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THE EXACT CONDITION NUMBER OF THE TRUNCATED

SINGULAR VALUE SOLUTION OF A LINEAR ILL-POSED

PROBLEM∗

EL HOUCINE BERGOU† , SERGE GRATTON† , AND JEAN TSHIMANGA†

Abstract. The main result of this paper is the formulation of an explicit expression for the
condition number of the truncated least squares solution of Ax = b. This expression is given in
terms of the singular values of A and the Fourier coefficients of b. The result is derived using the
notion of the Fréchet derivative together with the product norm on the data [A, b] and the 2-norm
on the solution. Numerical experiments are given to confirm our results by comparing them to those
obtained by means of a finite difference approach.

Key words. truncated singular value decomposition, condition number, Fréchet derivative,
least squares solution, perturbation theory
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1. Introduction. Perturbation analysis is the study of the sensitivity of the
solution of a given problem to perturbations in the data. The concept of condition
number allows us to assess the sensitivity of the solution. Sensitivity and conditioning
theory has been applied to many fundamental problems of linear algebra, such as lin-
ear systems, linear least squares, or eigenvalue problems [1, 2, 8, 4, 13]. In this paper,
we investigate the condition number for the so-called truncated singular value de-
composition (TSVD) solution to linear least squares problems. TSVD solutions arise
in a wide variety of applications in science, technology, and engineering. In inverse
problems, for example, the TSVD can be considered as a regularization technique
for ill-conditioned matrices with well-determined numerical rank; see [5, 6, 14]. Ap-
plications of TSVD solutions in this area include computational tomography, image
deblurring, digital signal processing, and geophysical inversion in seismology. Some
numerical solutions of partial differential equations may also require techniques such
as TSVD; see [11].

Let A be an n× p matrix (n ≥ p) with rank(A) = r∗ ≤ p and let

A = UΣV T

be the full singular value decomposition of A with singular values of A arranged in
descending order in Σ . Then, given an n-vector b, the least squares problem

min
x∈ℜp

‖Ax− b‖2

has the minimum 2-norm solution x∗ = Vr∗Σ
−1
r∗ UT

r∗b, where Σr∗ is the diagonal matrix

consisting of the first r∗ singular values of A in descend ing order, and Ur∗ and Vr∗ are
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”.
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formed from the first r∗ columns of U and V , respectively. In some applications (e.g.,
problems arising from the discretization of an ill-posed problem), a better solution,
in the sense that it is less sensitive than the original one to errors in the data (A, b),
is obtained by a truncated least squares solution of the form

xr = VrΣ
−1
r UT

r b,

for some r < r∗, and where Vr, Σr, and Ur are defined as before but with r replacing
r∗. It turns out that if Ûr and V̂r are any orthonormal bases for range (Ur) and
range (Vr), then

xr = V̂r(Û
T
r AV̂r)

−1ÛT
r b.

Now let A and b be perturbed to yield Ã = A + E and b̃ = b + f , and let Ũr and
Ṽr form a pair of bases for the left and right singular subspaces associated with the r
first singular values of Ã. The corresponding truncated least squares solution of the
perturbed problem is then

x̃r = Ṽr(Ũ
T
r ÃṼr)

−1ŨT
r b.(1.1)

Now it turns out that if the Fréchet derivative, x′
r, of the function xr exists, then we

have

x̃r = xr + x′
r.(E, f) + o(‖(E, f)‖).

Here, x′
r.(E, f) is the application of a linear operator to (E, f). Given a norm on

(E, f), call it ‖.‖(α,β), the condition number of xr is defined to be the operator norm

‖|x′
r‖|(α,β),2 = max

[αE,βf ] 6=0

‖x′
r · (E, f)‖2

‖[E, f ]‖(α,β)
.

The particular norm we use is defined by

‖(E, f)‖(α,β) =
√

α2‖E‖2F + β2‖f‖2F ,

where ‖.‖F is the usual Frobenius norm and α ∈ ]0, + ∞[, β ∈ ]0, +∞[. Note that the 
purpose of the norm ‖.‖(α,β) is to tag the contributio ns of perturbations of A and b 
in the condition number; see [3].

