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We derive an upper bound on the symmetric componentwise relative backward error for symmetric linear systems of equations. Since the bound can be computed efficiently and, except for some artificial examples, seems to be of the same order of magnitude as the true symmetric componentwise backward error, we believe that it is suitable for practical use. Our results also provide new insight into the relationship between the symmetric and unsymmetric backward errors.

Introduction.

During an "open problems" session at the Householder Symposium XIX on Numerical Linear Algebra, held in Spa, Belgium, James Demmel presented the following challenge: Solve the symmetric componentwise relative backward error problem for linear systems of equations. In this note we present some progress that we have made toward its solution.

Suppose that we are given an approximate solution x ∈ R n to the linear system Au = b, where A ∈ R n×n is nonsingular, b ∈ R n , and u ∈ R n . The backward error problem is to find minimal (in some sense) perturbations ∆A ∈ R n×n and ∆b ∈ R n such that x is the exact solution of the perturbed problem (A + ∆A)x = b + ∆b.

The size of the smallest perturbation is called the backward error and can be measured normwise or componentwise. Here we consider a componentwise relative measure that is often used in conjunction with sparse direct solvers (see, e.g., [START_REF] Arioli | Solving sparse linear systems with sparse backward error[END_REF]).

When the matrix A has some structure, it is natural to require that the perturbation ∆A also have this structure. Here we consider the case where A is symmetric, and we require that ∆A be symmetric as well.

The unstructured componentwise and normwise backward error problems have been solved for nearly fifty years [START_REF] Oettli | Compatibility of approximate solution of linear equations with given error bounds for coefficients and right-hand sides[END_REF][START_REF] Rigal | On the compatibility of a given solution with the data of a linear system[END_REF]. The symmetric normwise backward error problem has also long been settled [START_REF] Bunch | The strong stability of algorithms for solving symmetric linear systems[END_REF]. The symmetric componentwise variant is more difficult: Although some results exist [START_REF] Smoktunowicz | A note on the strong componentwise stability of algorithms for solving symmetric linear systems[END_REF][START_REF] Higham | Backward error and condition of structured linear systems[END_REF][START_REF] Rump | The componentwise structure and unstructured backward errors can be arbitrarily far apart[END_REF], it remains open.

In this work we derive an upper bound on the symmetric componentwise relative backward error, whose precise definition is given in [START_REF] Higham | Accuracy and Stability of Numerical Algorithms[END_REF] below. The bound can be computed efficiently and, except for some artificial examples, seems to be of the same order of magnitude as the true symmetric backward error. Therefore, we believe that it is suitable for practical use. Our results also provide new insight into the relationship between the symmetric and unsymmetric backward errors.

Error bounds for the approximate solution x can be obtained by combining the structured backward error and a structured perturbation analysis. For an overview of structured perturbation results for linear systems of equations we refer to [START_REF] Higham | Backward error and condition of structured linear systems[END_REF][START_REF] Higham | A survey of componentwise perturbation theory in numerical linear algebra[END_REF][START_REF] Rump | Structured perturbations Part I: Normwise distances[END_REF][START_REF] Rump | Structured perturbations Part II: Componentwise distances[END_REF] or [START_REF] Higham | Accuracy and Stability of Numerical Algorithms[END_REF]Chapter 7] and the references therein.

1.1. Notation. We use subscripts to denote elements of vectors or subvectors of partitioned vectors, and similarly for matrices, while superscripts denote terms in a sequence. For example, A (k) ij denotes the (i, j)th element of the kth term in the sequence {A (k) }. For u ∈ R n and v ∈ R we define

diag (u) =    u 1 . . . u n    , sign (v) =      +1 if v > 0, -1 if v < 0, 0 if v = 0.
Absolute values and inequalities are meant componentwise; that is, |A| is the matrix whose entries are |A ij |, and |A| ≤ |B| means that |A ij | ≤ |B ij | for all pairs (i, j).

1.2. The componentwise backward error. Given A ∈ R n×n , b ∈ R n , and x ∈ R n , the componentwise relative backward error for the linear system Au = b is defined as

(1) ǫ * = min ǫ,∆A,∆b ǫ : (A + ∆A)x = b + ∆b, |∆A| ≤ ǫ|A|, |∆b| ≤ ǫ|b| .
Oettli and Prager [START_REF] Oettli | Compatibility of approximate solution of linear equations with given error bounds for coefficients and right-hand sides[END_REF] showed that

ǫ * = max i (|b -Ax|) i (|A| |x| + |b|) i
with the convention that 0/0 = 0. Since (|b -Ax|) i ≤ (|b| + |A||x|) i , it must be the case that 0 ≤ ǫ * ≤ 1 with ǫ * = 0 if and only if Ax = b.

