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Complexity and global rates of trust-region methods based on

probabilistic models

S. Gratton∗ C. W. Royer† L. N. Vicente‡ Z. Zhang§

February 16, 2017

Abstract

Trust-region algorithms have been proved to globally converge with probability one when
the accuracy of the trust-region models is imposed with a certain probability conditioning
on the iteration history. In this paper, we study their complexity, providing global rates and
worst case complexity bounds on the number of iterations (with overwhelmingly high prob-
ability), for both first and second order measures of optimality. Such results are essentially
the same as the ones known for trust-region methods based on deterministic models. The
derivation of the global rates and worst case complexity bounds follows closely from a study
of direct-search methods based on the companion notion of probabilistic descent.

1 Introduction

Trust-region methods form a well established and understood class of methods for the minimiza-
tion of a nonlinear (possibly nonsmooth) function subject or not to constraints on its variables
(see the book [7] and the recent survey [28]). They have also been comprehensively studied
in the context of derivative-free optimization (DFO), where the derivatives of the objective or
constraint functions cannot be computed or approximated (see the book [12] and the recent
survey [14]). In this paper we focus on the unconstrained minimization of a smooth objective
function f : Rn → R without using its derivatives.

In the derivative-free setting, trust-region algorithms use sampled points to build a model
of the objective function around the current iterate, typically by quadratic interpolation. The
quality of these models is measured by the accuracy they provide relatively to a Taylor expansion
in a ball B(x, δ) of center x and radius δ. Models that are as accurate as first-order Taylor ones
are called fully linear [9, 12].
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Definition 1.1 Given a function f ∈ C1 and constants κef , κeg > 0, a C1 function m : Rn → R

is called a (κeg, κef )-fully linear model of f on B(x, δ) if, for all s ∈ B(0, δ),

|m(s)− f(x+ s)| ≤ κefδ
2,

‖∇m(s)−∇f(x+ s)‖ ≤ κegδ.

Fully linear models are not necessarily linear or affine functions. Models that are as accurate
as second-order Taylor ones are called fully quadratic [9, 12]. Similarly, such models are not
necessarily quadratic functions.

Definition 1.2 Given a function f ∈ C2 and constants κef , κeg, κeh > 0, a C2 function m :
R
n → R is called a (κeh, κeg, κef )-fully quadratic model of f on B(x, δ) if, for all s ∈ B(0, δ),

|m(s)− f(x+ s)| ≤ κefδ
3,

‖∇m(s)−∇f(x+ s)‖ ≤ κegδ
2,

‖∇2m(s)−∇2f(x+ s)‖ ≤ κehδ.

The construction of fully linear/quadratic models based on sampled sets raises a number
of geometrical questions. Conn, Scheinberg, and Vicente [9, 10, 12] provided a systematic
approach to the subject of deterministic sampling geometry in DFO, establishing error bounds
for polynomial interpolation and regression models in terms of a constant measuring the quality
or well poisedness of the corresponding sample set (ensuring then the fully linear/quadratic
properties). They also showed how to deterministically build or update such sets to ensure
that such a constant remains moderate in size. Some numerical studies pioneered by [15] have
however shown that trust-region methods can tolerate the use of models updated without strict
geometry requirements, although it is also known [25] that convergence cannot be ensured to
first-order critical points without appealing to fully linear models when the size of the model
gradient becomes small (a procedure known as the criticality step).

A DFO context of expensive function evaluations often makes it unaffordable to construct
a deterministic model that is guaranteed to be fully quadratic, as such a process requires (n +
1)(n + 2)/2 function evaluations. Practical approaches rely on considerably less points (but at
least n+ 1 to preserve fully linearity), and use the remaining degrees of freedom to minimize the
norm of the model Hessian or its distance to the previous one. The most studied examples use
minimum Frobenius type norms [8, 23], yet in [1] it was proposed to apply the theory of sparse
ℓ1-recovery to build quadratic models based on random sampling. Such models were proved to
be fully quadratic with high probability even when considerably less than (n+1)(n+2)/2 points
were used, depending on the sparsity of the Hessian of the objective.