The purpose of this paper is to exhibit the squa re of the condition number of 
xr as the 2-norm of a symmetric nonnegative matrix ∆ that can be formed from 
the singular values of A, and the Fourier coefficients given by the entries of UT b. 
The paper is organized as follows. In section 2, we sta te preliminary results based on 
results from [12]. Section 3 is devoted to an expressio n for the first-order expansion 
of xr with respect to the data (A, b). The main resu lt of this section is the matrix 
representation for the corresponding Fréchet derivativ e leading to the formula for the 
condition number of xr using the singular values of A 

 
and the Fourier coefficients of 

b. We perform some numerical tests to validate our  analysis by comparing it with 
results produced by a finite difference approach in se ction 4. A brief conclusion is 
given in section 5.



 

 

 
 

 

 
 
 
 

 
 
 
 
 
 

 

 

 

 
 
 

 

 

 

 

2. Preliminary results. It will be worthwhile to define the following matrix
partitions:

V = [Vr, V⊥] ∈ ℜp×p, U = [Ur, U⊥] ∈ ℜn×n, Σ =

[

Σr

Σ⊥

]

∈ ℜn×p,

where

Vr ∈ ℜp×r, V⊥ ∈ ℜp×(p−r), Ur ∈ ℜn×r, U⊥ ∈ ℜn×(n−r),

Σr = diag(σ1, . . . , σr) ∈ ℜr×r, Σ⊥ =

[

diag(σr+1, . . . , σp)

0

]

∈ ℜ(n−r)×(p−r).

Furthermore, we define matrices Err = UT
r EVr, Er⊥ = UT

r EV⊥, E⊥r = UT
⊥EVr,

and E⊥⊥ = UT
⊥EV⊥ and vectors br = UT

r b, b⊥ = UT
⊥b, and fr = UT

r f . Finally, we
shall denote by Ir, In−r and Ip−r the identity matrices of order r, n− r, and p − r,
respectively.

The operator vec (·) and the Kronecker product ⊗ will be of particular importance
in what follows. The vec (·) operator stacks the columns of the matrix argument into
one long vector. For any matrices B and C, the matrix B⊗C = (bijC). It is enough
for our purpose to recall the following properties concerning these operators.1 For
any matrices B, X , and C having compatible dimensions with respect to the involved
products, we have

vec (BXC) = (CT ⊗B) vec(X),(2.1)

vec(XT ) = Ψ(n,p)vec(X) for all X ∈ ℜn×p,(2.2)

where Ψ(n,p) ∈ ℜnp×np is the permutation matrix defined by

Ψ(n,p) =

n
∑

i=1

p
∑

j=1

Lij ⊗ LT
ij .

Here each Lij ∈ ℜn×p has entry 1 in position (i, j) and all other entries are zero.
The following assumption will be of particular importance in what follows.
Assumption 2.1. Let

γ = ‖(ET
⊥r, Er⊥)‖F ,

suppose that

δ = |σr − σr+1| − ‖Err‖2 − ‖E⊥⊥‖2 > 0,

and assume that

γ/δ <1/2.

Roughly speaking, the statement of Assumption 2.1 is that the existence of a gap
between σr and σr+1 > 0 is required and that ‖E‖2 must be small enough compared
to this gap.

1We refer to [10, Chapter 4] for further properties of these operators.



 

 
 
 

 

 

 

 

 

 

 

 
 
 

 
 
 

 
 

 

 

 

 

 

 

Now, we state and adapt results from [12] to our context in the following two
theorems.

Theorem 2.2 (see [12, Theorem 6.4]). Let an n × p perturbation matrix E be

given and partition UTEV with respect to U = [Ur, U⊥] and V = [Vr , V⊥] in the form

UTEV =

(

Err Er⊥

E⊥r E⊥⊥

)

.

Then under Assumption 2.1, there are matrices Q ∈ ℜ(n−r)×r and P ∈ ℜ(p−r)×r

satisfying

‖(QT , PT )‖F < 2
γ

δ
< 1

such that range(Vr + V⊥P ) and range(Ur − U⊥Q) form a pair of singular subspaces

for Ã = A+ E.

Among other things, the theorem above tells us that Q and P approach 0 as E
approaches 0. Other useful results related to the ones above are given in the following
theorem (see again [12] and [13, p. 266]).