Let r = b -Ax, let d be the vector whose elements are

(2)

d i = (|A||x| + |b|) i if (|A||x| + |b|) i = 0, 1 otherwise, and let (3) 
D = diag (d) , z = D -1 r, Z = diag (z) , S = diag (sign (x)) . Then (4) ǫ * = z ∞ ,
and the minimum in (1) is attained by the perturbations 6) is identical to (1) except for the additional symmetry constraint, it must be the case that ǫ * sym ≥ ǫ * . Rump [START_REF] Rump | The componentwise structure and unstructured backward errors can be arbitrarily far apart[END_REF] has recently given an example (see ( 20)) where ǫ * sym can be arbitrarily larger than ǫ * . However, this result cannot be used to compute or bound ǫ * sym given a specific triplet (A, b, x). Variants of [START_REF] Higham | Accuracy and Stability of Numerical Algorithms[END_REF] have appeared in the literature. For example, Smoktunowicz [START_REF] Smoktunowicz | A note on the strong componentwise stability of algorithms for solving symmetric linear systems[END_REF] (see also [START_REF] Higham | Accuracy and Stability of Numerical Algorithms[END_REF]Problem 7.12]) considers perturbations only in the matrix A,

min ǫ,∆A ǫ : (A + ∆A)x = b, |∆A| ≤ ǫ|A| , (7a) min ǫ,∆A ǫ : (A + ∆A)x = b, |∆A| ≤ ǫ|A|, ∆A = (∆A) T , (7b) 
and shows that if A is symmetric and diagonally dominant, the minimum in (7b) is at most a factor of three larger than that in (7a). This is also true for symmetric positive definite matrices [START_REF] Smoktunowicz | A note on the strong componentwise stability of algorithms for solving symmetric linear systems[END_REF]Theorem 3.1]. On the other hand, Higham and Higham [START_REF] Higham | Backward error and condition of structured linear systems[END_REF] give an example of a general symmetric A (see ( 19)) where the minimum in (7b) can be arbitrarily larger than that in (7a). Since perturbations to b are readily accounted for in structured perturbation analyses, we include them in [START_REF] Higham | Accuracy and Stability of Numerical Algorithms[END_REF].

More generally, one can also replace |A| and |b| in (1) and ( 6) with arbitrary nonnegative tolerances E and f . For example, in the symmetric case Higham and Higham [START_REF] Higham | Backward error and condition of structured linear systems[END_REF] consider [START_REF] Oettli | Compatibility of approximate solution of linear equations with given error bounds for coefficients and right-hand sides[END_REF] min However, E = |A| and f = |b| is a natural and common choice, and for simplicity we have chosen to work with the less general (but still useful) formulation [START_REF] Higham | Accuracy and Stability of Numerical Algorithms[END_REF]. Each of these backward error problems is a linear program (LP) and can in principle be solved using any general LP solver. Alternatively, Higham and Higham [START_REF] Higham | Backward error and condition of structured linear systems[END_REF] show how the solution can be computed as the minimum ∞-norm solution of an underdetermined linear system of equations. However, when the problem dimensions are large, these approaches are too expensive to be of practical use. It would be useful to have an expression for (or a tight upper bound on) the symmetric backward error ǫ * sym that can be computed cheaply, analogously to (4) in the unsymmetric case. This was the goal of the present work.

1.3. Our contributions. We make some progress toward solving (6) by deriving an upper bound ǫ ˜sym on ǫ s * ym . Combined with a struc tured perturbation analysis, it leads to upper bounds on the error in x. It can also b e used to compute a bound on the ratio ǫ s * ym /ǫ * for a given triplet (A, b, x).

In the following section we derive our upper bou nd. In section 3 we investigate whether it is tight. In section 4 we show how it can be computed efficiently, even when the problem dimensions are very large. In sect ion 5 we give some illustrative examples and a summary of our numerical experiment s.

2.

A bound on the symmetric componentwise backward error. We start by presenting our main result.

Theorem 2.1. Given a symmetric matrix A ∈ R n×n and vectors b ∈ R n and x ∈ R n , define r = b -Ax, the vector d as in (2), and the vector z and the matrices D and S as in [START_REF] Davis | The University of Florida sparse matrix collection[END_REF]. Then the matrix

(9) N = D -1 diag 1 2 |A||x| + |b| + 1 2 S|A|S diag (|x|)
is diagonally dominant with nonnegative diagonal elements, and the linear system N z = z is consistent. Moreover, for any solution z, the perturbations

(10) ∆A = 1 2 Z|A|S + S|A| Z , ∆b = -Z|b|, where Z = diag (z), satisfy (11) 
(A + ∆A)x = b + ∆b, ∆A = ( ∆A) T ;
and the symmetric backward error ǫ * sym in (6) satisfies

(12) ǫ * sym ≤ max ǫA , ǫb ≤ z ∞ ≡ ǫsym , where (13) ǫA 
= max i,j | ∆A ij | |A ij | , ǫb = max j | ∆b j | |b j |
with the convention that 0/0 = 0.

Note the similarity to the Oettli and Prager [START_REF] Oettli | Compatibility of approximate solution of linear equations with given error bounds for coefficients and right-hand sides[END_REF] result for the unsymmetric backward error. The final bound z ∞ in [START_REF] Rump | The componentwise structure and unstructured backward errors can be arbitrarily far apart[END_REF] has the same form as (4) and the perturbations ∆A and ∆b in [START_REF] Rump | Structured perturbations Part I: Normwise distances[END_REF] are the same as those in [START_REF] Higham | A survey of componentwise perturbation theory in numerical linear algebra[END_REF], except that z and Z have been replaced by z and Z, respectively, and ∆A has been symmetrized.

