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ON THE SYMMETRIC COMPONEN TWISE RELATIVE 
BACKWARD ERROR FOR LINEAR SYST EMS OF EQUATIONS∗

STANLEY C. EISENSTAT† , SERGE GRATTON‡ , AND DAVID TITLEY-PELOQUIN§

Abstract. We derive an upper bound on the symmetric componentwise relative backward error
for symmetric linear systems of equations. Since the bound can be computed efficiently and, except
for some artificial examples, seems to be of the same order of magnitude as the true symmetric
componentwise backward error, we believe that it is suitable for practical use. Our results also
provide new insight into the relationship between the symmetric and unsymmetric backward errors.

Key words. componentwise backward error, symmetric backward error

DOI. 10.1137/140986566

1. Introduction. During an “open problems” session at the Householder Sym-
posium XIX on Numerical Linear Algebra, held in Spa, Belgium, James Demmel
presented the following challenge: Solve the symmetric componentwise relative back-

ward error problem for linear systems of equations. In this note we present some
progress that we have made toward its solution.

Suppose that we are given an approximate solution x ∈ R
n to the linear system

Au = b, where A ∈ R
n×n is nonsingular, b ∈ R

n, and u ∈ R
n. The backward error

problem is to find minimal (in some sense) perturbations ∆A ∈ R
n×n and ∆b ∈ R

n

such that x is the exact solution of the perturbed problem

(A + ∆A)x = b + ∆b.

The size of the smallest perturbation is called the backward error and can be measured
normwise or componentwise. Here we consider a componentwise relative measure that
is often used in conjunction with sparse direct solvers (see, e.g., [1]).

When the matrix A has some structure, it is natural to require that the pertur-
bation ∆A also have this structure. Here we consider the case where A is symmetric,
and we require that ∆A be symmetric as well.

The unstructured componentwise and normwise backward error problems have
been solved for nearly fifty years [8, 9]. The symmetric normwise backward error
problem has also long been settled [2]. The symmetric componentwise variant is more
difficult: Although some results exist [13, 4, 12], it remains open.

In this work we derive an upper bound on the symmetric componentwise relative
backward error, whose precise definition is given in (6) below. The bound can be
computed efficiently and, except for some artificial examples, seems to be of the same
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order of magnitude as the true symmetric backward error. Therefore, we believe
that it is suitable for practical use. Our results also provide new insight into the
relationship between the symmetric and unsymmetric backward errors.

Error bounds for the approximate solution x can be obtained by combining the
structured backward error and a structured perturbation analysis. For an overview of
structured perturbation results for linear systems of equations we refer to [4, 5, 10, 11]
or [6, Chapter 7] and the references therein.

1.1. Notation. We use subscripts to denote elements of vectors or subvectors
of partitioned vectors, and similarly for matrices, while superscripts denote terms in

a sequence. For example, A
(k)
ij denotes the (i, j)th element of the kth term in the

sequence {A(k)}. For u ∈ R
n and v ∈ R we define

diag (u) =



u1

. . .

un


 , sign (v) =





+1 if v > 0,

−1 if v < 0,

0 if v = 0.

Absolute values and inequalities are meant componentwise; that is, |A| is the matrix
whose entries are |Aij |, and |A| ≤ |B| means that |Aij | ≤ |Bij | for all pairs (i, j).

1.2. The componentwise backward error. Given A ∈ R
n×n, b ∈ R

n, and
x ∈ R

n, the componentwise relative backward error for the linear system Au = b is
defined as

(1) ǫ∗ = min
ǫ,∆A,∆b

{
ǫ : (A + ∆A)x = b + ∆b, |∆A| ≤ ǫ|A|, |∆b| ≤ ǫ|b|

}
.

Oettli and Prager [8] showed that

ǫ∗ = max
i

(|b − Ax|)i

(|A| |x| + |b|)i

with the convention that 0/0 = 0. Since (|b − Ax|)i ≤ (|b| + |A||x|)i , it must be the
case that 0 ≤ ǫ∗ ≤ 1 with ǫ∗ = 0 if and only if Ax = b.

Let r = b − Ax, let d be the vector whose elements are

(2) di =

{
(|A||x| + |b|)i if (|A||x| + |b|)i 6= 0,

1 otherwise,

and let

(3) D = diag (d) , z = D−1r, Z = diag (z) , S = diag (sign (x)) .

Then

(4) ǫ∗ = ‖z‖
∞

,

and the minimum in (1) is attained by the perturbations

(5) ∆A∗ = Z|A|S, ∆b∗ = −Z|b|.

See [6, section 7.2] for a short proof.



 

 

 
 
 
 
 
 
 
 

 
 
 

 

 
 
 
 

 
 
 
 

 
 

 

 
 
 
 
 

 
 

 

Analogously to (1), for symmetric A the symmetric componentwise relative back-
ward error for Ax = b is defined as

ǫ∗
sym = min

ǫ,∆A,∆b

{
ǫ : (A + ∆A)x = b + ∆b,

|∆A| ≤ ǫ|A|, |∆b| ≤ ǫ|b|, ∆A = (∆A)T
}
.

(6)

Since the perturbations ∆A = −A and ∆b = −b satisfy the constraints with ǫ = 1,
we have 0 ≤ ǫ∗

sym ≤ 1 with ǫ∗
sym = 0 if and only if Ax = b.

