that time. How many calls are required before each gossip knows everything?’’. The main
characteristics of the original gossip problem are: the aim is to find theminimum number of calls so that each person knows
all the secrets via two-way communication (full duplex) in a complete graph of possible communication links. According to
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these assumptions, 2n−4 two-way calls are necessary and sufficient to achieve the goal [1,14,29] and any network in which
2n − 4 calls are sufficient contains a 4-cycle [3,19].

The gossip problem can be studied from a centralised or distributed point of view. In the centralised approach, the
protocols tell the agents whom they have to call, and when. In the distributed approach, individual agents, on the basis
of their own information, decide which other agent to call.

In the centralised approach thatwe are interested in, numerous variants of the original gossip problemhave been studied:
restricting the calling process to one-way (half-duplex) communication (such as by e-mail or letter), allowing k-party or
conference calls, limiting the amount of redundant information which is sent, restricting the freedom in communication
using an incomplete graph (a given person can only call a subset of the other people) or special topologies (such as tree, line
or circle) [11,12,24,25].

Another variant is the partial gossip problem which is to determine, in a complete graph, the minimum number of calls
needed for each person to know at least k secrets [4] The minimum-time gossip problem considers the amount of time,
instead of the number of calls, and the aim is to find an algorithm that minimises the gossip time on a network or to
find particular networks which can spread all gossip in minimum time [23,12]. In a similar vein, the minimum-cost gossip
problem considers theminimumcost instead of theminimumnumber of calls (where a cost is associatedwith each call) [22].
The parallel gossip problem consists in extending the calling process to parallel communication considering that in each
time step simultaneous calls can be executed in parallel (although each agent can only make one call in any given time
step) [20,10]. The dynamic gossip problem allows dynamic communication networks by permitting agents to exchange not
only secrets but also the telephone numbers of other agents they know. For a distributed approach to this version, see [8].
Another variant is perpetual gossipping, in which new secrets may arise at any time, and the objective is to find an efficient
call scheme to maintain up-to-date information throughout the network [28].

Our contribution is to study the gossip problem at different epistemic depths. In the classic gossip problem, the goal is for
all agents to know all secrets (which corresponds to epistemic depth 1). The equivalent goal at epistemic depth 2 is that all
agents know that all agents know all the secrets; at depth 3, all agents must know that all agents know that all agents know
all the secrets. For example, in a commercial setting, if the secrets are the agents’ agreement to the terms of a joint contract,
then an agent may not authorise expenditure on the project before knowing that all other agents know that all agents agree
to the terms of the contract. We provide algorithms for these variants and establish their optimality in most of the cases.

Even in the case of cooperating agents, knowledge of the communication protocol does not imply blind trust that the
other agents respect the protocol nor a 100% confidence in the reliability of communication links. Thus, as with registered
letters, extra communication is required for agents to be sure what other agents know.

The paper is organised as follows. In Section 2 we formally introduce the epistemic version of the classic gossip problem
GossipG(d), whereG is the graph of direct communication links and d is the epistemic depth. In Section 3we study GossipG(d)
for different kinds of graphs G. We show, among other things, that increasing epistemic depth from 1 (all agents know all
secrets) to 2 (so that all agents know that all agents know all secrets) does not double the required number of calls but
increases this number by 3/2 (for a complete graph). In Section 4 we turn our attention to the version of this problem in
which all communications are one-way (such as e-mails rather than telephone calls). We show that the following counter-
intuitive result generalises to the epistemic gossip problem: asymptotically the same number of calls are required whether
calls are two-way or one-way. In Section 5 we study a parallel version in which calls between different agents can take place
simultaneously. In each of these three cases, we give a protocol which is optimal (given certain conditions on the graph G). In
Section 6 we generalise an asymptotically optimal protocol for the one-way parallel version of the classical gossip problem
to the epistemic case. We conclude with a discussion in Section 7.

2. The epistemic gossip problem

We use the notation Kisj to represent the fact that agent i knows the secret sj of j, the notation KiKjsk to represent the
fact that agent i knows that agent j knows the secret of k, etc. We consider the secrets si as propositional constants and that
agents never forget; an epistemic proposition of the form Ki1 . . . Kir sj, once true, can never become false.

An instance of a planning problem consists of a set of actions, an initial state and a goal. A solution plan (or protocol) is a
sequence of actions which when applied in this order to the initial state produces a state in which the goal formula is true.
The epistemic gossip problem on n agents and an undirected graph G = 〈{1, . . . , n}, EG〉 is the planning problem in which the
actions are C(i, j) for {i, j} ∈ EG (i.e. there is an edge between i and j in G if and only if they can call each other). The effect of
the call action C(i, j) is that agents i and j share all their knowledge. We go further and assume that the two agents know that
they have shared all their knowledge, so that, if we had Kif or Kjf before the execution of C(i, j), for any proposition f , then
we have Ki1 . . . Kir f just afterwards, for any r and for any sequence i1, . . . , ir ∈ {i, j}. Observe that C(i, j) and C(j, i) have the
same effect. The initial state contains Kisi for i = 1, . . . , n (and implicitly all propositions of the form Ki1 . . . Kir sj with ir = j).
We use GossipG(d) to denote the epistemic gossip problem on a graph G in which the goal is the conjunction of all positive
propositions of the form Ki1 . . . Kidsj. Thus, the parameter d specifies the epistemic depth of the goal formula. Observe that
Ki1 . . . Kidsj implies Ki1 . . . Kir sj (1 ≤ r < d) and hence the goal formula at epistemic depth d subsumes the goal formula for
all epistemic depths r such that 1 ≤ r < d. Versions with one-way and parallel communication will be defined in Sections
4 and 5.