Such findings have then called for a probabilistic analysis of derivative-free trust-region al-
gorithms [2], where the accuracy of the models is only guaranteed with a certain probability.
It was shown in [2] that the resulting trust-region methods converge with probability one to
first and second order critical points. The main purpose of this paper is to establish (with
overwhelmingly high probability) the rate under which these methods drive to zero the cor-
responding criticality measures: the norm of the 

2

gradient ‖∇f(xk)‖ (in the first-order case)
and the minimum σ(xk) = min{‖∇f(xk)‖, −λmin(∇ f(xk))} between the gradient and the sym-
metric of the smallest eigenvalue of the Hessian (in the second-order case). We will see that
these results match the convergence rates known for deterministic trust-region algorithms. The
proofs rely heavily on the technique developed in [19] for establishing global rates and worst



case complexity bounds for randomized algorithms in which the new iterate depends on some
object (directions in [19], models here) and the quality of the object is favorable with a certain
probability. The technique is based on counting the number of iterations for which the quality is
favorable and examining the probabilistic behavior of this number. Although the road map for
our paper was described in [19, Section 6], its actual concretization poses a few delicate issues
and, in addition, we go beyond [19, Section 6] in other aspects (bounds in expectation, coverage
of the second-order case).

Let us now review what is known about the complexity of trust-region methods in the
deterministic unconstrained case1. Using first-order Taylor models, trust-region methods are
known [20] to take at most O(ǫ−2) iterations to reduce the ‖∇f(·)‖ below ǫ ∈ (0, 1) (see also [18]
for the corresponding bounds under convexity O(ǫ−1) and strong convexity O(− log(ǫ))). Using
second-order Taylor models, it has been proved [4] that at most O(max{ǫ−2

g ǫ−1

h , ǫ−3

h }) iterations
are needed to reduce simultaneously ‖∇f(·)‖ below ǫg ∈ (0, 1) and −λmin(∇2f(·)) below ǫh ∈
(0, 1). Later in [17] it was also proved a complexity bound of the type O(max{ǫ−3

g , ǫ−3

h }). In a
recent paper [13] it was suggested a modification to the classical trust-region approach to make
it achieving the first-order O(ǫ−1.5) bound of cubic regularization methods.

In the derivative-free case, we are also interested in counting function evaluations and to
understand the dependence of the complexity bounds in terms of the dimension n of the problem.
Using fully linear models instead, the first-order bound [16] is then of the form O(κ−2

eg ǫ
−2), and

since interpolation techniques can ensure κeg = O(
√
n) with at most O(

√
n) evaluations per

iteration, one recovers the bounds O(nǫ−2) for iterations and O(n2ǫ−2) for function evaluations,
also known for direct search [27]. Using fully quadratic models, the second-order complexity
bounds [16, 21] do not entirely match the derivative-based case as a single tolerance ǫ must be
used, being of the form O(n3ǫ−3) (resp. O(n5ǫ−3)) for measuring the number of iterations (resp.
function evaluations) needed to drive σ(·) below ǫ.

We are ready to start presenting our ideas on how to derive global rates and complexity
bounds for trust-region methods based on probabilistic models. We will do so in Section 2
for first-order stationarity and in Section 3 for the second-order counterpart. In Section 4 we
comment on the extension of our work to other settings.

2 Complexity of first-order trust-region methods based on prob-

abilistic models

We consider now the scenario analyzed in [2] where the models used in a trust-region method
are randomly generated at each iteration. As a result, the iterates and trust-region radii pro-
duced by the algorithm will also be random. Upper case letters will be then used to designate
random variables and lower case their realizations. Hence, mk, xk, δk will denote respectively
the realizations of the random model, iterate, and trust-region radius Mk, Xk,∆k at iteration k.
The random models are then asked to be fully linear with a certain favorable property regard-
less of the past iteration history. The following definition was proposed in [2] to analyze global
convergence of the corresponding trust-region methods to first-order critical points.

1The notation O(A) will stand for a scalar times A, with this scalar depending solely on the problem considered
or constants from the algorithm. The dependence on the problem dimension n will explicitly appear in A when
considered appropriate.



Definition 2.1 We say that a sequence of random models {Mk} is (p)–probabilistically (κeg, κef )-
fully linear for a corresponding sequence {B(Xk,∆k)} if the events

Sk = {Mk is a (κeg, κef )-fully linear model of f on B(Xk,∆k)}

satisfy P(S0) ≥ p and, for each k ≥ 1, the following submartingale-like condition

P (Sk|M0, . . . ,Mk−1) ≥ p.

An example is given in [2] where, using random matrix theory, it was shown that linear
interpolation based on Gaussian sample sets of cardinality n + 1 (with a fixed point and the
remaining n points being generated randomly from a standard Gaussian distribution) gives rise
to fully linear models with a favorable probability (say p > 1/2). By using increasingly more
sample points and building the models by linear regression it is possible to reach a probability
as high as desired ([12, Chapter 4]; see also [22]).

2.1 Algorithm and assumptions

To simplify the presentation, we describe the trust-region methods under consideration (later
given in Algorithm 2.1) for each realization of the model randomness. A few components of
these methods are classical, with or without derivatives. At each iteration k, one minimizes a
quadratic model

mk(xk + s) = f(xk) + g⊤k s+
1

2
s⊤Hks

in a trust region of the form B(xk, δk). For global convergence to first-order criticality, the
Hessian models are assumed uniformly bounded and the step sk is asked to satisfy a fraction
of the model decrease given by the negative model gradient within the trust region. These two
assumptions are formalized next.