Because (6) is identical to (1) except for the additional symmetry constraint, it
must be the case that ǫ∗

sym ≥ ǫ∗. Rump [12] has recently given an example (see (20))
where ǫ∗

sym can be arbitrarily larger than ǫ∗. However, this result cannot be used to
compute or bound ǫ∗

sym given a specific triplet (A, b, x).
Variants of (6) have appeared in the literature. For example, Smoktunowicz [13]

(see also [6, Problem 7.12]) considers perturbations only in the matrix A,

min
ǫ,∆A

{
ǫ : (A + ∆A)x = b, |∆A| ≤ ǫ|A|

}
,(7a)

min
ǫ,∆A

{
ǫ : (A + ∆A)x = b, |∆A| ≤ ǫ|A|, ∆A = (∆A)T

}
,(7b)

and shows that if A is symmetric and diagonally dominant, the minimum in (7b) is at
most a factor of three larger than that in (7a). This is also true for symmetric positive
definite matrices [13, Theorem 3.1]. On the other hand, Higham and Higham [4] give
an example of a general symmetric A (see (19)) where the minimum in (7b) can be
arbitrarily larger than that in (7a). Since perturbations to b are readily accounted for
in structured perturbation analyses, we include them in (6).

More generally, one can also replace |A| and |b| in (1) and (6) with arbitrary
nonnegative tolerances E and f . For example, in the symmetric case Higham and
Higham [4] consider

(8) min
ǫ,∆A,∆b

{
ǫ : (A + ∆A)x = b + ∆b, |∆A| ≤ ǫE, |∆b| ≤ ǫf, ∆A = (∆A)T

}
.

However, E = |A| and f = |b| is a natural and common choice, and for simplicity we
have chosen to work with the less general (but still useful) formulation (6).

Each of these backward error problems is a linear program (LP) and can in prin-
ciple be solved using any general LP solver. Alternatively, Higham and Higham [4]
show how the solution can be computed as the minimum ∞-norm solution of an un-
derdetermined linear system of equations. However, when the problem dimensions are
large, these approaches are too expensive to be of practical use. It would be useful
to have an expression for (or a tight upper bound on) the symmetric backward error
ǫ∗
sym that can be computed cheaply, analogously to (4) in the unsymmetric case. This

was the goal of the present work.

1.3. Our contributions. We make some progress toward solving (6) by deriving

an upper bound ǫ̃sym on ǫs∗ym. Combined with a struc tured perturbation analysis, it 
leads to upper bounds on the error in x. It can also b e used to compute a bound on
the ratio ǫs∗ym/ǫ∗ for a given triplet (A, b, x).

In the following section we derive our upper bou  nd. In section 3 we investigate 
whether it is tight. In section 4 we show how it can be computed efficiently, even 
when the problem dimensions are very large. In sect ion 5 we give some illustrative 
examples and a summary of our numerical experiment s.



 

 
 
 

 

 
 

 
 

 

 

 

 

 
 
 
 
 
 
 
 

 

 

 

 

 
 

2. A bound on the symmetric componentwise backward error. We start
by presenting our main result.

Theorem 2.1. Given a symmetric matrix A ∈ R
n×n and vectors b ∈ R

n and

x ∈ R
n, define r = b − Ax, the vector d as in (2), and the vector z and the matrices

D and S as in (3). Then the matrix

(9) N = D−1
(
diag

(
1
2 |A||x| + |b|

)
+ 1

2S|A|S diag (|x|)
)

is diagonally dominant with nonnegative diagonal elements, and the linear system

Nz̃ = z is consistent. Moreover, for any solution z̃, the perturbations

(10) ∆̃A = 1
2

(
Z̃|A|S + S|A|Z̃

)
, ∆̃b = −Z̃|b|,

where Z̃ = diag (z̃), satisfy

(11) (A + ∆̃A)x = b + ∆̃b, ∆̃A = (∆̃A)T ;

and the symmetric backward error ǫ∗
sym in (6) satisfies

(12) ǫ∗
sym ≤ max

{
ǫ̃A, ǫ̃b

}
≤ ‖z̃‖

∞
≡ ǫ̃sym,

where

(13) ǫ̃A = max
i,j

|∆̃Aij |

|Aij |
, ǫ̃b = max

j

|∆̃bj |

|bj |

with the convention that 0/0 = 0.

Note the similarity to the Oettli and Prager [8] result for the unsymmetric back-
ward error. The final bound ‖z̃‖

∞
in (12) has the same form as (4) and the pertur-

bations ∆̃A and ∆̃b in (10) are the same as those in (5), except that z and Z have

been replaced by z̃ and Z̃, respectively, and ∆̃A has been symmetrized.

Proof. Consider the perturbations in (10). Clearly ∆̃A is symmetric. In order to
satisfy the other equality constraint in (11) we must have

0 = (A + ∆̃A)x − (b + ∆̃b)

= 1
2

(
Z̃|A|S + S|A|Z̃

)
x + Z̃|b| − (b − Ax)

= Z̃
(

1
2 |A|Sx + |b|

)
+ 1

2S|A|Z̃x − r

= diag
(

1
2 |A||x| + |b|

)
z̃ + 1

2S|A|S diag (|x|) z̃ − Dz

= D
(
Nz̃ − z

)
.

Thus, if Nz̃ = z, then the perturbations ∆̃A and ∆̃b satisfy both equality constraints
in (11), and by (6) we have

ǫ∗
sym ≤ max

{
ǫ̃A, ǫ̃b

}
.

From (10) it follows that ∆̃Aij = 0 if Aij = 0, and

|∆̃Aij |

|Aij |
≤ 1

2 |z̃i| + 1
2 |z̃j| ≤ ‖z̃‖

∞



 

 

 
 

 

 
 
 
 
 

 

 

 

 
 

 
 
 
 

 

 
 

otherwise, while ∆̃bj = 0 if bj = 0, and

|∆̃bj |

|bj|
= |z̃j| ≤ ‖z̃‖

∞

otherwise. Therefore,
ǫ∗
sym ≤ ‖z̃‖

∞
= ǫ̃sym.