Proof. Consider the perturbations in [START_REF] Rump | Structured perturbations Part I: Normwise distances[END_REF]. Clearly ∆A is symmetric. In order to satisfy the other equality constraint in [START_REF] Rump | Structured perturbations Part II: Componentwise distances[END_REF] we must have

0 = (A + ∆A)x -(b + ∆b) = 1 2 Z|A|S + S|A| Z x + Z|b| -(b -Ax) = Z 1 2 |A|Sx + |b| + 1 2 S|A| Zx -r = diag 1 2 |A||x| + |b| z + 1 2 S|A|S diag (|x|) z -Dz = D N z -z .
Thus, if N z = z, then the perturbations ∆A and ∆b satisfy both equality constraints in [START_REF] Rump | Structured perturbations Part II: Componentwise distances[END_REF], and by [START_REF] Higham | Accuracy and Stability of Numerical Algorithms[END_REF] we have ǫ * sym ≤ max ǫA , ǫb .

From [START_REF] Rump | Structured perturbations Part I: Normwise distances[END_REF] it follows that ∆A ij = 0 if A ij = 0, and

| ∆A ij | |A ij | ≤ 1 2 |z i | + 1 2 |z j | ≤ z ∞
otherwise, while ∆b j = 0 if b j = 0, and

| ∆b j | |b j | = |z j | ≤ z ∞
otherwise. Therefore, ǫ * sym ≤ z ∞ = ǫsym . We now show that N is diagonally dominant with nonnegative diagonal entries. From (9) it follows that

N ii = 1 2 |A||x| + |b| i d i + |A ii ||x i | 2d i = |A ii ||x i | + |b i | d i + j =i |A ij ||x j | 2d i ≥ 0, while, for j = i, |N ij | = 0 if x i = 0, 1 2di |A ij ||x j | otherwise. Therefore (14) |N ii | - j =i |N ij | ≥ |A ii ||x i | + |b i | d i ≥ 0.
Finally we show by contradiction that the linear system N z = z is consistent. Suppose it is not. Then the matrix N = N (A, b, x) must be singular.

If any entries in x are zero, we can symmetrically permute the rows and columns so that

A = A 11 A T 21 A 21 A 22 , b = b 1 b 2 , x = x 1 0 ,
where |x 1 | > 0, and partition the other variables conformally. Then N z = z is equivalent to

N (A 11 , b 1 , x 1 ) 0 0 D -1 2 diag 1 2 |A 21 ||x 1 | + |b 2 | ) z1 z2 = z 1 z 2 .
Because

|z 2 | = D -1 2 r 2 = D -1 2 |b 2 -A 21 x 1 | ≤ 2D -1 2 1 2 |A 21 ||x 1 | + |b 2 | ,
if a diagonal entry in the (2, 2) block of the coefficient matrix above is zero, then the corresponding entry on the right-hand side must also be zero and that equation is consistent. If the diagonal entry is nonzero, that equation has a unique solution. That is, the second block of equations is consistent, so the system N (A 11 , b 1 , x 1 )z 1 = z 1 must be inconsistent. Thus without loss of generality we may assume that |x| > 0.

If A is reducible we can symmetrically permute the rows and columns so that

A = A 11 0 0 A 22
and partition the other variables conformally. Then N z = z is equivalent to

N (A 11 , b 1 , x 1 ) 0 0 N (A 22 , b 2 , x 2 ) z1 z2 = z 1 z 2 ,
and at least one of the systems N (A ii , b i , x i )z i = z i must be inconsistent. By applying the same reasoning recursively, we see that without loss of generality we may assume that A is irreducible. Since |x| > 0, the matrix N has the same off-diagonal nonzero structure as A and must also be irreducible; and by (14) it is diagonally dominant. If any entry in b were nonzero, then the corresponding row of N would be strictly diagonally dominant, so that N would be irreducibly diagonally dominant and nonsingular. Thus without loss of generality we may assume that b = 0.

Because N is singular, there exists a vector u = 0 such that

0 = N u = D -1 diag 1 2 |A||x| u + 1 2 D -1 S|A|S diag (|x|) u.
Let u i = 0 be an element of u of maximum magnitude. Then

0 = (N u) i = u i 2d i n j=1 |A ij ||x j | 1 + sign (x i ) sign (x j ) u j u i .
Since |u j | ≤ |u i |, all terms in the above sum are nonnegative. For the sum to be zero we must have A ii = 0 and u j = -u i sign (x i x j ) for every j for which |A ij | > 0; that is, u j must also be an element of maximum magnitude. Applying the same argument repeatedly, we must have |A kk | = 0 and u k = (-1) ℓ u i sign (x i x k ) whenever there is a path of length ℓ from node i to node k in the graph of A. Since A is irreducible, every node k is reachable and all entries in u are so defined. Thus u is unique up to a scaling factor, and the null-space of N is one-dimensional. Since the sign of u k depends only on whether the lengths of all paths from node i to node k in the graph of A are all even or all odd, the matrix A must have Young's property A: there exist two disjoint subsets S 1 and S 2 of W = {1, . . . , n} such that S 1 ∪ S 2 = W; and if A ij = 0, then i ∈ S 1 and j ∈ S 2 or i ∈ S 2 and j ∈ S 1 . It follows (see, e.g., [15, section 2.6]) that after symmetrically permuting the rows and columns of A we can write

A = 0 A T 21 A 21 0 .
Partitioning all other variables conformally, we have

N = 1 2 D -1 diag |A T 21 ||x 2 | S 1 |A T 21 |S 2 diag (|x 2 |) S 2 |A 21 |S 1 diag (|x 1 |) diag (|A 21 |x 1 |) . Let v = D [ x1 -x2 ]. Then N T v = 1 2 diag |A T 21 ||x 2 | x 1 -diag (|x 1 |) S 1 |A T 21 |S 2 x 2 diag (|x 2 |) S 2 |A 21 |S 1 x 1 -diag (|A 21 |x 1 |) x 2 = 0;
that is, v spans the null space of N T . On the other hand, since r = -Ax and z = D -1 r, we have

v T z = - x 1 -x 2 T A T 21 x 2 A 21 x 1 = x T 1 A T 21 x 2 -x T 2 A 21 x 1 = 0;
that is, z is orthogonal to the null space of N T . Thus z lies in the range of N and N z = z must have a solution, contrary to our original assumption.