Assumption 2.1 There exists a positive constant κbhm such that, for every k, the Hessians Hk

of all realizations mk of Mk satisfy
‖Hk‖ ≤ κbhm.

Assumption 2.2 For every k, and for all realizations mk of Mk (and of Xk and ∆k), we are
able to compute a step sk so that it satisfies a fraction of Cauchy decrease, i.e.,

m(xk)−m(xk + sk) ≥ κfcd
2

‖gk‖min

{ ‖gk‖
‖Hk‖

, δk

}

, (2.1)

for some constant κfcd ∈ (0, 1], and with the convention that ‖gk‖
‖Hk‖

= ∞ if ‖Hk‖ = 0.

Finally, the step acceptance and trust-region radius update are based on the ratio between the
actual decrease in the objective function and the one predicted by the model, namely

ρk =
f(xk)− f(xk + sk)

mk(xk)−mk(xk + sk)
.

What is different now from the classical derivative-based case is that some form of criticality
step has to be taken into account, where models are recomputed in regions small enough com-
pared to the size of the model gradient. Following [2], the presentation and the analysis can be



Algorithm 2.1: A simple first-order derivative-free trust-region framework

Fix parameters η1, η2, δmax > 0 and 0 < γ1 < 1 < γ2. Select initial x0 and δ0 ∈ (0, δmax).
for k = 0, 1, . . . do

Build a quadratic model mk(xk + s) of f , and compute sk by approximately
minimizing mk in B(xk, δk) so that it satisfies (2.1). If ρk ≥ η1, set xk+1 = xk + sk and

δk+1 =

{

min {γ2δk, δmax} if ‖gk‖ ≥ η2δk,
γ1δk otherwise.

Otherwise, set xk+1 = xk and δk+1 = γ1δk.
end

significantly simplified if this requirement is mitigated at each iteration. So, in Algorithm 2.1,
the trust-region radius is reduced (at iterations where ρk is large enough and the step is taken)
provided δk is too large compared to ‖gk‖.

Note that we have slightly extended the framework in [2] by using two different parameters
(namely γ1 and γ2) to update the trust-region radius, instead of using a single one and its
inverse. As we will see, these parameters are intimately connected to the minimum probability
with which the models are required to be fully linear. Also, the safeguard δmax is not used in the
analysis of the first-order methods and is only there for coherence with the second-order case
(where it appears in the analysis) as well as with [2].

The algorithm will be analyzed under the following two assumptions on f . As in [2] it would
be enough to assume continuously differentiability in an enlarged initial level set, but we skip
this detail for keeping the presentation simple.

Assumption 2.3 The function f is continuously differentiable on R
n, and its gradient is Lip-

schitz continuous.

Assumption 2.4 The objective function f is bounded from below on R
n, and we denote by flow

a lower bound.

At this point we can state a fundamental result for establishing the complexity of trust-region
methods based on probabilistic models. As in the classical setting of trust-region methods, it
ensures that the step is taken if the trust-region radius is small enough compared to the size of the
true gradient. There are two differences compared to [2, Lemma 3.2]: first, the result is stated
for the true gradient, in alignment to what is needed to establish complexity bounds; second, it
is inferred additionally that the trust-region radius is increased under the same condition.

Lemma 2.1 If mk is (κeg, κef )-fully linear on B(xk, δk) and

δk <

(

κeg +max

{

η2, κbhm,
4κef

κfcd(1− η1)

})−1

‖∇f(xk)‖, (2.2)

then at the k-th iteration the step is taken (xk+1 = xk + sk) and δk is increased.



Proof. From (2.2), one has

κegδk +max

{

η2, κbhm,
4κef

κfcd(1− η1)

}

δk < ‖∇f(xk)‖,

and from this and Definition 1.1,

max

{

η2, κbhm,
4κef

κfcd(1− η1)

}

δk < ‖∇f(xk)‖ − ‖gk −∇f(xk)‖ ≤ ‖gk‖.