We now show that N is diagonally dominant with nonnegative diagonal entries.
From (9) it follows that

Nii =

(
1
2 |A||x| + |b|

)
i

di

+
|Aii||xi|

2di

=
|Aii||xi| + |bi|

di

+
∑

j 6=i

|Aij ||xj |

2di

≥ 0,

while, for j 6= i,

|Nij | =

{
0 if xi = 0,
1

2di

|Aij ||xj | otherwise.

Therefore

(14) |Nii| −
∑

j 6=i

|Nij | ≥
|Aii||xi| + |bi|

di

≥ 0.

Finally we show by contradiction that the linear system Nz̃ = z is consistent.
Suppose it is not. Then the matrix N = N(A, b, x) must be singular.

If any entries in x are zero, we can symmetrically permute the rows and columns
so that

A =

[
A11 AT

21

A21 A22

]
, b =

[
b1

b2

]
, x =

[
x1

0

]
,

where |x1| > 0, and partition the other variables conformally. Then Nz̃ = z is
equivalent to

[
N(A11, b1, x1) 0

0 D−1
2 diag

(
1
2 |A21||x1| + |b2|

)
)

] [
z̃1

z̃2

]
=

[
z1

z2

]
.

Because

|z2| =
∣∣D−1

2 r2

∣∣ = D−1
2 |b2 − A21x1| ≤ 2D−1

2

(
1
2 |A21||x1| + |b2|

)
,

if a diagonal entry in the (2, 2) block of the coefficient matrix above is zero, then
the corresponding entry on the right-hand side must also be zero and that equation is
consistent. If the diagonal entry is nonzero, that equation has a unique solution. That
is, the second block of equations is consistent, so the system N(A11, b1, x1)z̃1 = z1

must be inconsistent. Thus without loss of generality we may assume that |x| > 0.
If A is reducible we can symmetrically permute the rows and columns so that

A =

[
A11 0
0 A22

]

and partition the other variables conformally. Then Nz̃ = z is equivalent to

[
N(A11, b1, x1) 0

0 N(A22, b2, x2)

] [
z̃1

z̃2

]
=

[
z1

z2

]
,



 
 

 
 

 
 

 

 

 

 

 
 
 
 

 
 
 
 
 

 
 
 

 
 

 

 

 

 

 
 

and at least one of the systems N(Aii, bi, xi)z̃i = zi must be inconsistent. By applying
the same reasoning recursively, we see that without loss of generality we may assume
that A is irreducible.

Since |x| > 0, the matrix N has the same off-diagonal nonzero structure as A and
must also be irreducible; and by (14) it is diagonally dominant. If any entry in b were
nonzero, then the corresponding row of N would be strictly diagonally dominant, so
that N would be irreducibly diagonally dominant and nonsingular. Thus without loss
of generality we may assume that b = 0.

Because N is singular, there exists a vector u 6= 0 such that

0 = Nu = D−1 diag
(

1
2 |A||x|

)
u + 1

2D−1S|A|S diag (|x|) u.

Let ui 6= 0 be an element of u of maximum magnitude. Then

0 = (Nu)i =
ui

2di

n∑

j=1

|Aij ||xj |

(
1 + sign (xi) sign (xj)

uj

ui

)
.

Since |uj| ≤ |ui|, all terms in the above sum are nonnegative. For the sum to be zero
we must have Aii = 0 and uj = −ui sign (xixj) for every j for which |Aij | > 0; that
is, uj must also be an element of maximum magnitude. Applying the same argument
repeatedly, we must have |Akk| = 0 and uk = (−1)ℓui sign (xixk) whenever there is
a path of length ℓ from node i to node k in the graph of A. Since A is irreducible,
every node k is reachable and all entries in u are so defined. Thus u is unique up to
a scaling factor, and the null-space of N is one-dimensional.

Since the sign of uk depends only on whether the lengths of all paths from node
i to node k in the graph of A are all even or all odd, the matrix A must have Young’s
property A: there exist two disjoint subsets S1 and S2 of W = {1, . . . , n} such that
S1 ∪ S2 = W ; and if Aij 6= 0, then i ∈ S1 and j ∈ S2 or i ∈ S2 and j ∈ S1. It follows
(see, e.g., [15, section 2.6]) that after symmetrically permuting the rows and columns
of A we can write

A =

[
0 AT

21

A21 0

]
.

Partitioning all other variables conformally, we have

N = 1
2D−1

[
diag

(
|AT

21||x2|
)

S1|A
T
21|S2 diag (|x2|)

S2|A21|S1 diag (|x1|) diag (|A21|x1|)

]
.

Let v = D [ x1

−x2
]. Then

NT v = 1
2

[
diag

(
|AT

21||x2|
)
x1 − diag (|x1|)S1|A

T
21|S2x2

diag (|x2|) S2|A21|S1x1 − diag (|A21|x1|)x2

]
= 0;

that is, v spans the null space of NT . On the other hand, since r = −Ax and
z = D−1r, we have

vT z = −

[
x1

−x2

]T [
AT

21x2

A21x1

]
= xT

1 AT
21x2 − xT

2 A21x1 = 0;

that is, z is orthogonal to the null space of NT . Thus z lies in the range of N and
Nz̃ = z must have a solution, contrary to our original assumption.



 
 

 
 
 
 
 
 
 
 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 
 
 
 

 

3. Improvements to the bound. While Theorem 2.1 gives a simple expression
for an upper bound, it is possible to improve on this result. We mention some of these
improvements in this section.