Theorem 2.3. Suppose Assumption 2.1 holds. Then there exist matrices Q ∈
ℜ(n−r)×r and P ∈ ℜ(p−r)×r such that

Ũr = (Ur − U⊥Q)(I +QTQ)−1/2, Ũ⊥ = (UrQ
T + U⊥)(I +QQT )−1/2,(2.3)

Ṽr = (Vr + V⊥P )(I + PTP )−1/2, Ṽ⊥ = (−VrP
T + V⊥)(I + PPT )−1/2,(2.4)

with ŨT
r ÃṼ⊥ = 0 and ŨT

⊥ÃṼr = 0. Furthermore, Ũ = [Ũr, Ũ⊥] ∈ ℜn×n and Ṽ =

[Ṽr, Ṽ⊥] ∈ ℜp×p are orthogonal matrices.

Since the overall aim of this investigation is to derive the condition number as
the norm of the Fréchet derivative of xr , our intermediate goal will be to write a
first-order expansion of (1.1) in terms of quantities in (2.3) and (2.4) and then replace
Q and P with their respective first-order expansions with respect to E. The next
theorem exploits (2.3) and (2.4) together with properties of singular decomposition
to establish these expansions.

Theorem 2.4. Suppose that σr − σr+1 > 0. Then the first-order expansions for

Q and P are given by

vec (QT) = −
(

In−r ⊗ Σ2
r − (Σ⊥Σ

T
⊥ )⊗ Ir

)−1
(2.5)

× [In−r ⊗ Σr ,Σ⊥ ⊗ Ir ]

[

Ψ(n−r,r)(V
T
r ⊗ UT

⊥)

V T
⊥ ⊗ UT

r

]

vec(E)

+ o(‖E‖),

vec (P) =
(

Σ2
r ⊗ Ip−r − Ir ⊗ (ΣT

⊥Σ⊥)
)−1

(2.6)

×
[

Ir ⊗ ΣT
⊥ ,Σr ⊗ Ip−r

]

[

V T
r ⊗ UT

⊥

Ψ(r,p−r) (V
T
⊥ ⊗ UT

r )

]

vec(E)

+ o(‖E‖).

Proof. In agreement with

UTAV =

[

UT
r AVr UT

r AV⊥

UT
⊥AVr UT

⊥AV⊥

]

=

[

Σr 0

0 Σ⊥

]

∈ ℜn×p,(2.7)



 

 

 
 

 

 

 

 
 
 
 

 
 

 
 

 

 
 

 
 
 

 
 
 

 

 

 

 

 

 

together with the results of Theorem 2.3, we have

UT ÃV =

[

UT
r (A+ E)Vr UT

r (A+ E)V⊥

UT
⊥(A+ E)Vr UT

⊥(A+ E)V⊥

]

def
=

[

Σr + Err Er⊥

E⊥r Σ⊥ + E⊥⊥

]

,(2.8)

ŨT ÃṼ =

[

ŨT
r ÃṼr ŨT

r ÃṼ⊥

ŨT
⊥ÃṼr ŨT

⊥ÃṼ⊥

]

=

[

⋆ 0

0 ⋆

]

.(2.9)

If we substitute (2.3)–(2.4) into the extradiagonal blocks of (2.9) (that are zero), we
obtain

− (QUT
r AVr +QUT

r AV⊥P +QUT
r EVr +QUT

r EV⊥P

−UT
⊥AVr − UT

⊥AV⊥P − UT
⊥EVr − UT

⊥EV⊥P ) = 0,

− (UT
r AVrP

T − UT
r AV⊥ + UT

r EVrP
T − UT

r EV⊥

+UT
⊥AVrP

T −QTUT
⊥AV⊥ +QTUT

⊥EVrP
T −QTUT

⊥EV⊥) = 0.

Furthermore, using relations (2.7) and (2.8) and after rearranging terms, we obtain
(see also [12, equation (6.2)]) the pair of quadratic matrix equations

Q(Σr + Err) + (Σ⊥ + E⊥⊥)P = −E⊥r −QEr⊥P,(2.10)

P (Σr + ET
rr) + (ΣT

⊥ + ET
⊥⊥)Q = ET

r⊥ + PET
⊥rQ,(2.11)

where unknowns are Q and P . We retain only first-order terms2 in ‖E‖ in (2.10) and
(2.11) leading to

QΣr + Σ⊥P = −E⊥r + o(‖E‖),(2.12)