3. Improvements to the bound. While Theorem 2.1 gives a simple expression for an upper bound, it is possible to improve on this result. We mention some of these improvements in this section.

First, we show how to eliminate zero elements on the diagonal of N , since such elements would complicate the algorithms for computing ǫsym that are presented in section 4. Suppose that N ii = 0 for some i. Since N is diagonally dominant, we must have N ij = 0 for all j, so that (N y) i = 0 for any y ∈ R n . Since the nonzero structure of N is symmetric, we must have N ji = 0 for all j; and since N z = z has a solution, we also have z i = (N z) i = 0. Thus the linear system N z = z does not place any constraints on zi . Changing N ii from 0 to 1 leaves N diagonally dominant with nonnegative diagonal entries but imposes the added constraint zi = 0. However, setting z i = 0 in any solution to the original system yields a solution to both the original and the new systems that does not increase z ∞ . After eliminating all zero diagonal entries in this manner, we get the following result.

Corollary 3.1. In the notation of Theorem 2.1, let the matrix N be defined by

Nij = 1 if i = j and N ii = 0, N ij otherwise.
Then N is diagonally dominant with positive diagonal entries, N z = z is consistent, and ǫ * sym ≤ z ∞ for any solution z. It is also possible to improve our bound by taking advantage of zeros in x, b, and the diagonal of A.

If any entries in x are zero, then without loss of generality we can write A, b, and x as

A = A 11 A T 21 A 21 A 22 , b = b 1 b 2 , x = x 1 0 ,
where |x 1 | > 0, and any symmetric perturbation ∆A and ∆b as

∆A = ∆A 11 ∆A T 21 ∆A 21 ∆A 22 , ∆b = ∆b 1 ∆b 2 .
To satisfy (A + ∆A)x = b + ∆b this perturbation must satisfy

(A 11 + ∆A 11 )x 1 = b 1 + ∆b 1 , (A 21 + ∆A 21 )x 1 = b 2 + ∆b 2 .
But replacing ∆A 21 and ∆b 2 by the Oettli-Prager perturbation for A 21 x 1 = b 2 and replacing ∆A 22 by the zero matrix gives another perturbation that satisfies these requirements without increasing ǫ. Indeed, the new minimum ǫ can be nearly a factor of 2 smaller (see ( 21)).

If corresponding entries on the diagonal of A and in b are 0, then the second term max{ǫ A , ǫb } in ( 12) can be as much as 2n -1 times smaller than ǫsym (see ( 22)).

If a diagonal entry of A is 0 and the corresponding entry of b is not, then ǫA can be smaller than ǫb . More generally, whenever ǫA < ǫb there is a gap between ǫ * sym and max{ǫ A , ǫb } that can be reduced by the following procedure. Suppose that we only allow perturbations in A as in problem (7b). Analogously to Theorem 2.1, let

Z = diag (ẑ) , ∆A = 1 2 Z|A|S + S|A| Z , ǫA = max i,j | ∆A ij | |A ij | ,
where ẑ is any vector such that

1 2 D -1 diag (|A||x|) + S|A|S diag (|x|) ẑ = z.
(Such a ẑ will exist if |b i | = 0 whenever (|A||x|) i = 0; the proof is similar to that of Theorem 2.1.) Then (A + ∆A)x = b and ∆A is symmetric, so that ǫA is also an upper bound on ǫ * sym . Now consider the blended perturbations

∆A (β) = β ∆A + (1 -β) ∆A, ∆b (β) = β ∆b,
for 0 ≤ β < 1. We still have

(A + ∆A (β) )x = b + ∆b (β) , ∆A (β) = (∆A (β) ) T , while max i,j |∆A (β) ij | |A ij | ≤ βǫ A + (1 -β)ǫ A , max j |∆b (β) j | |b j | ≤ βǫ b . Since ǫA < ǫb , ( 15 
) ǫ * sym ≤ min 0≤β<1 max {βǫ A + (1 -β)ǫ A , βǫ b } = ǫA if ǫA < ǫA , β min ǫb otherwise,
where

β min = ǫA /(ǫ A + (ǫ b -ǫA )) < 1.
This bound is smaller than ǫb = max{ǫ A , ǫb } and ǫsym the bounds from Theorem 2.1 (see ( 23)).

In the tests performed in section 5.3, the bound ǫsym almost always gives a good order of magnitude estimate of ǫ * sym , so that these improvements are usually unneeded. However, the blending procedure may provide a much tighter bound in some particular examples (see (23)).