First, we show how to eliminate zero elements on the diagonal of N , since such
elements would complicate the algorithms for computing ǫ̃sym that are presented in
section 4. Suppose that Nii = 0 for some i. Since N is diagonally dominant, we
must have Nij = 0 for all j, so that (Ny)i = 0 for any y ∈ R

n. Since the nonzero
structure of N is symmetric, we must have Nji = 0 for all j; and since Nz̃ = z has
a solution, we also have zi = (Nz̃)i = 0. Thus the linear system Nz̃ = z does not
place any constraints on z̃i. Changing Nii from 0 to 1 leaves N diagonally dominant
with nonnegative diagonal entries but imposes the added constraint z̃i = 0. However,
setting z̃i = 0 in any solution to the original system yields a solution to both the
original and the new systems that does not increase ‖z̃‖

∞
. After eliminating all zero

diagonal entries in this manner, we get the following result.

Corollary 3.1. In the notation of Theorem 2.1, let the matrix N̄ be defined by

N̄ij =

{
1 if i = j and Nii = 0,

Nij otherwise.

Then N̄ is diagonally dominant with positive diagonal entries, N̄ z̃ = z is consistent,

and ǫ∗
sym ≤ ‖z̃‖

∞
for any solution z̃.

It is also possible to improve our bound by taking advantage of zeros in x, b, and
the diagonal of A.

If any entries in x are zero, then without loss of generality we can write A, b, and
x as

A =

[
A11 AT

21

A21 A22

]
, b =

[
b1

b2

]
, x =

[
x1

0

]
,

where |x1| > 0, and any symmetric perturbation ∆A and ∆b as

∆A =

[
∆A11 ∆AT

21

∆A21 ∆A22

]
, ∆b =

[
∆b1

∆b2

]
.

To satisfy (A + ∆A)x = b + ∆b this perturbation must satisfy

(A11 + ∆A11)x1 = b1 + ∆b1, (A21 + ∆A21)x1 = b2 + ∆b2.

But replacing ∆A21 and ∆b2 by the Oettli–Prager perturbation for A21x1 = b2 and
replacing ∆A22 by the zero matrix gives another perturbation that satisfies these
requirements without increasing ǫ. Indeed, the new minimum ǫ can be nearly a factor
of 2 smaller (see (21)).

If corresponding entries on the diagonal of A and in b are 0, then the second term
max{ǫ̃A, ǫ̃b} in (12) can be as much as 2n − 1 times smaller than ǫ̃sym (see (22)).

If a diagonal entry of A is 0 and the corresponding entry of b is not, then ǫ̃A can
be smaller than ǫ̃b. More generally, whenever ǫ̃A < ǫ̃b there is a gap between ǫ∗

sym and
max{ǫ̃A, ǫ̃b} that can be reduced by the following procedure. Suppose that we only
allow perturbations in A as in problem (7b). Analogously to Theorem 2.1, let

Ẑ = diag (ẑ) , ∆̂A = 1
2

(
Ẑ|A|S + S|A|Ẑ

)
, ǫ̂A = max

i,j

|∆̂Aij |

|Aij |
,



 

 
 
 
 
 
 

 

 

 

 

 
 
 

 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 

 
 
 

 

where ẑ is any vector such that

1
2D−1

(
diag (|A||x|) + S|A|S diag (|x|)

)
ẑ = z.

(Such a ẑ will exist if |bi| = 0 whenever (|A||x|)i = 0; the proof is similar to that of

Theorem 2.1.) Then (A+∆̂A)x = b and ∆̂A is symmetric, so that ǫ̂A is also an upper
bound on ǫ∗

sym. Now consider the blended perturbations

∆A(β) = β∆̃A + (1 − β)∆̂A, ∆b(β) = β∆̃b,

for 0 ≤ β < 1. We still have

(A + ∆A(β))x = b + ∆b(β), ∆A(β) = (∆A(β))T ,

while

max
i,j

|∆A
(β)
ij |

|Aij |
≤ βǫ̃A + (1 − β)ǫ̂A, max

j

|∆b
(β)
j |

|bj |
≤ βǫ̃b.

Since ǫ̃A < ǫ̃b,

(15) ǫ∗
sym ≤ min

0≤β<1
max {βǫ̃A + (1 − β)ǫ̂A, βǫ̃b} =

{
ǫ̂A if ǫ̂A < ǫ̃A,

βminǫ̃b otherwise,

where βmin = ǫ̂A/(ǫ̂A + (ǫ̃b − ǫ̃A)) < 1. This bound is smaller than ǫ̃b = max{ǫ̃A, ǫ̃b}
and ǫ̃sym, the bounds from Theorem 2.1 (see (23)).

In the tests performed in section 5.3, the bound ǫ̃sym almost always gives a good
order of magnitude estimate of ǫ∗

sym, so that these improvements are usually unneeded.
However, the blending procedure may provide a much tighter bound in some particular
examples (see (23)).

4. Efficient computation of the bound. The perturbations ∆̃A and ∆̃b
in (10) and the upper bound ǫ̃sym in (12) for the symmetric componentwise back-
ward error are based on a solution z̃ of the linear system Nz̃ = z with N given in (9)
and z in (3). In principle one can explicitly compute a z̃ by solving the linear system
directly, taking advantage of the fact that no pivoting is required for stability since
N is diagonally dominant. However, this is not always practical. Furthermore, since
N is based on |A| (as opposed to A), even if exact or inexact triangular factors of A
are available, it is not clear how to reuse them to obtain a cheap estimate of z̃.

For large problems it is typically much more efficient to compute z̃ using an it-
erative procedure. In practice one does not usually require the backward error and
corresponding perturbations with a great deal of accuracy; often only an order-of-
magnitude estimate is sufficient. This makes the use of iterative strategies partic-
ularly attractive. Below we outline two such strategies that we have found to be
quite efficient in our numerical experiments. To simplify the presentation we assume
that Nii > 0 for all i. If this is not the case, one can simply replace N by N̄ (see
Corollary 3.1).