The following abbreviation will be useful: for r ≥ 1, let Tr be the conjunction of Ki1 . . . Kir−1
sir for all i1, . . . , ir ∈

{1, . . . , n}). The goal of GossipG(d) is to establish Td+1. We consider that KiTr abbreviates the conjunction KiKi1 . . . Kir−1
sir

for all i1, . . . , ir ∈ {1, . . . , n}. So Tr+1 is the same as K1Tr ∧ · · · ∧ KnTr .



Fig. 1. (a) The graph Gr ; (b) the ith branch of Gr .

3. Minimising the number of two-way calls

In this section we consider the epistemic gossip problem GossipG(d). The non-epistemic version GossipG(1) has beenwell
studied. Theminimal number of calls to obtain the solution of GossipG(1) is either 2n−4 if the graphG contains a quadrilateral
(a cycle of length 4) as a subgraph, or 2n − 3 in the general case [15]. We first give a simple protocol for GossipG(d) for any
connected graph G before giving protocols requiring many less calls for special cases of G.

Proposition 1. If the graph G is connected, then for n ≥ 2 and d ≥ 1, GossipG(d) has a solution of length no greater than d(2n−3)
calls.

Proof. Since G is connected, it has a spanning tree T . Let vertex 1 be a leaf of T , and let 2 be its neighbour. Let T2 be the
subtree of T after deletion of node 1 and edge {1, 2}. The number of edges in tree T2 is n−2.

Consider the following protocol consisting of d rounds. In each round, first every vertex except 1 funnels its secrets to 2,
then 1 and 2 swap information via the call C(1, 2), and then 2 funnels all secrets back to all vertices of T2. After m rounds:
Ki1 · · · Kimsj is true for all i1, . . . , im, j. So the goal is attained after d rounds. Since each round requires 2n− 3 calls, this gives
a total of d(2n − 3) calls. �

We now show that there exist graphs for which asymptotically we can do no better than the naive protocol described in
the proof of Proposition 1.

Proposition 2. There is a family of graphs for which GossipG(d) requires 2dn − o(n) calls.

Proof. Let Gr be the graph shown in Fig. 1(a), a spider graph with r branches each of length r , with leaves numbered from 1
to r . The ith branch of Gr is shown in Fig. 1(b). The total number of vertices n in Gr is 1 + r2. Thus r =

√
n − 1.

We denote the sequence of edges ei1e
i
2 . . . eir−1 by Oi, the reverse sequence of edges eir−1 . . . ei2e

i
1 by Ii and the sequence of

edges Oie
i
r Ii by Ri. By equating each edge {p, q} with the corresponding action C(p, q), we can view Oi, Ii and Ri as sequences

of calls.

Observation: To establish Kid+1
Kid . . . Ki2si1 (where id+1, id, . . . , i2, i1 ∈ {1, . . . , r} and ik 6= ik+1 for 1 ≤ k ≤ d), a plan π must

necessarily contain the calls given by

ei1r Ii1Ri2Ri3 . . . RidOid+1
e
id+1
r ,

in that order, since the secret si1 must pass from i1 to id+1 transiting by i2, . . . , id (in this order).
Consider aminimum-length solution-planπ for GossipG(d). Reading from the first call onwards, let i1 be such that Ii1 is the

last of I1, . . . , Ir to occur as a subsequence ofπ . Then let i2 be such that Ri2 is the last of R1, . . . , Ri1−1, Ri1+1, . . . , Rr to occur as
a subsequence ofπ after this occurrence of Ii1 . Then let i3 be such that Ri3 is the last of R1, . . . , Ri2−1, Ri2+1, . . . , Rr to occur as a
subsequence ofπ after this occurrence of Ii2 . . . . Then let id be such that Rid is the last of R1, . . . , Rid−1−1, Rid−1+1, . . . , Rr to oc-
cur as a subsequence ofπ after this occurrence of Iid−1

. Finally, let id+1 be such thatOid+1
is the last ofO1, . . . ,Oid−1,Oid+1, . . . ,

Or to occur as a subsequence of π after this occurrence of Rid . Thus by the observation above and our choice of i1, i2, . . . ,
π must contain each of Ii (i = 1, . . . , r), followed by each of Ri (i = 1, . . . , i1 − 1, i1 + 1, . . . , r), followed by each of Ri

(i = 1, . . . , i2 − 1, i2 + 1, . . . , r), . . . followed by each of Ri (i = 1, . . . , id−1 − 1, id−1 + 1, . . . , r), followed by each of Oi

(i = 1, . . . , id − 1, id + 1, . . . , r). Knowing that |Ii| = |Oi| = r − 1 and |Ri| = 2r − 1 (for i = 1, . . . , r), we can deduce that
|π | ≥ r(r −1)+ (d−1)(r −1)(2r −1)+ (r −1)2 = d(r −1)(2r −1). Since r =

√
n − 1, we have |π | ≥ 2dn−3d

√
n − 1− d.