Hence,

δk < min

{

1

η2
,

1

κbhm
,
κfcd(1− η1)

4κef

}

‖gk‖,

and from [12, Proof of Lemma 10.6] we obtain ρk ≥ η1. Since the first term in the minimum
gives η2δk < ‖gk‖, the trust-region radius is increased. �

2.2 Behavior of the trust-region radius

We will now prove that the sequence of the trust-region radii is square summable and establish
an explicit upper bound for the sum. The proof makes use of the set of indices corresponding
to iterations where the trust-region radius is increased, that is

K = {k ∈ N : ρk ≥ η1 and ‖gk‖ ≥ η2δk} . (2.3)

Remark 2.1 In context of direct search based on probabilistic descent [19, Lemma 4.1], it was
proved a similar result for the sequence of the step size αk. There, an iteration attains a decrease
of the order of α2

k whenever the step is taken, in which case such direct-search algorithms always
increase the step size. In the trust-region context, as we will see in the proof below, a decrease
of the order of δ2k corresponds only to the iterations where the trust-region radius is increased.
There are iterations where the step is taken and the trust-region is decreased, in which case the
decrease obtained is not necessarily of this order.

Lemma 2.2 For any realization of Algorithm 2.1,

∞
∑

k=0

δ2k ≤ β :=
γ22

1− γ21

[

δ20
γ22

+
f0 − flow

η

]

,

where f0 = f(x0) and

η = η1η2
κfcd
2

min

{

η2
κbhm

, 1

}

.

Proof. We only need to address the case where there are infinitely many iterations at which
the trust-region radius is increased (i.e., |K| = ∞). For any k ∈ K, from (2.1),

f(xk)− f(xk + sk) ≥ η1 (mk(xk)−mk(xk + sk))

≥ η1
κfcd
2

η2min

{

η2
κbhm

, 1

}

δ2k = ηδ2k.



Consequently, if we sum a finite number of consecutive iterations in K, we obtain

η
∑

j∈K
j≤k

δ2j ≤
∑

j∈K
j≤k

[f(xj)− f(xj+1)] ≤
∑

j≤k

[f(xj)− f(xj+1)] ≤ f0 − f(xk+1) ≤ f0 − flow,

leading to
∑

k∈K

δ2k ≤ f0 − flow
η

.

From now on the proof is as in the proof of [19, Lemma 4.1]. Let K = {k1, k2, . . .} and, for
auxiliary reasons, k0 = −1 and δ−1 = δ0/γ2. The sum

∑∞
k=0

δ2k can thus be rewritten as

∞
∑

k=0

δ2k =

∞
∑

i=0

ki+1
∑

k=ki+1

δ2k.

Besides, one has for each index i, δk ≤ γ2(γ1)
k−ki−1δki for k = ki + 1, . . . , ki+1. Hence,

ki+1
∑

k=ki+1

δ2k ≤ γ22
1− γ21

δ2ki ,

and we finally obtain the desired result:

∞
∑

k=0

δ2k ≤ γ22
1− γ21

∞
∑

i=0

δ2ki ≤ γ22
1− γ21

[

δ20
γ22

+
f0 − flow

η

]

.

�

This is a stronger version of the result limk→∞ δk = 0 proved in [2] for the purpose of global
convergence.

2.3 Number of iterations with fully linear models

Recall the set of indices (2.3) corresponding to iterations where the step is taken and the trust-
region radius is increased, and let yk denote the corresponding indicator (yk = 1 if k ∈ K,
yk = 0 otherwise). One sees that δk and K play the same roles as the step size αk and the set
of successful iterations for the analysis of the direct search based on probabilistic descent [19].

Let now ∇f(x̃k), with x̃k ∈ {x0, . . . , xk}, represent a minimum norm gradient among
∇f(x0), . . . ,∇f(xk). Let us also consider the minimum probability

p0 =
ln(γ1)

ln (γ1/γ2)
(2.4)

that will be assumed when applying Definition 2.1. When γ1 = 1/2 and γ2 = 2, one has p0 = 1/2.
The next step in the analysis is to show, similarly to [19, Lemma 4.2], that if ‖∇f(x̃k)‖ is

too large then necessarily not too many iterations benefited from a fully linear model2. The
binary variable zk below indicates whether mk is (κeg, κef )-fully linear or not.

2As opposed to Lemma 2.2 this result follows more directly from the theory in [19], given that the discrepancy
mentioned in Remark 2.1 does not need special treatment.



Lemma 2.3 Given a realization of Algorithm 2.1 and a positive integer k,

k−1
∑

l=0

zl ≤ β

(min{δ0/γ2, κ‖∇f(x̃k)‖})2
+ p0k,

where

κ =

(

κeg +max

{

η2, κbhm,
4κef

κfcd(1− η1)

})−1

.