4.1. Gauss–Seidel. Write N = E + L + U , where E is diagonal with positive
diagonal entries and L and U are strictly lower and upper triangular, respectively. To
solve Nz̃ = z the Gauss–Seidel method with initial guess 0 computes the sequence of
iterates

(16) z̃(k) = (E + L)−1
(
z − Uz̃(k−1)

)
, k > 0; z̃(0) = 0.



 

 

 

 
 

 

 
 

 

 

 
 
 

 
 
 

 

 

 

Let ǫ̃
(k)
sym = ‖z̃(k)‖

∞
. Since

z̃(k) − z̃ = −(E + L)−1U
(
z̃(k−1) − z̃

)
, k > 0; z̃(0) − z̃ = −z̃,

we have
∣∣∣ǫ̃(k)

sym − ǫ̃sym

∣∣∣ =
∣∣∣
∥∥∥z̃(k)

∥∥∥
∞

− ‖z̃‖
∞

∣∣∣ ≤
∥∥∥z̃(k) − z̃

∥∥∥
∞

≤
∥∥∥
(
(E + L)−1U

)k
∥∥∥

∞
ǫ̃sym.

Since E is diagonal with positive diagonal entries,

∥∥∥
(
(E + L)−1U

)k
∥∥∥

∞
≤

∥∥∥
(
(E − |L|)−1|U |

)k
∥∥∥

∞
=

∥∥∥
(
(E − |L|)−1|U |

)k
e
∥∥∥

∞
≡ α(k),

where e ∈ R
n is the vector whose entries are all 1. Thus

(17)
(
1 + α(k)

)−1

ǫ̃(k)
sym ≤ ǫ̃sym ≤

(
1 − α(k)

)−1

ǫ̃(k)
sym.

The iteration can be stopped when the upper and lower bounds are within a small
factor, say, 2, of each other, corresponding to α(k) ≤ 1/3. Note that α(k) can be
computed as α(k) = ‖q̃(k)‖

∞
, where

q̃(k) = (E − |L|)−1|U |q̃(k−1), k > 0; q̃(0) = e

are the Gauss–Seidel iterates for the linear system (E − |L| − |U |)q̃ = 0 with initial
guess e. This doubles the cost per iteration.

4.2. Convergence of Gauss–Seidel. To show that Gauss–Seidel converges
even when N is singular, we need a special case of Keller [7, Corollary 2.1].

Theorem 4.1. Let T be a symmetric nonnegative definite matrix with positive

diagonal entries. Then the Gauss–Seidel iterates u(k) for the linear system Tu = v
converge for any initial guess u(0). Moreover, if u satisfies Tu = v and the initial

error u(0) − u is orthogonal to the null space of T , then u(k) converges to u.

Since N need not be symmetric, we cannot apply this result directly. However,
let P = diag (p), where

pi =

{√
|xi|di if xi 6= 0,

1 otherwise.

Then PNP −1 is symmetric and has the same positiv e diagonal entries as N . More-
over, it has the same eigenvalues as N (by similarity), and these eigenvalues are real 
(by symmetry) and lie in the right half plane (by Gersh gorin’s theorem applied to N). 
That is, PNP −1 is symmetric nonnegative definite wi th positive diagonal entries.

Let T = P 2N . Since T = P (PNP −1)P and P is diagonal, T is symmetric with 
positive diagonal entries, and by Sylvester’s theorem i t is nonnegative definite. Since 
Gauss–Seidel is invariant under row scaling, the itera tes for T z̃  = P 2z with initial 
guess 0 are the same as those for Nz̃  = z. Finally, s ince P is nonsingular, the null 
spaces of T and N are the same.

By Theorem 2.1 the linear system Nz̃  = z is consi stent. Let z̄  denote the projec-
tion of some solution z̃  onto the orthogonal compleme nt of the null space of N . Then 
Nz̄  = z so that T z̄  = P 2z. Since the initial error 0 − z̄ is orthogonal to the null space 
of T , by Theorem 4.1 the Gauss–Seidel iterates must  converge to z̄ .



 
 
 
 
 

 
 
 
 

 

 
 
 

 
 
 
 
 
 

 

 

 

 

 
 

 

 

 

A similar argument applied to (E − |L| − |U |)q̃ = 0 shows that the Gauss–Seidel
iterates q̃(k) with the initial guess e must converge. If E − |L| − |U | is nonsingular,
its null space is {0}, and the initial error e − 0 corresponding to the solution q̃ = 0 is
orthogonal to it. Thus the iterates converge to 0, as does α(k). However, if E−|L|−|U |
is singular, then it can be shown that neither sequence does, so that α(k) does not
provide a useful bound.

4.3. GMRES. While the Gauss–Seidel iterates always converge to a solution,
they may converge slowly and α(k) need not converge to 0. An alternative is to use
GMRES with initial guess 0 to solve the preconditioned system

(
G−1

L NG−1
R

)
y = G−1

L z,

where GL and GR are nonsingular, and compute z̃ = G−1
R y.

Let ỹ(k) denote the kth iterate, let z̃(k) = G−1
R ỹ(k), and let ǫ̃

(k)
sym = ‖z̃(k)‖

∞
. If N

is nonsingular, the error can be bounded as follows:

∣∣∣ǫ̃(k)
sym − ǫ̃sym

∣∣∣ ≤
∥∥∥z̃(k) − z̃

∥∥∥
∞

≤
∥∥∥G−1

R GRN−1GLG−1
L

(
Nz̃(k) − z

)∥∥∥
2

≤
∥∥G−1

R

∥∥
2

∥∥∥
(
G−1

L NG−1
R

)−1
∥∥∥

2

∥∥∥G−1
L (Nz̃(k) − z)

∥∥∥
2

≈
∥∥G−1

R

∥∥
2

σmin(Hk)−1
∥∥∥G−1

L

(
Nz̃(k) − z

)∥∥∥
2
,

where Hk is the (k + 1) × k upper Hessenberg matrix generated by GMRES and the
last factor is the norm of the residual of the preconditioned system. Letting

α(k) =
∥∥G−1

R

∥∥
2

σmin(Hk)−1
∥∥∥G−1

L

(
Nz̃(k) − z

)∥∥∥ 2

/∥∥∥z̃(k)
∥∥∥ ∞

,

we get

(18)
(
1 − α(k)

)
ǫ̃(k)
sym . ǫ̃sym .