4. Efficient computation of the bound. The perturbations ∆A and ∆b in [START_REF] Rump | Structured perturbations Part I: Normwise distances[END_REF] and the upper bound ǫsym in [START_REF] Rump | The componentwise structure and unstructured backward errors can be arbitrarily far apart[END_REF] for the symmetric componentwise backward error are based on a solution z of the linear system N z = z with N given in [START_REF] Rigal | On the compatibility of a given solution with the data of a linear system[END_REF] and z in (3). In principle one can explicitly compute a z by solving the linear system directly, taking advantage of the fact that no pivoting is required for stability since N is diagonally dominant. However, this is not always practical. Furthermore, since N is based on |A| (as opposed to A), even if exact or inexact triangular factors of A are available, it is not clear how to reuse them to obtain a cheap estimate of z.

For large problems it is typically much more efficient to compute z using an iterative procedure. In practice one does not usually require the backward error and corresponding perturbations with a great deal of accuracy; often only an order-ofmagnitude estimate is sufficient. This makes the use of iterative strategies particularly attractive. Below we outline two such strategies that we have found to be quite efficient in our numerical experiments. To simplify the presentation we assume that N ii > 0 for all i. If this is not the case, one can simply replace N by N (see Corollary 3.1).

4.1. Gauss-Seidel. Write N = E + L + U , where E is diagonal with positive diagonal entries and L and U are strictly lower and upper triangular, respectively. To solve N z = z the Gauss-Seidel method with initial guess 0 computes the sequence of iterates

(16) z(k) = (E + L) -1 z -U z(k-1) , k > 0; z(0) = 0. Let ǫ(k) sym = z(k) ∞ . Since z(k) -z = -(E + L) -1 U z(k-1) -z , k > 0; z(0) -z = -z, we have ǫ(k) sym -ǫsym = z(k) ∞ -z ∞ ≤ z(k) -z ∞ ≤ (E + L) -1 U k ∞ ǫsym .
Since E is diagonal with positive diagonal entries,

(E + L) -1 U k ∞ ≤ (E -|L|) -1 |U | k ∞ = (E -|L|) -1 |U | k e ∞ ≡ α (k) ,
where e ∈ R n is the vector whose entries are all 1. Thus

(17) 1 + α (k) -1 ǫ(k) sym ≤ ǫsym ≤ 1 -α (k) -1 ǫ(k) sym .
The iteration can be stopped when the upper and lower bounds are within a small factor, say, 2, of each other, corresponding to α (k) ≤ 1/3. Note that α (k) can be computed as α (k) = q(k) ∞ , where

q(k) = (E -|L|) -1 |U |q (k-1) , k > 0; q(0) = e
are the Gauss-Seidel iterates for the linear system (E -|L| -|U |)q = 0 with initial guess e. This doubles the cost per iteration.

Convergence of Gauss-Seidel.

To show that Gauss-Seidel converges even when N is singular, we need a special case of Keller [7, Corollary 2.1].

Theorem 4.1. Let T be a symmetric nonnegative definite matrix with positive diagonal entries. Then the Gauss-Seidel iterates u (k) for the linear system T u = v converge for any initial guess u (0) . Moreover, if u satisfies T u = v and the initial error u (0) -u is orthogonal to the null space of T , then u (k) converges to u.

Since N need not be symmetric, we cannot apply this result directly. However, let P = diag (p), where

p i = |x i |d i if x i = 0, 1 otherwise.
Then PNP -1 is symmetric and has the same positiv e diagonal entries as N. Moreover, it has the same eigenvalues as N (by similarity), and these eigenvalues are real (by symmetry) and lie in the right half plane (by Gersh gorin's theorem applied to N).

That is, PNP -1 is symmetric nonnegative definite wi th positive diagonal entries. Let T = P 2 N. Since T = P (PNP -1 )P and P is diagonal, T is symmetric with positive diagonal entries, and by Sylvester's theorem i t is nonnegative definite. Since Gauss-Seidel is invariant under row scaling, the itera tes for T z ˜ = P 2 z with initial guess 0 are the same as those for Nz ˜ = z. Finally, s ince P is nonsingular, the null spaces of T and N are the same.

By Theorem 2.1 the linear system Nz ˜ = z is consi stent. Let z ¯ denote the projection of some solution z ˜ onto the orthogonal compleme nt of the null space of N. Then Nz ¯ = z so that T z ¯ = P 2 z. Since the initial error 0 -z ¯ is orthogonal to the null space of T , by Theorem 4.1 the Gauss-Seidel iterates must converge to z ¯.

A similar argument applied to (E -|L| -|U |)q = 0 shows that the Gauss-Seidel iterates q(k) with the initial guess e must converge. If E -|L| -|U | is nonsingular, its null space is {0}, and the initial error e -0 corresponding to the solution q = 0 is orthogonal to it. Thus the iterates converge to 0, as does α (k) . However, if E-|L|-|U | is singular, then it can be shown that neither sequence does, so that α (k) does not provide a useful bound.

GMRES.