Proof. For each l ∈ {0, 1, . . . , k − 1}, define

vl =

{

1 if δl < min{γ−1
2 δ0, κ‖∇f(x̃k)‖},

0 otherwise.
(2.5)

The proof relies then on zl ≤ (1 − vl) + vlyl, which is true because, when vl = 1, Lemma 2.1
implies that yl ≥ zl (since ‖∇f(x̃k)‖ ≤ ‖∇f(x̃k−1)‖ ≤ ‖∇f(x̃l)‖). It suffices then to separately
prove

k−1
∑

l=0

(1− vl) ≤ β

(min{δ0/γ2, κ‖∇f(x̃k)‖})2
(2.6)

and
k−1
∑

l=0

vlyl ≤ p0k. (2.7)

Inequality (2.6) is justified by Lemma 2.2 and the fact that (2.5) implies

1− vl ≤ δ2l
(min{δ0/γ2, κ‖∇f(x̃k)‖})2

.

The proof of inequality (2.7) is verbatim as in the proof of [19, Lemma 4.2]. It is in here that
the particular choice (2.4) for p0 comes into a play. �

2.4 Worst case complexity and global rate

From Lemma 2.3, one then has the following inclusion of events

{

‖∇f(X̃k)‖ ≥ ǫ
}

⊂
{

k−1
∑

l=0

Zl ≤
β

κ2ǫ2
+ p0k

}

, (2.8)

for any ǫ satisfying

0 < ǫ <
δ0
κγ2

. (2.9)

On the other hand the probabilistic behavior of the event on the right-hand side is known from
the application of the Chernoff bound to the lower tail of

∑k−1

l=0
Zl (see, e.g., [19, Lemma 4.4]),

and here is where the conditioning on the past in Assumption 2.1 comes to play a role.



Lemma 2.4 Suppose that {Mk} is (p)–probabilistically (κeg, κef )-fully linear and λ ∈ (0, p).
Then

πk(λ) := P

(

k−1
∑

l=0

Zl ≤ λk

)

≤ exp

[

−(p− λ)2

2p
k

]

.

Thus, when ǫ < δ0/(κγ2) and

k ≥ 2β

(p− p0)κ2ǫ2
, (2.10)

the inclusion (2.8) and the monotonicity of πk(·) will give us (setting λ = (p+p0)/2 in Lemma 2.4)

P

(

‖∇f(X̃k)‖ ≤ ǫ
)

≥ P

(

‖∇f(X̃k)‖ < ǫ
)

≥ 1− πk

(

β

kκ2ǫ2
+ p0

)

≥ 1− πk

(

p− p0
2

+ p0

)

≥ 1− exp

[

−(p− p0)
2

8p
k

]

,

(2.11)

leading to the following global rate result.

Theorem 2.1 Suppose that {Mk} is (p)–probabilistically (κeg, κef )-fully linear with p > p0 and

k ≥ 2βγ22
(p− p0)δ20

. (2.12)

Then, the minimum gradient norm ‖∇f(X̃k)‖ satisfies

P

(

‖∇f(X̃k)‖ ≤
√
2β

1

2 (p− p0)
1

2

κ
1

2

1√
k

)

≥ 1− exp

[

−(p− p0)
2

8p
k

]

.

Proof. Let

ǫ =

√
2β

1

2 (p− p0)
1

2

κ
1

2

1√
k
.

Then (2.10) holds with equality, and ǫ < δ0/(κγ2) is guaranteed by (2.12). Hence (2.11) gives
us the bound. �

We have thus proved a global rate of 1/
√
k for the norm of the gradient with overwhelmingly

high probability.
Similarly, one can prove a worst-case bound of the order of O(ǫ−2) for the first iteration

index Kǫ for which ‖∇f(X̃Kǫ
)‖ ≤ ǫ, also with overwhelmingly high probability (and we note

that Kǫ is a random variable due to the randomness of the models). The proof relies on again
applying (2.11), on the observation that P(Kǫ ≤ k) = P(‖∇f(X̃k)‖ ≤ ǫ), and on taking k as

k =

⌈

2β

(p− p0)κ2ǫ2

⌉

.



Theorem 2.2 Suppose that {Mk} is (p)–probabilistically (κeg, κef )-fully linear with p > p0 and
that ǫ satisfies (2.9). Then, Kǫ satisfies

P

(

Kǫ ≤
⌈

2β

(p− p0)κ2ǫ2

⌉)

≥ 1− exp

[

−β(p− p0)δ
2

4pκ2ǫ2

]

.

Results in expectation are a natural byproduct of our analysis. It can be shown that
E(‖∇f(X̃k)‖) is bounded by a function of the order of k−

1

2 + exp(−k) up to multiplicative
constants (see [19, Proposition 5.2]). It is also possible to bound the expected value of Kǫ [24].

Theorem 2.3 Suppose that {Mk} is (p)–probabilistically (κeg, κef )-fully linear with p > p0 and
that ǫ satisfies (2.9). Then,

E (Kǫ) ≤ c1ǫ
−2 +

1

1− exp(−c2)
,

where

c1 =
2β

(p− p0)κ2
, c2 =

(p− p0)
2

8p
.