(
1 + α(k)

)
ǫ̃(k)
sym.

Again the upper bound and lower bound are within a factor of 2 of each other when
α(k) ≤ 1/3. Since σmin(Hk)−1 is a lower bound on ‖(G−1

L NG−1
R )−1‖

2
, this bound is

only approximate, unlike that for the Gauss–Seidel iteration. However, the cost of
computing it is negligible.

In our tests the best preconditioner was Gauss–Seidel (GL = E + L and GR = I,
while taking advantage of the fact that

G−1
L NG−1

R = I + (E + L)−1U

to reduce the cost of multiplying by the preconditione d matrix to that of one Gauss–
Seidel iteration). Since Gauss–Seidel with initial guess z̃(k) = 0 always converges and 
GMRES with the Gauss–Seidel preconditioner genera tes the same Krylov subspaces 
but chooses iterates that minimize the norm of the r esidual, the latter combination 
must also converge to a solution even when N is singu lar.

As noted in section 4.2, the matrix PNP −1 is sy mmetric nonnegative definite. 
Thus GMRES with the preconditioner GL = P −1 and

 
 GR = P reduces to the conju-

gate residual method, which unlike GMRES requires  a constant amount of work per 
iteration. However, in our experiments this advantage was not enough to overcome a 
slower rate of convergence.



 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 
 

 

 

 

5. Numerical experiments.

5.1. Some illustrative examples. We start by giving a few small examples
that illustrate some important points.

Higham and Higham [4] show that allowing perturbations in the right-hand side
vector b can reduce the symmetric componentwise backward error. Let

(19) A =

[
1 1
1 0

]
, b =

[
1
δ

]
, x =

[
δ
1

]
,

where δ > 0. If only perturbations in A are allowed, then that minimum is δ/(1 + δ)
in the unsymmetric case (7a) and 1 in the symmetric case (7b). On the other hand,
if perturbations in b are allowed, we have ǫ∗ = ǫ∗

sym = δ/(2 + δ). Furthermore,
ǫ̃sym = 3δ/(4 + 3δ), which is of the same order of magnitude.

In contrast, Rump [12] shows that the symmetric backward error can be arbitrarily
larger than the unsymmetric one, even when perturbations to b are allowed. Let

(20) A =




δ 1 1 0 −1
1 0 1 −1 0
1 1 0 1 1
0 −1 1 0 1

−1 0 1 1 0




, x =




1
1
0
1
1




, b =




0
0
4
0
0




.

Then ǫ∗ = δ/(2 + δ), while ǫ∗
sym = 1. Furthermore, ǫ̃sym = 1.

As shown in section 3, we can take advantage of zeros in x. Let

(21) A =




2 −2 1
−2 2 −2

1 −2 2


 , x =



1
1
0


 , b =



1
1
δ


 .

Then ǫ̃sym = 2(1 + δ)/(3 + 2δ) corresponding to the perturbation

∆̃A =




2
5

2
5

1+δ
3+2δ

2
5

2
5

2(1+δ)
3+2δ

1+δ
3+2δ

2(1+δ)
3+2δ

0


 , ∆̃b = −




1
5
1
5

δ(1+δ)
3+2δ


 .

However, if we replace the third row/column of ∆̃A and the third row of ∆̃b by the
Oettli–Prager perturbation for

[
1 −2 2

]
x =

[
δ
]
,

then we get the perturbation

∆A =




2
5

2
5

1+δ
3+δ

2
5

2
5

2(1+δ)
3+δ

1+δ
3+δ

2(1+δ)
3+δ

0


 , ∆b = −




1
5
1
5

δ(1+δ)
3+δ


 ,

which corresponds to ǫ∗
sym = (1 + δ)/(3 + δ). The latter is smaller than ǫ̃sym by a

factor of 2 asymptotically as δ → 0.



 

 

 
 

 

 
 
 
 

 

 

 

 

 

 

 
 

 
 
 

 

 

 

While ‖z̃‖
∞

is easier to compute, max{ǫ̃A, ǫ̃b} can be as much as 2n − 1 times
smaller. Let

(22) A =




1 −1
−1 0 1

1
. . .

. . .
. . . 0 (−1)n−1

(−1)n−1 0




, x =




1
1
...
1


 , b =




0
0
...
0


 .

Then ǫ∗ = ǫ∗
sym = max{ǫ̃A, ǫ̃b} = 1, but ǫ̃sym = 2n − 1.

As shown in section 3, blending can lead to tighter bounds. Let

(23) A =




1 −1
−1 0 1

1
. . .

. . .
. . . 0 (−1)n−1

(−1)n−1 (−1)n




, x =




1
1
...
1


 , b = δ




−1
1
...

(−1)n


 .