Thus any solution-plan for GossipGr (d) requires 2dn − O(n) calls. �

It turns out that, for d ≥ 2, we may require considerably less than d(2n − 3) calls. We now show that there is a protocol
which achieves (d + 1)(n − 2) calls provided G contains the complete bipartite graph K2,n−2 as a subgraph. This subsumes a
previous result which was given only for the case of a complete graph G [17].



Proposition 3. For n ≥ 4, if the n-vertex graph G has K2,n−2 as a subgraph, then GossipG(d) has a solution of length (d+1)(n−2).

Proof. Suppose that the two parts of K2,n−2 are {1, 2}, {3, . . . , n}. We choose an arbitrary partition of the vertices 3, . . . , n
into two non-empty sets L = {3, . . . , p}, R = {p+1, . . . , n}.

Consider the protocol that is described by:

Odd passes: C(1, 3) C(1, 4) . . . C(1, p) C(2, p+1) C(2, p+2) . . . C(2, n)
Even passes: C(1, n) C(1, n−1) . . . C(1, p+1) C(2, p) C(2, p−1) . . . C(2, 3)

The odd passes are composed of C(1, x) for each x ∈ L in increasing order of x, followed by C(2, y) for each y ∈ R in increasing
order of y; and the even passes are composed of C(1, y) for each y ∈ R in decreasing order of y, followed by C(2, x) for each
x ∈ L in decreasing order of x. The length of this plan after d+ 1 passes is (d+ 1)(|L| + |R|) = (d+ 1)(n− 2). It therefore only
remains to show that (d + 1) passes are sufficient to establish all possible depth-d epistemic goals. An epistemic goal of the
form Ki1 . . . Kidsj, for agents i1, . . . , id, j, has depth d. In particular, sj has depth 0.

Form ≥ 1, let Hm be the hypothesis that after m passes, for all depth m − 1 epistemic goals f , we have

(K1f ∨ Knf ) ∧ (K2f ∨ Kpf ) ifm is odd

(K1f ∨ K3f ) ∧ (K2f ∨ Kp+1f ) ifm is even

It is not difficult to see that H1 is true after the first pass. For Hm ⇒ Hm+1, suppose m is even. By Hm, after pass m, we have
K1f ∨ K3f for all epistemic goals f of depth m−1. Thus the first call of pass m+1, C(1, 3), makes 1 and 3 know all epistemic
goals of depthm−1. After C(1, p), 1 and p know that 1, 3, 4 . . . , p know all epistemic goals of depthm−1. The same goes for
2: since we have K2f ∨ Kp+1f by Hm, after C(2, p+1), 2 and p+1 know all epistemic goals of depth m−1. At the end of pass
m+1 (after C(2, n)), 2 and n know that 2, p+1, p+2, . . . , n know all epistemic goals of depth m−1. Thus for any epistemic
goals f of depth m, either 1 knows f or n knows f , and either 2 knows f or p knows f , that is, Hm+1. The reasoning is similar
form odd. The above plan therefore establishes, after d + 1 passes, all possible depth-d epistemic goals. �

Detecting whether an arbitrary graph G has K2,n−2 as a subgraph can clearly be achieved in polynomial time, since
it suffices to test for each pair of vertices {i, j} whether or not G contains all edges of the form {u, v} (u ∈ {i, j}, v ∈
{1, . . . , n} \ {i, j}).

We can, in fact, show that the solution plan given in the proof of Proposition 3 is optimal.

Theorem 1. The number of calls required to solve GossipG(d), for any graph G with n ≥ 2 vertices, is at least (d + 1)(n − 2).

Proof. Consider any solution plan for GossipG(d). Recall that the goal of GossipG(d) is to establish Td+1. We give a proof by
induction. Suppose that at least (r + 1)(n − 2) calls are required to establish Tr+1. This is true for r = 1 because it takes at
least a sequence of 2n − 4 calls to establish T2 (each agent knows the secret of each other agent) [1,14,29].

For r ≥ 1 and without loss of generality, suppose that before the last call to establish it, Tr+1 was false because of lack of
knowledge of agent j (i.e. KjTr was false). By the induction hypothesis this is at least the (r+1)(n−2)th call. This call involves
j and another agent, say i, and establishes not only Tr+1, but also KjTr+1 and KiTr+1. However, ¬KkTr+1 holds both before and
after this call, for the agents k distinct from i and j. To establish Tr+2, it is necessary to distribute Tr+1 from i and j to other
agents and this takes at least n−2 calls. Hence, at least (r +2)(n−2) calls are required in total to establish Tr+2. By induction
on r , it takes at least a sequence of (d+1)(n−2) calls to establish Td+1. �

4. One-way communications

We now consider a different version of the epistemic gossip problem, which we denote by Directional-gossip, in which
communications are one-way (such as e-mails). In this case, the result of C(i, j) is that agent i shares all his knowledge with
agent j but agent i receives no information from agent j. Indeed, to be consistent with communication by e-mail, in which
the sender cannot be certain that an e-mail will be read by the receiver, we assume that after C(i, j), agent i does not even
gain the knowledge that agent j knows the information that agent i has just sent in this call.

What is surprising is that the number of calls to solve Directional-gossipG(d) is very close to the number of calls required
to solve GossipG(d), differing by only d + 1 in the case of a complete graph G.