While the Gauss-Seidel iterates always converge to a solution, they may converge slowly and α (k) need not converge to 0. An alternative is to use GMRES with initial guess 0 to solve the preconditioned system

G -1 L N G -1 R y = G -1 L z,
where G L and G R are nonsingular, and compute z =

G -1 R y. Let ỹ(k) denote the kth iterate, let z(k) = G -1 R ỹ(k) , and let ǫ(k) sym = z(k) ∞ .
If N is nonsingular, the error can be bounded as follows:

ǫ(k) sym -ǫsym ≤ z(k) -z ∞ ≤ G -1 R G R N -1 G L G -1 L N z(k) -z 2 ≤ G -1 R 2 G -1 L N G -1 R -1 2 G -1 L (N z(k) -z) 2 ≈ G -1 R 2 σ min (H k ) -1 G -1 L N z(k) -z 2 ,
where H k is the (k + 1) × k upper Hessenberg matrix generated by GMRES and the last factor is the norm of the residual of the preconditioned system. Letting

α (k) = G -1 R 2 σ min (H k ) -1 G -1 L N z(k) -z 2 z(k) ∞ , we get (18) 1 -α (k) ǫ(k) sym ǫsym 1 + α (k) ǫ(k) sym .
Again the upper bound and lower bound are within a factor of 2 of each other when

α (k) ≤ 1/3. Since σ min (H k ) -1 is a lower bound on (G -1 L N G -1 R ) -1
2 , this bound is only approximate, unlike that for the Gauss-Seidel iteration. However, the cost of computing it is negligible.

In our tests the best preconditioner was Gauss-Seidel (G L = E + L and G R = I, while taking advantage of the fact that

G -1 L N G -1 R = I + (E + L) -1 U
to reduce the cost of multiplying by the preconditione d matrix to that of one Gauss-Seidel iteration). Since Gauss-Seidel with initial guess z ˜(k) = 0 always converges and GMRES with the Gauss-Seidel preconditioner genera tes the same Krylov subspaces but chooses iterates that minimize the norm of the r esidual, the latter combination must also converge to a solution even when N is singu lar. As noted in section 4.2, the matrix PNP -1 is sy mmetric nonnegative definite. Thus GMRES with the preconditioner G L = P -1 and G R = P reduces to the conjugate residual method, which unlike GMRES requires a constant amount of work per iteration. However, in our experiments this advantage was not enough to overcome a slower rate of convergence.

Numerical experiments.

5.1. Some illustrative examples. We start by giving a few small examples that illustrate some important points.

Higham and Higham [START_REF] Higham | Backward error and condition of structured linear systems[END_REF] show that allowing perturbations in the right-hand side vector b can reduce the symmetric componentwise backward error. Let

(19) A = 1 1 1 0 , b = 1 δ , x = δ 1 ,
where δ > 0. If only perturbations in A are allowed, then that minimum is δ/(1 + δ) in the unsymmetric case (7a) and 1 in the symmetric case (7b). On the other hand, if perturbations in b are allowed, we have ǫ * = ǫ * sym = δ/(2 + δ). Furthermore, ǫsym = 3δ/(4 + 3δ), which is of the same order of magnitude.

In contrast, Rump [START_REF] Rump | The componentwise structure and unstructured backward errors can be arbitrarily far apart[END_REF] shows that the symmetric backward error can be arbitrarily larger than the unsymmetric one, even when perturbations to b are allowed. Let (20)

A =       δ 1 1 0 -1 1 0 1 -1 0 1 1 0 1 1 0 -1 1 0 1 -1 0 1 1 0       , x =       1 1 0 1 1       , b =       0 0 4 0 0       .
Then ǫ * = δ/(2 + δ), while ǫ * sym = 1. Furthermore, ǫsym = 1. As shown in section 3, we can take advantage of zeros in x. Let (21)

A =   2 -2 1 -2 2 -2 1 -2 2   , x =   1 1 0   , b =   1 1 δ   .
Then ǫsym = 2(1 + δ)/(3 + 2δ) corresponding to the perturbation

∆A =    2 5 2 5 1+δ 3+2δ 2 5 2 5 2(1+δ) 3+2δ 1+δ 3+2δ 2(1+δ) 3+2δ 0    , ∆b = -    1 5 1 5 δ(1+δ) 3+2δ    .
However, if we replace the third row/column of ∆A and the third row of ∆b by the Oettli-Prager perturbation for 1 -2 2 x = δ , then we get the perturbation

∆A =    2 5 2 5 1+δ 3+δ 2 5 2 5 2(1+δ) 3+δ 1+δ 3+δ 2(1+δ) 3+δ 0    , ∆b = -    1 5 1 5 δ(1+δ) 3+δ    , which corresponds to ǫ * sym = (1 + δ)/(3 + δ).
The latter is smaller than ǫsym by a factor of 2 asymptotically as δ → 0.

While z ∞ is easier to compute, max{ǫ A , ǫb } can be as much as 2n -1 times smaller. Let

(22) A =       1 -1 -1 0 1 1 . . . . . . . . . 0 (-1) n-1 (-1) n-1 0       , x =      1 1 . . . 1      , b =      0 0 . . . 0      .
Then ǫ * = ǫ * sym = max{ǫ A , ǫb } = 1, but ǫsym = 2n -1. As shown in section 3, blending can lead to tighter bounds. Let

(23) A =       1 -1 -1 0 1 1 . . . . . . . . . 0 (-1) n-1 (-1) n-1 (-1) n       , x =      1 1 . . . 1      , b = δ      -1 1 . . . (-1) n      .
Then ǫ * = δ/(2 + δ), while ǫ * sym = nδ/(2 + nδ). Thus the ratio ǫ * sym /ǫ * tends to n as δ → 0. Furthermore, for sufficiently small δ we have ǫsym ≈ n 2 δ/4 if n is even and ǫsym ≈ (n 2 + 1)δ/4 if n is odd. Thus the ratio ǫsym /ǫ * sym tends to roughly n/2 as δ → 0. On the other hand, by using the blending procedure and taking β = 0 in [START_REF] Young | Iterative Solution of Large Linear Systems[END_REF], we have ǫA = nδ/2. In other words, in this example, 