Proof. Since Kǫ only takes non-negative integer values, the expected value of Kǫ satisfies:

E (Kǫ) =

∞
∑

j=0

jP (Kǫ = j) =
∑

j≥0

∑

k≥0

k<j

P (Kǫ = j) =
∑

k≥0

∑

j≥0

k<j

P (Kǫ = j) =
∑

k≥0

P (Kǫ > k) .

Hence,

E (Kǫ) =
∑

0≤k<c1ǫ−2

P (Kǫ > k) +
∑

k≥c1ǫ−2

P (Kǫ > k)

≤ c1ǫ
−2 + 1 +

∑

k≥c1ǫ−2

P (Kǫ > k)

= c1ǫ
−2 + 1 +

∑

k≥c1ǫ−2

P

(

‖∇f(X̃k)‖ > ǫ
)

.

For any index k ≥ c1ǫ
−2, similar to (2.11), we have

P

(

‖∇f(X̃k)‖ > ǫ
)

≤ exp(−c2k).

As a result,

E (Kǫ) ≤ c1ǫ
−2 + 1 +

∑

k≥c1ǫ−2

exp(−c2k) ≤ c1ǫ
−2 +

∑

k≥0

exp(−c2k) ≤ c1ǫ
−2 +

1

1− exp(−c2)
,

which proves the desired result. �

The obtained bound is thus

O
(

κ−2ǫ−2

p− p0

)

+O(1),

which matches the results of [5] for line-search methods based on probabilistic models (where p0 
is taken as 1/2). We also emphasize that these expectation bounds exhibit a dependence on the
inverse of p − p0.



2.5 A note on global convergence

Our complexity theory implies (see [19, Proposition 5.1])

P

(

inf
k≥0

‖∇f(Xk)‖ = 0

)

= 1.

If we assume for all realizations of Algorithm 2.1 that the iterates never arrive at a station-
ary point in a finite number of iterations, then the events {lim infk→∞ ‖∇f(Xk)‖ = 0} and
{infk≥0 ‖∇f(Xk)‖ = 0} are identical and we recover the liminf result in probability one of [2,
Theorem 4.2]. Note also that such a result could be derived even more directly by using the ar-
gument of [19, Lemma 3.2 and Theorem 3.1]. The paper [2] takes it one step further, establishing
also a lim-type result.

3 Complexity of second-order trust-region methods based on

probabilistic models

The same proof technology enables us to derive a similar complexity study for the class of trust-
region algorithms under consideration but now with the goal of approaching or converging to
second-order critical points. To do so, additional assumptions need to be enforced regarding
both the quality of the models and the properties of the step resulting from the approximate
solution of the trust-region subproblem. We start by the probabilistic counterpart to the concept
of fully quadratic models of Definition 1.2.

Definition 3.1 We say that a sequence of random models {Mk} is (p)–probabilistically (κeh, κeg,
κef )-fully quadratic for a corresponding sequence {B(Xk,∆k)} if the events

Sk = {Mk is a (κeh, κeg, κef )-fully quadratic model of f on B(Xk,∆k)}

satisfy P(S0) ≥ p and, for each k ≥ 1, the following submartingale-like condition

P (Sk|M0, . . . ,Mk−1) ≥ p.

It was shown in [1] how to build fully quadratic models with high probability from quadratic
interpolation and uniformly generated sample sets. It is also proved there that such a procedure
may recover such models with considerably less than (n+1)(n+2)/2 function evaluations when
the Hessian of the function is sparse.

3.1 Algorithm and assumptions

As before, we consider quadratic models around the iterate xk, with the same definitions for mk,
gk, and Hk (and the imposition of Assumption 2.1). As curvature is now present in our analysis,
we will make use of the notation τk = λmin(Hk). The solution of the trust-region subproblem
has now to be second-order accurate.

Assumption 3.1 For every k, and for all realizations mk of Mk (and of Xk and ∆k), we are
able to compute a step sk so that it satisfies both a fraction of Cauchy decrease and a fraction
of eigendecrease, i.e.,

m(xk)−m(xk + sk) ≥ κfod
2

max

{

‖gk‖min

{ ‖gk‖
‖Hk‖

, δk

}

,−τkδ
2
k

}

. (3.1)



for some constant κfod ∈ (0, 1].

The first part of (3.1) can be satisfied by a Cauchy step, while considering a step of norm δk
along an eigenvector of the model Hessian associated with the eigenvalue τk yields the second-
order decrease in δ2k. A step satisfying (3.1) can be obtained by taking the one corresponding to
the largest decrease caused in the model value.