In the directional version, the graph of possible communications is now a directed graph G. Let G be the symmetric part
of G, i.e., the graph with the same n vertices as the directed graph G but with an edge between i and j if and only if G contains
the two directed edges (i, j) and (j, i). It is known that if the directed graph G is strongly connected, the minimal number of
calls for Directional-gossipG(1) is 2n− 2 [15]. We now generalise this to arbitrary d under an assumption about the graph G.
Just as in GossipG(d), the goal formula in Directional-gossipG(d) is Td+1.

Proposition 4. For all d ≥ 1, if G contains a Hamiltonian path, then any instance of Directional-gossipG(d) has a solution of

length no greater than (d + 1)(n − 1).



Proof. We give a protocol which establishes Td+1. Without loss of generality, suppose that the Hamiltonian path in G is
1, 2, . . . , n. Consider the plan consisting of d + 1 passes according to the protocol described by:

Odd passes: C(i, i+1) (for i = 1, . . . , n − 1)
Even passes: C(i+1, i) (for i = n − 1, . . . , 1)

We show by a simple inductive proof that this protocol is correct for any d ≥ 1. Recall that Tr is the conjunction of
Ki1 . . . Kir−1

sir for all i1, . . . , ir ∈ {1, . . . , n}. Consider the hypothesis H(r): at the end of pass r , if r is odd we have KnTr and
if r is even we have K1Tr . Clearly, H(1) is true since at the end of the first pass agent n knows all the secrets si (i = 1, . . . , n).
If r is odd and H(r) holds, then at the end of pass r + 1, all agents know Tr and furthermore agent 1 knows this (i.e. K1Tr+1).
A similar argument shows that H(r) ⇒ H(r + 1) when r is even. By induction, H(r) holds for all r = 1, . . . , d + 1. For KnTr
or K1Tr to hold, we must have Tr (by the truth axiom for knowledge). Thus after d + 1 passes, and (d + 1)(n − 1) calls, we
achieve the goal Td+1. �

We now show that the solution plan given in the proof of Proposition 4 is optimal even for a complete symmetric
digraph G.

Theorem 2. The number of calls required to solve Directional-gossipG(d), for any digraph G with n ≥ 2 vertices, is at least
(d + 1)(n − 1).

Proof. Consider any solution plan for Directional-gossipG(d). The goal of Directional-gossipG(d) is to establish Td+1 (the
conjunction of Ki1 . . . Kidsid+1

for all i1, . . . , id+1 ∈ {1, . . . , n}). Consider the following claims (for 1 ≤ r ≤ d):

C1(r) after r(n − 1) − 1 calls no agent knows Tr .

C2(r) after r(n − 1) calls at most one agent knows Tr .

C3(r) at least (r + 1)(n − 1) calls are required to establish Tr+1.

C1(1) is true because T1 is the conjunction of all the secrets sj and no agent can know all the secrets after only n − 2 calls
since after n − 2 calls, there is necessarily some agent who has not communicated his secret to anyone. Let r ∈ {1, . . . , d}.
We will show C1(r) ⇒ C2(r) ⇒ C3(r) ⇒ C1(r + 1).

C1(r) ⇒ C2(r) Straightforward, since during one call only one agent gains knowledge.

C2(r) ⇒ C3(r) Suppose that C2(r) holds, i.e. after r(n − 1) calls at most one agent knows Tr . This means that the other n − 1
agents require some information in order to know Tr . Hence we require at least n − 1 other calls, i.e. (r + 1)(n − 1) calls in
total, to establish Tr+1.

C3(r) ⇒ C1(r + 1) Suppose C3(r) is true and C1(r + 1) is false. Then we require at least (r + 1)(n − 1) calls to establish Tr+1

but after (r + 1)(n − 1) − 1 calls some agent i knows Tr+1. This cannot be the case: by the truth axiom, agent i cannot know
something which is false.

This completes the proof by induction that at least (d+1)(n−1) calls are required to establish Tr+1, since this corresponds
exactly to C3(d). �

Proposition 5. For d ≥ 2, if an instance of Directional-gossipG(d) has a solution of length (d + 1)(n − 1) then G contains a
Hamiltonian path.

Proof. Suppose that a protocol of length (d+1)(n−1) exists. From the proof of Theorem 2we can deduce that, for 1 ≤ r ≤ d,
after r(n − 1) calls, exactly one agent i knows Tr : C2(r) tells us that at most one agent knows Tr and the proof of C2(r) ⇒
C3(r) shows that one agent must know Tr for us to obtain an optimal number of calls. Similarly, after (r + 1)(n − 1) calls,
exactly one agent j knows Tr+1. Let S be the sequence of n − 1 intervening calls between these two states and let GS be the
directed graph whose arcs correspond to the calls in S. Since Tr+1 is the conjunction of KmTr for m = 1, . . . , n, each agent
m 6= imust receive a call during S (in order form to learn Tr ) and each agentm 6= jmust make a call during S (in order for j
to learn KmTr ). Indeed, in order for j to learn KmTr , there must be a path in the directed graph GS from each agent m 6= j to j.
The union of these paths forms a subgraph HS of GS . The undirected graph corresponding to HS is connected and has at most
n − 1 edges (since GS has n − 1 arcs). But a connected graph with n vertices must have at least n − 1 edges, and so HS = GS .
Furthermore, a connected graph with n vertices and n − 1 edges is a tree, so we can deduce that HS is a tree with root j. The
leaves of HS are those agents that do not receive a call during S. But, recall that each agent m 6= i must receive a call during
S. Hence there is only one leaf in HS , namely i. A tree with a single leaf is necessarily a path. Thus there is a Hamiltonian path
(from i to j) in G. �

An interesting question is the computational complexity of the problem of finding an optimal protocol for a graph G given
as input.