ǫ * ≪ ǫ * sym ≈ ǫA ≪ ǫsym . 5 
|A ij | |A ii | ,
and has also suggested that [14] (25)

ǫ * sym ≤ 2βǫ * , where β = max i (|A||x| + |b|) i |b i |
with the convention that α/0 = ∞ if α = 0 and 0/0 = 0. The bound (24) is ∞ when any diagonal entry of A is 0 (unless the entire row/column and right-hand side are also 0). As the tests in the next subsection show, it is not very tight.

The bound (25) is at least as large as z ∞ for any solution z of the linear system N z = z defined in Corollary 3.1. If (|A||x| + |b|) i = 0, then d i = 1 and

N ii = 1 2 |A||x| + |b| i + 1 2 |A ii ||x i | = 0 so that Nii = 1. Since N is diagonally dominant, Nij = N ij = 0 for all j = i. Thus we have (|I -N |e) i = 0. If (|A||x| + |b|) i > 0, then d i = (|A||x| + |b|) i , (I -N ) ii = 1 d i d i -1 2 |A||x| + |b| i -1 2 |A ii ||x i | = 1 2d i ((|A||x|) i -|A ii ||x i |) ,
and

j =i |(I -N ) ij | = j =i |N ij | ≤ 1 2d i j =i |A ij ||x j | = 1 2d i ((|A||x|) i -|A ii ||x i |) .
Thus we have

(|I -N |e) i ≤ 1 d i ((|A||x|) i -|A ii ||x i |) = 1 - |A ii ||x i | + |b i | (|A||x| + |b|) i .
Putting these together,

I -N ∞ = max i (|I -N |e) i ≤ max i : (|A||x|+|b|) i >0 1 - |A ii ||x i | + |b i | (|A||x| + |b|) i
with the convention that the maximum is 0 if

|A||x| + |b| = 0. If I -N ∞ < 1, then N -1 exists, N -1 ∞ ≤ 1 1 -I -N ∞ ≤ max i : (|A||x|+|b|) i >0 (|A||x| + |b|) i |A ii ||x i | + |b i | ≤ β,
and we have

ǫ * sym ≤ ǫsym = z ∞ ≤ N -1 ∞ z ∞ ≤ βǫ * . If I -N ∞ = 1, then |A ii ||x i | + |b i | = 0
for some i with (|A||x| + |b|) i > 0, so that the last expression is ∞ and the result still holds.

Numerical experiments.

It is difficult to compare ǫ * sym and ǫsym on large problems directly because the symmetric backward error ǫ * sym is too expensive to compute via linear programming. However, recall that

ǫ * ≤ ǫ * sym ≤ ǫsym ,
where ǫ * is the unsymmetric backward error in [START_REF] Arioli | Solving sparse linear systems with sparse backward error[END_REF]. Both ǫ * and ǫsym can be computed cheaply. Therefore, we can investigate the ratio ǫsym /ǫ * , which is an upper bound on both ǫsym /ǫ * sym and ǫ * sym /ǫ * , to gain insight into the relationship between ǫsym and ǫ * sym , as well as the relationship between ǫ * sym and ǫ * . We ran tests on the 589 matrices from the University of Florida Sparse Matrix Collection [START_REF] Davis | The University of Florida sparse matrix collection[END_REF] that satisfied the following criteria:

• A is real and symmetric.

• A is not binary (i.e., some A ij is neither 0 nor 1).

• A is not structurally singular (i.e., some permuted diagonal is nonzero).

• 100 ≤ n ≤ 100000 and 4 ≤ nnz(A)/n ≤ 200.

• At most 10 10 flops are needed to factor a symmetric positive definite matrix with the off-diagonal nonzero structure of A. After choosing x as described below, we created b as follows (in MATLAB notation): We also computed approximations to ǫsym by solving N z = z using Gauss-Seidel (GS) and GMRES with the Gauss-Seidel preconditioner (GM) (see section 4). Columns C GS and C GM give the first steps k at which ǫsym -ǫ(k) sym ≤ 1 10 ǫsym .

Columns D GS and D GM give the number of steps until convergence is detected by the practical stopping criterion α (k) ≤ 1/3 (see ( 17) and ( 18)). The reported means are rounded to the nearest integer.

The results are remarkable. The computed ratios ǫsym /ǫ * are close to 1, indicating that in these tests ǫ * sym ≈ ǫsym and ǫ * ≈ ǫ * sym . Convergence of Gauss-Seidel and Gauss-Seidel-preconditioned GMRES to an order-of-magnitude estimate of the symmetric backward error is achieved within a few iterations, and our practical stopping criteria are also triggered very quickly, especially for Gauss-Seidel-preconditioned GMRES.