PΣr + ΣT
⊥Q = ET

r⊥ + o(‖E‖),(2.13)

from which we obtain the system

Q = −Σ⊥PΣ−1
r − E⊥rΣ

−1
r + o(‖E‖),(2.14)

P = −ΣT
⊥QΣ−1

r + ET
r⊥Σ

−1
r + o(‖E‖)(2.15)

by a postmultiplication of both (2.12) and (2.13) by Σr (which exists because
σ1 ≥ · · · ≥ σr > σr+1 ≥ 0). Replacing P in (2.14) by the right-hand side of
(2.15) and conversely replacing Q in (2.15) by the right-hand side of (2.14) we have

Q = −Σ⊥(−ΣT
⊥QΣ−1

r + ET
r⊥Σ

−1
r )Σ−1

r − E⊥rΣ
−1
r + o(‖E‖),(2.16)

P = −ΣT
⊥ (−Σ⊥PΣ−1

r − E⊥rΣ
−1
r )Σ−1

r + ET
r⊥Σ

−1
r + o(‖E‖).(2.17)

Postmultiplying (2.16) and (2.17) by Σ2
r and rearranging terms yields

Σ2
rQ

T −QTΣ⊥Σ
T
⊥ = −Er⊥Σ

T
⊥ − ΣrE

T
⊥r + o(‖E‖),(2.18)

PΣ2
r − ΣT

⊥Σ⊥P = ΣT
⊥E⊥r + ET

r⊥Σr + o(‖E‖).(2.19)

2This is why the terms PET
rr, E

T

⊥⊥
Q, PET

⊥r
Q, QErr, E⊥⊥P , and QEr⊥P no longer appear.



 

 
 

 

 

 

 
 
 

 
 
 
 
 
 

 
 
 

 
 
 

 
 
 

 

 

 
 

 
 
 
 
 
 
 

 

According to property (2.1), (2.18) and (2.19) may be rewritten as

(

In−r ⊗ Σ2
r − (Σ⊥Σ

T
⊥ )⊗ Ir

)

vec(QT )

= −vec
(

Er⊥Σ
T
⊥ + ΣrE

T
⊥r

)

+ o(‖E‖)

= − [In−r ⊗ Σr,Σ⊥ ⊗ Ir]

[

vec (ET
⊥r)

vec (Er⊥)

]

+ o(‖E‖),

(

Σ2
r ⊗ Ip−r − Ir ⊗ (ΣT

⊥Σ⊥)
)

vec(P )

= vec
(

ΣT
⊥E⊥r + ET

r⊥Σr

)

+ o(‖E‖)

=
[

Ir ⊗ ΣT
⊥ ,Σr ⊗ Ip−r

]

[

vec (E⊥r)

vec (ET
r⊥)

]

+ o(‖E‖).

One can replace vec(ET
⊥r) and vec(ET

r⊥) by Ψ(n−r, r)vec(E⊥r) and Ψ(r, p−r)vec (Er⊥),
respectively, based on property (2.2). Note that

(

In−r ⊗ Σ2
r − (Σ⊥Σ

T
⊥ )⊗ Ir

)

and
(

Σ2
r ⊗ Ip−r − Ir ⊗ (ΣT

⊥Σ⊥)
)

are diagonal matrices of order (n− r)r and (p− r)r, re-
spectively. In addition, their diagonal entries are strictly positive since σr > σr+1.
Hence, their inverses exist. To conclude the proof, observe that

vec (E⊥r) = (V T
r ⊗ UT

⊥) vec (E), vec (Er⊥) = (V T
⊥ ⊗ UT

r ) vec (E),

vec (E⊥⊥) = (V T
⊥ ⊗ UT

⊥) vec (E), vec (Err) = (V T
r ⊗ UT

r ) vec (E).

In what follows, we use the results in Theorem 2.3 to introduce the first-order
expansion for xr around (A, b) in terms of the partitioned singular value decomposition
matrices of A, the perturbation matrix E, the vector b, and the perturbation vector f .

3. The Fréchet derivative and the condition number of xr. The continu-
ity and the differentiability of xr rely on the fact that one supposes that there is a gap
between σr and σr+1, that is, σr − σr+1 > 0. Consider the following counterexample.
Let

A =

(

1 0

0 1

)

, E =

(

ǫ2 sin( 1ǫ ) 0

0 −ǫ2 sin( 1ǫ )

)

, b =

(

1

1

)

, f =

(

0

0

)

.