Then ǫ∗ = δ/(2 + δ), while ǫ∗
sym = nδ/(2 + nδ). Thus the ratio ǫ∗

sym/ǫ∗ tends to n
as δ → 0. Furthermore, for sufficiently small δ we have ǫ̃sym ≈ n2δ/4 if n is even
and ǫ̃sym ≈ (n2 + 1)δ/4 if n is odd. Thus the ratio ǫ̃sym/ǫ∗

sym tends to roughly n/2 as
δ → 0. On the other hand, by using the blending procedure and taking β = 0 in (15),
we have ǫ̂A = nδ/2. In other words, in this example,

ǫ∗ ≪ ǫ∗
sym ≈ ǫ̂A ≪ ǫ̃sym.

5.2. Comparison with known bounds. Smoktunowicz [13, Theorem 2.2]
shows that, in our notation

(24) ǫ∗
sym ≤ max

i

|ri|

(|A||x|)i

(
2(n − 1)γ + 1

)
, where γ = max

i,j

|Aij |

|Aii|
,

and has also suggested that [14]

(25) ǫ∗
sym ≤ 2βǫ∗, where β = max

i

(|A||x| + |b|)i

|bi|

with the convention that α/0 = ∞ if α 6= 0 and 0/0 = 0.
The bound (24) is ∞ when any diagonal entry of A is 0 (unless the entire

row/column and right-hand side are also 0). As the tests in the next subsection
show, it is not very tight.

The bound (25) is at least as large as ‖z̃‖
∞

for any solution z̃ of the linear system

N̄ z̃ = z defined in Corollary 3.1. If (|A||x| + |b|)i = 0, then di = 1 and

Nii =
(

1
2 |A||x| + |b|

)
i
+ 1

2 |Aii||xi| = 0

so that N̄ii = 1. Since N is diagonally dominant, N̄ij = Nij = 0 for all j 6= i. Thus
we have (|I − N̄ |e)i = 0.

If (|A||x| + |b|)i > 0, then di = (|A||x| + |b|)i,

(I − N̄)ii =
1

di

(
di −

(
1
2 |A||x| + |b|

)
i
− 1

2 |Aii||xi|
)

=
1

2di

((|A||x|)i − |Aii||xi|) ,



 

 

 

 

 

 

 

 

 
 
 

 
 
 
 

 

 
 

 

 

and

∑

j 6=i

|(I − N̄)ij | =
∑

j 6=i

|Nij | ≤
1

2di

∑

j 6=i

|Aij ||xj | =
1

2di

((|A||x|)i − |Aii||xi|) .

Thus we have

(|I − N̄ |e)i ≤
1

di

((|A||x|)i − |Aii||xi|) = 1 −
|Aii||xi| + |bi|

(|A||x| + |b|)i

.

Putting these together,

‖I − N̄‖
∞

= max
i

(|I − N̄ |e)i ≤ max
i : (|A||x|+|b|)

i
>0

(
1 −

|Aii||xi| + |bi|

(|A||x| + |b|)i

)

with the convention that the maximum is 0 if |A||x| + |b| = 0. If ‖I − N̄‖
∞

< 1, then

N̄−1 exists,

‖N̄−1‖
∞

≤
1

1 − ‖I − N̄‖
∞

≤ max
i : (|A||x|+|b|)

i
>0

(|A||x| + |b|)i

|Aii||xi| + |bi|
≤ β,

and we have
ǫ∗
sym ≤ ǫ̃sym = ‖z̃‖

∞
≤ ‖N̄−1‖

∞
‖z‖

∞
≤ βǫ∗.

If ‖I − N̄‖
∞

= 1, then |Aii||xi| + |bi| = 0 for some i with (|A||x| + |b|)i > 0, so that
the last expression is ∞ and the result still holds.

5.3. Numerical experiments. It is difficult to compare ǫ∗
sym and ǫ̃sym on large

problems directly because the symmetric backward error ǫ∗
sym is too expensive to

compute via linear programming. However, recall that

ǫ∗ ≤ ǫ∗
sym ≤ ǫ̃sym,

where ǫ∗ is the unsymmetric backward error in (1). Both ǫ∗ and ǫ̃sym can be computed
cheaply. Therefore, we can investigate the ratio ǫ̃sym/ǫ∗, which is an upper bound on
both ǫ̃sym/ǫ∗

sym and ǫ∗
sym/ǫ∗, to gain insight into the relationship between ǫ̃sym and

ǫ∗
sym, as well as the relationship between ǫ∗

sym and ǫ∗.
We ran tests on the 589 matrices from the University of Florida Sparse Matrix

Collection [3] that satisfied the following criteria:
• A is real and symmetric.
• A is not binary (i.e., some Aij is neither 0 nor 1).
• A is not structurally singular (i.e., some permuted diagonal is nonzero).
• 100 ≤ n ≤ 100000 and 4 ≤ nnz(A)/n ≤ 200.
• At most 1010 flops are needed to factor a symmetric positive definite matrix

with the off-diagonal nonzero structure of A.
After choosing x as described below, we created b as follows (in MATLAB notation):

[i,j] = find(A);

E = 10ˆ(-p) * randn(nnz(A),1) ;

E = sparse(i,j,E,n,n) .* A ;

E = E + E’;

b = (A+E)*x;

f = 10ˆ(-p) * randn(n,1) .* b ;

b = b-f;



 

 

 
 
 
 
 

 
 
 

 

 
 

 

 
 

 
 

 
 
 

 
 
 

 
 
 

 
 
 
 
 

 
 
 

Table 1
Test results for p = 4 and xi = s in(i).