In the above experiments, the choice x i = sin(i) ensures that |b| > 0. In an attempt to create problems in which ǫsym /ǫ * ≫ 1, we also ran tests with sparse vectors b. In MATLAB notation, w = sum(abs(A),2) ./ sum(A˜=0,2); b = w .* randn(n,1) .* (randperm(n)'<=q*n); for different values of the density q. Thus b contains qn randomly positioned and generated entries. For each such b we picked x to be the computed solution of Ax = b, computed using an LDL T factorization of A with scaling and pivoting. (In order to efficiently compute the factorization and reliably compute such x, of the previous 589 matrices we restricted ourselves to testing only those 343 numerically nonsingular matrices of dimension at most 20000.) Finally, we applied sparsity-and symmetrypreserving perturbations to A and b as in the previous set of tests, so that once again up to rounding errors (A + E)x = b + f . The results for this choice of x for p = 6 and density q = 0.1 are summarized in Table 2. The values listed in column (24)/ǫ * sym include only the 221 problems out of 343 in which the bound (24) is finite. In these tests, the ratio ǫsym /ǫ * is as large as 18.91, and more iterations are needed to achieve and detect convergence. (The number of iterations was capped at 98. A value of 99 indicates that the iterations failed to converge to the desired tolerance within 98 iterations.) While not as good as those in Table 1, these results nevertheless support the idea that ǫ * sym ≪ ǫsym and ǫ * ≪ ǫ * sym are very uncommon occurrences that arise from some special structure in A, b, and/or x.

Although we have not been able to fully quantify this observation, we offer the following partial explanation. Suppose that N is strictly diagonally dominant. Then

ǫ * sym = z ∞ = N -1 z ∞ ≤ N -1 ∞ z ∞ ≤ N -1 ∞ ǫ * .
For ǫ * sym to be much larger than ǫ * , N -1 ∞ must be large. But from ( 14)

N -1 ∞ ≤ 1 min i |N ii | -j =i |N ij | ≤ max i (|A||x| + |b|) i |A ii ||x i | + |b i | = 1 + max i j =i |A ij x j | |A ii ||x i | + |b i | .
Thus a necessary condition for ǫ * ≪ ǫ * sym is

j =i |A ij x j | ≫ |A ii ||x i | + |b i |
for some i. Although such examples can be created artificially, they seem to be extremely rare in practice.

6. Concluding remarks. We have given an upper bound on the symmetric componentwise relative backward error that can be computed efficiently and in our numerical experiments is usually of the same order of magnitude as the true symmetric componentwise backward error. Therefore, we believe that our bound is suitable for use in practice. It also provides new insight into the relationship between the symmetric backward error and the unsymmetric one, showing that both are usually of the same order of magnitude. Whether the techniques presented in this note can be extended to solve backward error problems involving structural properties other than symmetry remains to be seen.

( 5 ) 6 )

 56 ∆A * = Z|A|S, ∆b * = -Z|b|. See [6, section 7.2] for a short proof. Analogously to (1), for symmetric A the symmetric componentwise relative backward error for Ax = b is defined as ǫ * sym = min ǫ,∆A,∆b ǫ : (A + ∆A)x = b + ∆b, |∆A| ≤ ǫ|A|, |∆b| ≤ ǫ|b|, ∆A = (∆A) T . (Since the perturbations ∆A = -A and ∆b = -b satisfy the constraints with ǫ = 1, we have 0 ≤ ǫ * sym ≤ 1 with ǫ * sym = 0 if and only if Ax = b. Because (

  ǫ,∆A,∆b ǫ : (A + ∆A)x = b + ∆b, |∆A| ≤ ǫE, |∆b| ≤ ǫf, ∆A = (∆A) T .

  -p) * randn(n,1) .* b ; b = b-f;

Table 1

 1 Test results for p = 4 and x i = s in(i).Thus, up to rounding error, x satisfies (A + E)x = b + f , where E and f are random perturbations of A and b that preserve their sparsity structure and E is symmetric. Since the componentwise relative errors |E ij |/|A ij | and |f j |/|b j | are of the order of magnitude 10 -p , we expect ǫ * sym to be of the same order. The results for p = 4 and x i = sin(i) are summarized in Table1, but the results were similar for other values of p. Because b is generated randomly, all values reported are the mean, median, or maximum over the problems of the medians or maxima over 101 runs for each of the problems. The value of ǫsym was computed by solving N z = z directly. The values listed in column (24)/ǫ * sym include only the 415 problems out of 589 in which the bound (24) is finite.

	Matrix	ǫ * /10 -p ǫsym/ǫ * (24)/ǫ * sym C GS D GS C GM D GM
	Mean (median)	2.97	1.47	1 × 10 15	1	3	1	2
	Median (median)	3.08	1.43	3 × 10 4	1	3	1	2
	Maximum (median)	4.80	2.06	3 × 10 17	2	17	2	5
	Median (maximum)	4.21	2.02	4 × 10 4	2	3	2	3
	Maximum (maximum)	6.09	2.93	4 × 10 17	9	17	7	7

Table 2

 2 Test results for p = 6 and b spa rse.Matrixǫ * /10 -p ǫsym/ǫ * (24)/ǫ * sym C GS D GS C GM D GM

	Mean (median)	3.42	1.85	7 × 10 14	7	32	3	9
	Median (median)	3.42	1.75	2 × 10 4	1	4	2	3
	Maximum (median)	4.82	8.18	2 × 10 17	99	99	99	99
	Median (maximum)	4.75	2.42	2 × 10 4	2	4	2	3
	Maximum (maximum)	7.05	18.91	3 × 10 17	99	99	99	99
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