Corollary 1. For d ≥ 2, the problem of deciding the existence of a protocol using (d + 1)(n − 1) calls for Directional-gossipG(d),
where the graph G is given as input, is NP-complete.

Proof. NP-membership is obvious. NP-hardness follows from Propositions 4, 5 and the well-known fact that the problem of
determining the existence of a Hamiltonian path in a graph is NP-complete [13]. �



5. Parallel communications

We now go back to classic two-way communications. An interesting variant, which we call Parallel-gossipG(d), is to
consider time steps instead of calls, and thus suppose that in each time step several calls are executed in parallel. However,
each agent can only make one call in any given time step. For Parallel-gossipG(1) on a complete graph G, if the number of
agents n is even, the time taken (in number of steps) is ⌈log2 n⌉, and if n is odd, it is ⌈log2 n⌉+1 [2,26,20]. We now generalise
this to the case of arbitrary epistemic depth d.

Proposition 6. For n ≥ 2, if the n-vertex graph G has the complete bipartite graph K⌈n/2⌉,⌊n/2⌋ as a subgraph, then Parallel-

gossipG(d) has a solution with d(⌈log2 n⌉ − 1) + 1 time steps if n is even, or d⌈log2 n⌉ + 1 time steps if n is odd.

Proof. Suppose that G has K⌈n/2⌉,⌊n/2⌋ as a subgraph. Then we can partition the vertex set of G into two subsets V1 and V2

of size ⌈n/2⌉ and ⌊n/2⌋, respectively, such that G has an edge {i, j} for each i ∈ V1 and j ∈ V2. We can number agents by
elements of the ring Zn = {1, . . . , n} so that for all i ∈ Z, 2i+ 1 ∈ V1 and 2i+ 2 ∈ V2, where arithmetic here and throughout
the proof is modulo n. We consider separately the cases n even and n odd. For even n, consider the protocol:

First pass:
For each step s from 1 to ⌈log2 n⌉: ∀i ∈ {0, . . . , ( n

2
− 1)}, C(2i + 1, 2i + 2s)

Subsequent passes:
Reorder even agents according to the permutation π given by

π (2i + 2⌈log2 n⌉) = 2i + 2;
Proceed as in the first pass but only for steps s from 2 to ⌈log2 n⌉

The first pass of this protocol is illustrated in Fig. 2 for n = 14. Calls are represented by a line joining two agents.
In the first pass, because of the calls C(2i + 1, 2i + 2), the first step establishes for all i ∈ Z, K2i+1s2i+2 and K2i+2s2i+1.

Suppose that after step s, for all i ∈ Z, we have the conjunction of K2i+1sj and K2i+2ssj for all j ∈ {2i + 1, . . . , 2i + 2s}. We
have just seen that this is true for s = 1 (given that each agent knows his own secret). In particular, if we replace i by i+2s−1

we have K2i+2s+1sj and K2i+2s+1sj for all j ∈ {2i+2s + 1, . . . , 2i+2s+1}. At step s+1, we make the calls C(2i + 1, 2i + 2s+1)

for all i ∈ Z, which establishes K2i+1sj and K2i+2s+1sj for all j ∈ {2i+1, . . . , 2i+2s+1}. By induction on s, it is easily seen that
after ⌈log2 n⌉ steps, for all i ∈ Z, we have K2i+1sj and K2i+2sj for all j ∈ Zn. This means that at the end of the first pass
∀i, j ∈ {2i + 1, . . . , 2i + 2s+1}, Kisj.

Let Tr be the conjunction of Kj1 . . . Kjr−1
sjr for all j1, . . . , jr ∈ Zn. We have just seen that after the first pass T2 is true.

Suppose that at the end of pass r , Tr+1 is true. For the next pass r + 1, C(2i + 1, 2i + 2⌈log2 n⌉) are the calls in last step of
the previous pass r . Hence, after reordering even agents so that 2i + 2⌈log2 n⌉ replaces 2i + 2, we already have for all i ∈ Z,
K2i+1K2i+2Tr and K2i+2K2i+1Tr . We then proceed as for the first pass replacing sj by KjTr to establish Tr+2 in ⌈log2 n⌉ − 1 more
steps.

It therefore takes d passes to establish all possible depth-d epistemic goals Td+1. The first pass takes ⌈log2 n⌉ steps and
the next d − 1 passes ⌈log2 n⌉ − 1 steps, making a total of d(⌈log2 n⌉ − 1) + 1 steps.

For odd n, one can place the first 2⌊log2 n⌋ agents in a subset Vfirst , the others being in a subset Vlast (see the example in
Fig. 3 for n = 13). Consider the protocol:

Preliminary step:
Each agent in V1 ∩ Vlast calls one agent in V2 ∩ Vfirst,
and each agent in V2 ∩ Vlast calls one agent in V1 ∩ Vfirst.

Subsequent passes:

Proceed in Vfirst as for the first pass of even case in Z/2⌊log2 n⌋
Z;

Each agent in V1 ∩ Vlast calls one agent in V2 ∩ Vfirst,
and each agent in V2 ∩ Vlast calls one agent in V1 ∩ Vfirst.