We take r = 1. Thus

x̃r =











1
1+ǫ2 sin( 1

ǫ
)
e1 if sin( 1ǫ ) > 0,

1
1−ǫ2 sin( 1

ǫ
)
e2 if sin( 1ǫ ) < 0,

xr if sin( 1ǫ ) = 0,

where e1 = (1, 0)T and e2 = (0, 1)T are the canonical vectors of ℜ2. The above
counterexample shows that the unit-vector of x̃r fluctuates between e1 and e2 as ǫ
tends to 0. In this case xr is not continuous, and a fortiori not differentiable, around A.
We know from Theorem 2.3 that the singular values of Ã are the disjoint union of the
singular values of ŨT

r ÃṼr and those of ŨT
⊥ÃṼ⊥. To define x̃r by (1.1) it is required that

the r leading singular values of Ã be those of ŨT
r ÃṼr. This is achieved if σr−σr+1 > 0

and E, sufficiently small.3

3Observe that in the presence of a gap σr−σr+1 > 0, the bases of the involved singular subspaces
of Ã tend continuously to those of A as E tends 0.



 

 

 
 

 

 

 

 
 

 

 

 

 

 
 
 

 
 
 
 

 
 
 

 

 

 

Now, let us state the following lemma.
Lemma 3.1. Suppose σr − σr+1 > 0. Then the first-order expansion of xr can be

written in the form

x̃r = xr + V

[

Ir

0

]

Σ−1
r fr − V

[

Ir

0

]

Σ−1
r QT b⊥(3.1)

+ V

[

0

Ip−r

]

PΣ−1
r br − V

[

Ir

0

]

Σ−1
r ErrΣ

−1
r br + o(‖[E, f ]‖).

Proof. We insert (2.3) and (2.4) in expression (1.1) to yield

x̃r = (Vr + V⊥P )((Ur − U⊥Q)T (A+ E)(Vr + V⊥P ))−1(Ur − U⊥Q)T b̃

= (Vr + V⊥P )(Σ−1
r − Σ−1

r UT
r EVrΣ

−1
r )(Ur − U⊥Q)T b̃+ o(‖[E, f ]‖),

where we used the following result concerning a perturbation of the inverse of a matrix
(F + G)−1 = F−1 − F−1GF−1 + o(‖G‖); see [13, p. 131]. Developing this equation

and recalling that Err
def
= UT

r EVr gives, after rearranging terms,

x̃r = xr + VrΣ
−1
r UT

r f − VrΣ
−1
r QTUT

⊥b+ V⊥PΣ−1
r UT

r b− VrΣ
−1
r ErrΣ

−1
r UT

r b

+o(‖[E, f ]‖)

= xr + VrΣ
−1
r fr − VrΣ

−1
r QT b⊥ + V⊥PΣ−1

r br − VrΣ
−1
r ErrΣ

−1
r br + o(‖[E, f ]‖).

From the properties

V V T = I, V TVr =

[

Ir

0

]

and V TV⊥ =

[

0

Ip−r

]

,

we have

x̃r = xr + V V TVrΣ
−1
r fr − V V TVrΣ

−1
r QT b⊥

+V V TV⊥PΣ−1
r br − V V TVrΣ

−1
r ErrΣ

−1
r br + o(‖[E, f ]‖),

which implies (3.1).
Now, we are ready to give the expression of the matrix x′

r that represents the
Fréchet derivative of xr , with respect to the data (A, b). The expression is given in
terms of the singular value decomposition information of A and the vector b. For that,
we simply use results in Theorem 2.4 to eliminate Q and P from (3.1).

Proposition 3.2. Suppose that σr − σr+1 > 0. Then the application

xr :
(

ℜn×p,ℜn
)

−→ ℜp : (A, b) −→ xr

is a differentiable function of (A, b). In addition, we have

x̃r = xr + x′
r

[

α vec(E)

β f

]

+ o(‖[E, f ]‖)

with

x′
r = V

[

1

α
M,

1

β

(

Σ−1
r

0

)]

W ∈ ℜn×(np+n).(3.2)



 

 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

Here, W is an orthogonal matrix defined by

W =

















V T
r ⊗ UT

⊥ 0

V T
⊥ ⊗ UT

r 0

V T
r ⊗ UT

r 0

V T
⊥ ⊗ UT

⊥ 0

0 UT

















∈ ℜ(np+n)×(np+n),

and M is the partitioned matrix given by

M =

[

Rr Sr −Tr 0

R⊥ S⊥ 0 0

]