Such considerations lead us from Algorithm 2.1 to Algorithm 3.1, preserving the overall
structure of the method (and, in particular, the updating rules for the trust-region radius). As
mentioned in the Introduction we make use of the second-order criticality measure

σ(x) = max
{

‖∇f(x)‖,−λmin(∇2f(x))
}

,

for which a natural estimator at xk is

σm(xk) := max {‖gk‖,−τk} .

In the case of a fully quadratic model, the two quantities are related as follows.

Lemma 3.1 [12, Lemma 10.15] If mk is (κeh, κeg, κef )-fully quadratic on B(xk, δk), then

|σ(xk)− σm(xk)| ≤ κσδk, (3.2)

where κσ = max {κegδmax, κeh}.

Algorithm 3.1: A simple second-order derivative-free trust-region framework

Fix parameters η1, η2, δmax > 0 and 0 < γ1 < 1 < γ2. Select initial x0 and δ0 ∈ (0, δmax).
for k = 0, 1, 2, . . . do

Build a quadratic model mk(xk + s) of f , and compute sk by approximately
minimizing mk in B(xk, δk) so that it satisfies (3.1). If ρk ≥ η1, set xk+1 = xk + sk and

δk+1 =

{

min {γ2δk, δmax} if σm(xk) ≥ η2δk,
γ1δk otherwise.

Otherwise, set xk+1 = xk and δk+1 = γ1δk.
end

Lemma 3.2 If mk is (κeh, κeg, κef )-fully quadratic on B(xk, δk) and

δk <

(

κσ +max

{

η2, κbhm,
4κefδmax

κfod(1− η1)
,

4κef
κfod(1− η1)

})−1

σ(xk),

then at the k-th iteration the step is taken (xk+1 = xk + sk) and δk is increased.

Proof. The proof is similar to the one of Lemma 2.1. Combining (3.2) with the error bound
of Lemma 3.1 yields

δk < min

{

1

η2
,

1

κbhm
,
κfod(1− η1)

4κef
,
κfod(1− η1)

4κefδmax

}

σm(xk).

This allows to directly conclude
m
that ρk ≥ η1 (see [12, Lemma 10.17]). Also, since the first term in 

the minimum gives        η2δk ≤ σ (xk), the trust-region radius is increased.



3.2 Behavior of the trust-region radius

Given the decrease properties now enforced by the algorithm, similar to Lemma 2.2, we can prove
that the sequence of the trust-region radii is cube summable. Let K2nd be the set of indexes
corresponding to iterations where the step is taken and the trust-region radius is increased, i.e.,

K2nd = {k ∈ N : ρk ≥ η1 and σm(xk) ≥ η2δk} .

Lemma 3.3 For any realization of Algorithm 3.1,

∞
∑

k=0

δ3k ≤ β2nd :=
γ32

1− γ31

[

δ30
γ32

+
f0 − flow

η2nd

]

,

where

η2nd = η1η2
κfod
2

min

{

min
{ η2
κbhm

, 1
} 1

δmax

, 1

}

.

Proof. Similar to the proof of Lemma 2.2, we only need to consider the case where |K2nd| =
∞. For any k ∈ K2nd, if σ

m(xk) = ‖gk‖, we have by Assumption 3.1 that

f(xk)− f(xk+1) ≥ η1 [mk(xk)−mk(xk + sk)]

= η1
κfod
2

‖gk‖min

{ ‖gk‖
‖Hk‖

, δk

}

≥ η1η2
κfod
2

min
{ η2
κbhm

, 1
}

δ2k

≥ η1η2
κfod
2

min
{ η2
κbhm

, 1
} 1

δmax

δ3k.

Meanwhile, if σm(xk) = −τk, a similar reasoning leads to:

f(xk)− f(xk+1) ≥ η1η2
κfod
2

δ3k.

As a result, for any index k ∈ K2nd, one has

f(xk)− f(xk+1) ≥ η1η2
κfod
2

min

{

min
{ η2
κbhm

, 1
} 1

δmax

, 1

}

δ3k = η2ndδ
3
k.

The rest of the proof follows the lines of Lemma 3.3 replacing the squares of the trust-region 
radii by cubes. �

3.3 Number of iterations with fully quadratic models

An upper bound on the number of iterations where the models are fully quadratic is derived
similarly as in the first-order case, and all that is required is to define x̃k ∈ {x0, . . . , xk} such 
that σ(x̃k) is a minimum value among {σ(x0), . . . , σ(xk)} and zk as the binary variable indicating 
if mk is (κeh, κeg, κef )-fully quadratic or not.