A typical pass of this protocol is illustrated in Fig. 3. The preliminary step is the step on the right of this figure.
In the preliminary step, all agents i1, . . . , im ∈ Vlast distribute their knowledge to some agents j1, . . . , jm ∈ Vfirst . Hence,

after this step we have Kjksik for all k ∈ {1, . . . ,m}. For each subsequent pass r , it takes ⌊log2 n⌋ = ⌈log2 n⌉ − 1 steps
to distribute knowledge from all agents in Vfirst (hence, in Vlast too because of the previous step) and establish KjTr for all
j ∈ Vfirst . Then agents j1, . . . , jm ∈ Vfirst respectively call the agents i1, . . . , im ∈ Vlast in one more step to establish Tr+1. These
last calls also establish KjkKikTr for all k ∈ {1, . . . ,m} if necessary for the next pass r + 1.

It takes one preliminary step and d passes of ⌈log2 n⌉ steps to establish all possible depth-d epistemic goals Td+1, which
makes a total of d⌈log2 n⌉ + 1 steps. �

It is worth pointing out that determining whether a n-vertex graph G has the complete bipartite graph K⌈n/2⌉,⌊n/2⌋ as a
subgraph can be achieved in polynomial time. To see this, firstly observe that any pair of vertices i, j of Gwhich are not joined
by an edge must be in the same part in the complete bipartite graph. In O(n2) time, we can partition the vertices of G into
subsets S1, . . . , Sr such that vertices i, j not joined by an edge in G belong to the same set St (for some 1 ≤ t ≤ r). It only



Fig. 2. The four steps in the first pass of the parallel protocol for n = 14.

Fig. 3. The four steps in each pass of the parallel protocol for n = 13. The box identifies Vfirst . The step on the right also occurs on its own as a preliminary

step.

remains to test whether it is possible to partition the numbers |S1|, . . . , |Sr | into two sets whose sums are ⌈n/2⌉ and ⌊n/2⌋.
This partition problem can be solved by dynamic programming in O(r(|S1| + · · · + |Sr |)) time and space, which is at worst

quadratic since r ≤ n and |S1| + · · · + |Sr | = n [21]. On the other hand, it is known that deciding whether Parallel-gossip(1)

(the problem in which the graph G is part of the input) can be solved in a given number of steps is NP-complete [23].

We now show that the solution plans given in the proof of Proposition 6 are optimal in the number of steps.

Theorem 3. The number of steps required to solve Parallel-gossipG(d) for any graph G with n ≥ 2 vertices is at least

d(⌈log2 n⌉ − 1) + 1 if n is even, or d⌈log2 n⌉ + 1 if n is odd.

Proof. The proof is similar to that of Theorem 1. Consider any solution plan for Parallel-gossipG(d). Recall that Tr denotes

the conjunction of Ki1 . . . Kir−1
sir for all i1, . . . , ir ∈ {1, . . . , n}.

We give a proof by induction. For even n, suppose that at least r(⌈log2 n⌉ − 1) + 1 steps are required to establish Tr+1.

This is true for r = 1 because it takes at least a sequence of ⌈log2 n⌉ steps of calls for the secrets of any agent to reach n

agents (thus establishing T2) [2,26,20]. For r ≥ 2 andwithout loss of generality, suppose that before the last step to establish

it, Tr+1 was false because of lack of knowledge of agent j (i.e. KjTr was false). By induction hypothesis this is at least the

(r(⌈log2 n⌉−1))th step. A call in this step involves j and another agent, say i, and establishes not only Tr+1, but also KjTr+1

and KiTr+1. However, ¬KkTr+1 holds both before and after this step, for the agents k distinct from i and j. To establish Tr+2,

it is necessary to distribute Tr+1 from i and j to all other agents and this takes at least ⌈log2 n⌉ − 1 steps (since each step can

at most double the number m of agents knowing Tr+1 and thus ⌈log2(n/2)⌉ = ⌈log2 n⌉ − 1 steps are required to go from

m = 2 tom = n). Hence, at least (r + 1)(⌈log2 n⌉ − 1) + 1 steps are required to establish Tr+2. By induction on r , we obtain

the lower bound d(⌈log2 n⌉ − 1) + 1.

For odd n, the proof is similar but at least one more step is required for each epistemic level r because at least one agent

does not communicate his knowledge in the first step to establish Tr+1. Hence, it takes at least a sequence of ⌈log2 n⌉ + 1

steps for knowledge from all n agents to reach each other, and the lower bound is d⌈log2 n⌉ + 1. �

We note that it can happen that increasing the number of agents (and hence the number of secrets) leads to less steps.

Consider the concrete example of 7 or 8 agents. By Proposition 6 and Theorem3, the number of steps decreases from3d+1 to

2d+1 when the number of agents increases from 7 to 8. We can explain this by the fact that in the case of an odd number of

agents, during each step there is necessarily one agent who is not communicating. By adding an extra agent, we can actually

achieve a larger number of calls in a fewer number of steps.



6. One-way parallel communications

We now consider the combination of parallel and one-way communication which we denote by Parallel-directional-

gossip(d). In the following, we define the Fibonacci sequence by F0 = 0, F1 = 1 and for k ≥ 2, Fk = Fk−1 + Fk−2. We denote

the golden ratio by ϕ = 1+
√
5

2
. We only need to consider the case n ≥ 4 since for n ≤ 3 only one communication is possible

in each step and so the problem reduces to the sequential one-way case of Section 4.