Matrix ǫ∗/10−p ǫ̃sym/ǫ∗ (24)/ǫ∗
sym CGS DGS CGM DGM

Mean (median) 2.97 1.47 1 × 1015 1 3 1 2
Median (median) 3.08 1.43 3 × 104 1 3 1 2
Maximum (median) 4.80 2.06 3 × 1017 2 17 2 5
Median (maximum) 4.21 2.02 4 × 104 2 3 2 3
Maximum (maximum) 6.09 2.93 4 × 1017 9 17 7 7

Thus, up to rounding error, x satisfies (A + E)x = b + f , where E and f are random
perturbations of A and b that preserve their sparsity structure and E is symmetric.
Since the componentwise relative errors |Eij |/|Aij | and |fj|/|bj | are of the order of
magnitude 10−p, we expect ǫ∗

sym to be of the same order.
The results for p = 4 and xi = sin(i) are summarized in Table 1, but the results

were similar for other values of p. Because b is generated randomly, all values reported
are the mean, median, or maximum over the problems of the medians or maxima over
101 runs for each of the problems. The value of ǫ̃sym was computed by solving N̄ z̃ = z
directly. The values listed in column (24)/ǫ∗

sym include only the 415 problems out of
589 in which the bound (24) is finite.

We also computed approximations to ǫ̃sym by solving N̄ z̃ = z using Gauss–
Seidel (GS) and GMRES with the Gauss–Seidel preconditioner (GM) (see section 4).
Columns CGS and CGM give the first steps k at which

∣∣∣ǫ̃sym − ǫ̃(k)
sym

∣∣∣ ≤ 1
10 ǫ̃sym.

Columns DGS and DGM give the number of steps until convergence is detected by
the practical stopping criterion α(k) ≤ 1/3 (see (17) and (18)). The reported means
are rounded to the nearest integer.

The results are remarkable. The computed ratios ǫ̃sym/ǫ∗ are close to 1, indi-
cating that in these tests ǫ∗

sym ≈ ǫ̃sym and ǫ∗ ≈ ǫ∗
sym. Convergence of Gauss–Seidel

and Gauss–Seidel-preconditioned GMRES to an order-of-magnitude estimate of the
symmetric backward error is achieved within a few iterations, and our practical stop-
ping criteria are also triggered very quickly, especially for Gauss–Seidel-preconditioned
GMRES.

In the above experiments, the choice xi = sin(i) ensures that |b| > 0. In an
attempt to create problems in which ǫ̃sym/ǫ∗ ≫ 1, we also ran tests with sparse
vectors b. In MATLAB notation,

w = sum(abs(A),2) ./ sum(A˜=0,2);

b = w .* randn(n,1) .* (randperm(n)’<=q*n);

for different values of the density q. Thus b contains qn randomly positioned and
generated entries. For each such b we picked x to be the computed solution of Ax = b,
computed using an LDLT factorization of A with scaling and pivoting. (In order to
efficiently compute the factorization and reliably compute such x, of the previous 589
matrices we restricted ourselves to testing only those 343 numerically nonsingular
matrices of dimension at most 20000.) Finally, we applied sparsity- and symmetry-
preserving perturbations to A and b as in the previous set of tests, so that once again
up to rounding errors (A + E)x = b + f .

The results for this choice of x for p = 6 and density q = 0.1 are summarized
in Table 2. The values listed in column (24)/ǫ∗

sym include only the 221 problems out
of 343 in which the bound (24) is finite. In these tests, the ratio ǫ̃sym/ǫ∗ is as large



 

 
 
 
 
 

 
 

 

 
 

 
 

 

 

 
 
 

 
 
 
 
 

 

 

 
 
 

Table 2
Test results for p = 6 and b spa rse.

Matrix ǫ∗/10−p ǫ̃sym/ǫ∗ (24)/ǫ∗
sym CGS DGS CGM DGM

Mean (median) 3.42 1.85 7 × 1014 7 32 3 9
Median (median) 3.42 1.75 2 × 104 1 4 2 3
Maximum (median) 4.82 8.18 2 × 1017 99 99 99 99
Median (maximum) 4.75 2.42 2 × 104 2 4 2 3
Maximum (maximum) 7.05 18.91 3 × 1017 99 99 99 99

as 18.91, and more iterations are needed to achieve and detect convergence. (The
number of iterations was capped at 98. A value of 99 indicates that the iterations
failed to converge to the desired tolerance within 98 iterations.) While not as good
as those in Table 1, these results nevertheless support the idea that ǫ∗

sym ≪ ǫ̃sym and
ǫ∗ ≪ ǫ∗

sym are very uncommon occurrences that arise from some special structure in
A, b, and/or x.

Although we have not been able to fully quantify this observation, we offer the
following partial explanation. Suppose that N is strictly diagonally dominant. Then

ǫ∗
sym = ‖z̃‖∞ =

∥∥N−1z
∥∥

∞
≤

∥∥N−1
∥∥

∞
‖z‖∞ ≤

∥∥N−1
∥∥

∞
ǫ∗.

For ǫ∗
sym to be much larger than ǫ∗, ‖N−1‖∞ must be large. But from (14)

∥∥N−1
∥∥

∞
≤

1

mini |Nii| −
∑

j 6=i |Nij |
≤ max

i

(|A||x| + |b|)i

|Aii||xi| + |bi|
= 1 + max

i

∑
j 6=i |Aijxj |

|Aii||xi| + |bi|
.

Thus a necessary condition for ǫ∗ ≪ ǫ∗
sym is

∑

j 6=i

|Aijxj | ≫ |Aii||xi| + |bi|

for some i. Although such examples can be created artificially, they seem to be
extremely rare in practice.

6. Concluding remarks. We have given an upper bound on the symmetric
componentwise relative backward error that can be computed efficiently and in our
numerical experiments is usually of the same order of magnitude as the true symmetric
componentwise backward error. Therefore, we believe that our bound is suitable
for use in practice. It also provides new insight into the relationship between the
symmetric backward error and the unsymmetric one, showing that both are usually
of the same order of magnitude. Whether the techniques presented in this note can
be extended to solve backward error problems involving structural properties other
than symmetry remains to be seen.
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