Lemma 3.4 Given a realization of Algorithm 3.1 and a positive integer k,

k−1
∑

l=0

zl ≤ β2nd
(min{δ0/γ2, κ2ndσ(x̃k)})3

+ p0k,

where

κ2nd =

(

κσ +max

{

η2, κbhm,
4κefδmax

κfod(1− η1)
,

4κef
κfod(1− η1)

})−1

.

3.4 Worst case complexity and global rate

The derivation of the second-order complexity theory is based on observing that Lemma 3.4
implies now

{

‖σ(X̃k)‖ ≥ ǫ
}

⊂
{

k−1
∑

l=0

Zl ≤
β2nd
κ3
2ndǫ

3
+ p0k

}

,

for any ǫ satisfying

0 < ǫ <
δ0

κ2ndγ2
. (3.3)

Then a result identical to Lemma 2.4 can be ensured considering the definition of Zl based on
fully quadratic models and replacing the probabilistic fully linear assumption by the probabilistic
fully quadratic one. The rest of the analysis proceeds similarly with minor changes in constants.
The global rate is now 1/ 3

√
k, as shown below.

Theorem 3.1 Suppose that {Mk} is (p)–probabilistically (κeh, κeg, κef )-fully quadratic with p >
p0 and

k ≥ 2β2ndγ
3
2

(p− p0)δ30
.

Then, the minimum second-order criticality measure σ(X̃k) satisfies

P



σ(X̃k) ≤
3
√
2β

1

3

2nd(p− p0)
1

3

κ
1

3

2nd

1
3
√
k



 ≥ 1− exp

[

−(p− p0)
2

8p
k

]

.

Similar conclusions as those of Subsection 2.5 can be drawn here regarding global convergence
results of the inf and liminf type that can be deduced from the above result, and regarding their
interplay with the second-order convergence theory of [2]. The only difference from the first-order
case is the difficulty in obtaining a lim-type result [2].

A worst-case complexity bound of the order of ǫ−3 is established similarly with overwhelm-
ingly high probability.

Theorem 3.2 Suppose that {Mk} is (p)–probabilistically (κeh, κeg, κef )-fully quadratic with p >
p0 and that ǫ satisfies (3.3). Let Kǫ be the first iteration index for which σ(X̃Kǫ

) ≤ ǫ. Then, Kǫ

satisfies

P

(

Kǫ ≤
⌈

2β2nd
(p− p0)κ32ndǫ

3

⌉)

≥ 1− exp

[

−β2nd(p− p0)

4pκ3
2ndǫ

3

]

.



As in Theorem 2.3, we can also bound the expected number of iterations needed to reach
the desired accuracy.

Theorem 3.3 Suppose at {Mk} is (p)–probabilistically (κeh, κeg, κef )-fully quadratic with p > p0
and that ǫ satisfies (3.3). Then,

E (Kǫ) ≤ c3ǫ
−3 +

1

1− exp(−c2)
,

where

c3 =
2β2nd

(p− p0)κ32nd
,

and c2 is defined as in Theorem 2.3.

4 Remarks on open questions

Recently a number of papers have appeared proposing and analyzing derivative-free trust-region
methods for the unconstrained optimization of a stochastic function. In this setting, what is
observable is f̃(x, ε(ω)), where ε is a random variable. The objective function f(x) may be given
by E(f̃(x, ε)). One approach [26] extended the framework [11] using Sample-Average Approxi-
mation (SAA). The number of observations in each Monte Carlo oracle may be up to O(δ−4

k ).
First-order global convergence was proved with probability one but for algorithmic parame-
ters that depend on unknown problem constants. Another approach [6] extended trust-region
methods based on probabilistic models [2] to cover also probabilistic estimates of the objective
function. In the non-biased case with f(x) = E(f̃(x, ε)), the probabilistic assumptions can be
ensured by SAA within O(δ−4

k ) observations. This approach can also handle biased cases like
failures in function evaluations or even processor failures (thus accommodating gradient failures
when using finite differences). First-order global convergence was also proved with probability
one but again for algorithmic parameters that depend on unknown problem constants. A similar
approach [22] led to first-order global convergence in probability (weaker than with probability
one), but under more practical assumptions. Very recently, a paper [3] developed a complexity
analysis for the approach in [6] showing a complexity bound of O(ǫ−2) on the expected number of
iterations needed to satisfy ‖∇f(Xk)‖ ≤ ǫ (again under unverifiable assumptions on algorithmic
parameters).

It is an open question whether our proof technology can improve upon these stochastic
optimization approaches in the sense of establishing global convergence with probability one and
global rates and complexity bounds with overwhelmingly high probability without unverifiable
assumptions on algorithmic parameters. Another challenging prospect for future work is to
develop better rates and bounds for the convex and strongly cases for either deterministic or
stochastic functions.
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