Proposition 7. For n ≥ 4, if the n-vertex graph G has the complete bipartite graph K⌈n/2⌉,⌊n/2⌋ as a subgraph, then Parallel-

directional-gossip(d) has a solution with d(⌈logϕn⌉ + 2) + 1 time steps.

Proof. Suppose that G has K⌈n/2⌉,⌊n/2⌋ as a subgraph. So we can partition the vertex set of G into two subsets V1 and V2 of size

⌈n/2⌉ and ⌊n/2⌋, respectively, such that G has an edge {i, j} for each i ∈ V1 and j ∈ V2. We can number agents by elements

of the ring Zn = {1, . . . , n} so that V1 = {2i + 1 : i = 0, . . . , ⌈n/2⌉ − 1} and V2 = {2i + 2 : i = 0, . . . , ⌊n/2⌋ − 1},
where arithmetic here and throughout the proof is modulo n. We consider separately the cases n even and n odd. For even

n, consider the protocol:

Preliminary step:

For each i ∈ {0, . . . , ( n
2

− 1)}, C(2i + 1, 2i + 2).

First pass:

For each step s from 1 to ⌈logϕ n⌉: ∀i ∈ {0, . . . , ( n
2

− 1)},
if s is odd, C(2i + 2, 2(i + Fs−1) + 1);

if s is even, C(2i + 1, 2(i + Fs−1) + 2).

Subsequent passes:

If ⌈logϕ n⌉ is odd, reorder all agents according to the
permutation π1 given by π1(2(i + F⌈logϕ n⌉+1) + 1) = 2i + 2

and π1(2i + 2) = 2i + 1;

If ⌈logϕ n⌉ is even, reorder even agents according to the
permutation π2 given by π2(2(i + F⌈logϕ n⌉+1) + 2) = 2i + 2;

Proceed as in the first pass for steps s from 1 to ⌈logϕ n⌉.

Because of the calls C(2i + 1, 2i + 2), the preliminary step establishes for all i ∈ Z, K2i+2s2i+1. Furthermore, in the first pass,

because of the C(2i + 2, 2i + 1), the first step establishes for all i ∈ Z, K2i+1s2i+2. Suppose that after odd step s = 2k + 1,

for all i ∈ Z, we have the conjunction of K2i+1sj for all j ∈ {2(i − Fs+1) + 3, . . . , 2i + 2} together with K2i+2sj for all

j ∈ {2(i − Fs) + 3, . . . , 2i + 2}. We have just seen that this is true for s = 1 (given that each agent knows their own secret).

In particular, if we replace i by i− Fs we have K2(i−Fs)+1sj for all j ∈ {2(i− Fs+2)+ 3, . . . , 2(i− Fs)+ 2}. At even step s+ 1, we

make the calls C(2i + 1, 2(i + Fs) + 2) for all i ∈ Z, which are exactly the same as C(2(i − Fs) + 1, 2i + 2) for all i ∈ Z, and this

establishes K2i+2sj for all j ∈ {2(i− Fs+2)+ 3, . . . , 2i+ 2}. In particular, if we replace i by i− Fs+1 we have K2(i−Fs+1)+2sj for all

j ∈ {2(i−Fs+3)+3, . . . , 2(i−Fs+1)+2}. At odd step s+2, wemake the calls C(2i + 2, 2(i + Fs+1) + 1) for all i ∈ Z, which are

exactly the same as C(2(i − Fs+1) + 2, 2i + 2) for all i ∈ Z, and this establishes K2i+1sj for all j ∈ {2(i− Fs+3)+ 3, . . . , 2i+ 2}.
It is known that:

Fs =
ϕs − (−ϕ)−s

√
5

∼
ϕs

√
5

= ϕs−logϕ
√
5

This value is greater than n when s ≥ logϕn + logϕ

√
5. Hence, by induction on s, it is easily seen that after the preliminary

step and ⌈logϕ n⌉ + 2 more steps, for all i ∈ Z, we have K2i+1sj and K2i+2sj for all j ∈ Zn. This means that at the end of the

first pass ∀i, j ∈ {2i + 1, . . . , 2(i + Fs−1 + 1)}, Kisj.

Let Tr be the conjunction of Kj1 . . . Kjr−1
sjr for all j1, . . . , jr ∈ Zn. We have just seen that after the first pass T2 is true.

Suppose that at the end of pass r , Tr+1 is true. Consider the next pass r +1. On the one hand, if ⌈logϕn⌉ is odd, the calls in last

step of the previous pass r are C(2i + 2, 2(i + F⌈logϕn⌉+1) + 1). Hence, after reordering odd agents so that 2(i+ F⌈logϕn⌉+1)+ 1

replaces 2i + 1, and swapping V1 and V2, we already have for all i ∈ Z, K2i+2K2i+1Tr . On the other hand, if ⌈logϕn⌉ is even,

C(2i + 1, 2(i + F⌈logϕn⌉+1) + 2) are the calls in last step of the previous pass r . Hence, after reordering even agents so that

2(i+ F⌈logϕn⌉+1)+2 replaces 2i+2, we already have for all i ∈ Z, K2i+2K2i+1Tr . We then proceed as for the first pass, replacing

sj by KjTr to establish Tr+2 in ⌈logϕ n⌉ + 2 more steps.

It therefore takes d passes to establish the depth-d epistemic goal Td+1. After the preliminary step, the next d passes take

⌈logϕ n⌉ steps, making a total of d(⌈logϕ n⌉ + 2) + 1 steps.

For odd n, let m = 2⌈n/4⌉. We place the first m agents in a subset V odd
first , the others being in a subset V odd

last . Furthermore,

we place the last m agents in a subset V even
first , the others being in a subset V even

last and reorder agents in these two latter sets

following the permutation π given by π (j) = n + 1 − j for all j ∈ Zn. Consider the protocol:



Preliminary step:

Each agent in V1 ∩ V odd
last calls one agent in V2 ∩ V odd

first ,

and each agent in V2 ∩ V odd
last calls one agent in V1 ∩ V odd

first

Subsequent passes:

Proceed in V
p

first as for the preliminary step and

the first pass of even case in Zm,

where p ∈ {odd, even} is the parity of current pass;

Each agent in V1 ∩ V
p

last calls one agent in V2 ∩ V
p

first,

and each agent in V2 ∩ V
p

last calls one agent in V1 ∩ V
p

first,

where p is the parity of next pass.

In the preliminary step, all agents i1, . . . , in−m ∈ V odd
last distribute their knowledge to some agents j1, . . . , jn−m ∈ V odd

first (since

|V odd
last | < |V odd

first |, note that there are some agents jn−m+1, . . . , jm who do not communicate in this step). Hence, after this step

we have Kjksik for all k ∈ {1, . . . , n−m}. Observe thatm = 2⌈n/4⌉ ≤ n+3
2

for all n ∈ N. Recall that Fs is greater than
n+3
2

≥ m

when s ≥ logϕ
n+3
2

+ logϕ

√
5. For n ≥ 7, logϕ(1+ 3

n
)+ logϕ

√
5
2

< 1, so logϕ(n+ 3)+ logϕ

√
5
2

< logϕn+ 1 ≤ ⌈logϕ n⌉ + 1 = s.

For the case n = 5, we have ⌈logφn⌉ + 1 = 5 and F5 = 5 > m = 4. Thus s = ⌈logφn⌉ + 1 implies Fs > m for all odd

n > 4. Hence, for each subsequent pass r of parity p, it takes ⌈logϕ n⌉ + 1 steps to distribute knowledge from all agents in

V
p

first (hence, in V
p

last too because V
p

last ⊂ V
p

first ) and establish KjTr for all j ∈ V
p

first . Then all agents j′1, . . . , j
′
n−m ∈ V

p

last ⊂ V
p

first

respectively call some agents i′1, . . . , i
′
n−m ∈ V

p

first in onemore step to establish Tr+1. These last calls also establish Ki′
k
Kj′

k
Tr for

all k ∈ {1, . . . , n − m} if necessary for the next pass r + 1.

It takes one preliminary step and d passes of ⌈logϕ n⌉+2 steps to establish the depth-d epistemic goal Td+1, whichmakes

a total of d(⌈logϕ n⌉ + 2) + 1 steps. �

In the proof of Proposition 7, for even n, we stated that ⌈logϕ n⌉+2 ≥ logϕn+ logϕ

√
5. Notice thatwhen logϕn−⌊logϕn⌋ ≤

0.32 then ⌈logϕ n⌉ + 1 ≥ logϕn + logϕ

√
5. We can then obtain the goal in d less steps, making a total of d(⌈logϕn⌉ + 1) + 1

time steps. This result follows immediately by the same proof as for Proposition 7.

Again, it is known that deciding whether Parallel-directional-gossip(1) (the problem in which the digraph G is part of the

input) can be solved in a given number of steps is NP-complete [23].

7. Discussion and conclusion

We consider the epistemic gossip problem to be a foundation on which to base the study of richer epistemic planning

problems involving, for example, communication actionswith preconditions involving the contents of themessages received

by the agent or negative goals to model applications in which certain agents must not learn certain secrets. Previous work

on temporal planning may help to provide a more realistic model of communication actions in which, for example, the

length of a call is a function of the quantity of information exchanged, and correct communication during a telephone call

requires concurrency of the speaking and listening actions of the two agents [7,6]. In separate work we have shown that

when allowing negative goals, it is NP-complete to decide the existence of a solution plan even at epistemic depth 1 [5].

Restricting our attention to the epistemic version of the classical gossip problem in which all positive epistemic goals of

depth dmust be attained, we have generalised many results from the classical gossip problem to the epistemic version. We

have shown that for a complete graph G, no protocol exists which solves GossipG(d) in less than (d+1)(n−2) calls. This was

known to be true for d = 1 [1,14]. For any graph G containing K2,n−2 as a subgraph, we have given an optimal protocol which

uses exactly this number of calls. In the case of one-way communications, we have again generalised the optimal protocol

from the classical gossip problem to the epistemic version. This protocol requires only (d + 1)(n − 1) calls. When calls can

be performed in parallel, and the aim is to minimise the number of such parallel steps rather than the number of calls, we

have again generalised the optimal protocol from the classical gossip problem to the epistemic version. In this case, only

O(d log n) steps are required.

There remain interesting open problems concerning the optimisation version of the epistemic gossip problem: given

any graph G, determine the minimum number of calls required to attain a set of goals. The computational complexity of

the problem of minimising the number of calls (whether two-way or one-way) to solve GossipG(d) on an arbitrary graph G

(given as input) is still open for d > 1.
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