∈ ℜp×(np)

with

Rr = (bT⊥ ⊗ Σ−1
r )

(

In−r ⊗ Σ2
r − (Σ⊥Σ

T
⊥ )⊗ Ir

)−1
(In−r ⊗ Σr)Ψ(n−r,r),(3.3)

Sr = (bT⊥ ⊗ Σ−1
r )

(

In−r ⊗ Σ2
r − (Σ⊥Σ

T
⊥ )⊗ Ir

)−1
(Σ⊥ ⊗ Ir),(3.4)

R⊥ =
(

(bTr Σ
−1
r )⊗ Ip−r

) (

Σ2
r ⊗ Ip−r − Ir ⊗ (ΣT

⊥Σ⊥)
)−1

(Ir ⊗ ΣT
⊥ ),(3.5)

S⊥ =
(

(bTr Σ
−1
r )⊗ Ip−r

) (

Σ2
r ⊗ Ip−r − Ir ⊗ (ΣT

⊥Σ⊥)
)−1

(Σr ⊗ Ip−r)Ψ(r,p−r),(3.6)

Tr =
(

bTr Σ
−1
r

)

⊗ Σ−1
r .(3.7)

The dimensions of these matrices are given in the following:

Rr, Sr ∈ ℜr×(n−r)r, R⊥, S⊥ ∈ ℜ(p−r)×(n−r)r, and Tr ∈ ℜr×r2 .

Proof. Consider the quantities in (3.1). Using the properties of the vec operator
applied to a vector, we obtain

[

Ir

0

]

Σ−1
r ErrΣ

−1
r br =

[

(bTr Σ
−1
r )⊗ Σ−1

r

0

]

vec (Err) =

[

Tr

0

]

(V T
r ⊗ UT

r ) vec (E).

Taking the expressions for vec(QT ) and vec(P ) given in (2.5) and (2.6), we have

[

Ir

0

]

Σ−1
r QT b⊥ =

[

bT⊥ ⊗ Σ−1
r

0

]

vec (QT )

= −

[

Rr Sr

0 0

][

V T
r ⊗ UT

⊥

V T
⊥ ⊗ UT

r

]

vec (E) + o(‖[E, f ]‖),

[

0

Ip−r

]

PΣ−1
r br =

[

0

(bTr Σ
−1
r )⊗ Ip−r

]

vec (P )

=

[

0 0

R⊥ S⊥

][

V T
r ⊗ UT

⊥

V T
⊥ ⊗ UT

r

]

vec (E) + o(‖[E, f ]‖).



 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Injecting these quantities in (3.1) results in

x̃r = xr + V

[

Σ−1
r

0

]

UT f + V

[

Rr Sr −Tr 0

R⊥ S⊥ 0 0

]













V T
r ⊗ UT

⊥

V T
⊥ ⊗ UT

r

V T
r ⊗ UT

r

V T
⊥ ⊗ UT

⊥













vec (E)

+ o(‖[E, f ]‖),

from which the results are derived.
We can now establish the expression of the xr condition number. We know by

definition that

‖|x′
r|‖(α,β),2 = max

[αE,βf ] 6=0

‖x′
r · (E, f)‖2

‖vec [E, f ]‖(α,β)
.

Thus, from (3.2) we conclude that the exact condition number of xr is

‖|x′
r|‖(α,β),2 = λ1/2

max (∆) ,

where

∆
def
= V Tx′

r(x
′
r)

TV =
1

α2
MMT +

1

β2

(

Σ−2
r 0

0 0

)

∈ ℜp×p.

It remains to show how ∆ can be expressed with the singular values of A and the
Fourier coefficients given by the elements of UT b.

Proposition 3.3. Assume that the singular values of the matrix A are such that

σ1 ≥ · · · ≥ σr > σr+1 ≥ · · · ≥ σp ≥ 0.

Then

∆ =

( 1
α2∆rr +

1
β2Σ

−2
r

1
α2Γ

T
⊥r

1
α2Γ⊥r

1
α2∆⊥⊥

)

,

where

∆rr = diag





r
∑

k=1

θ2k
σ2
kσ

2
t

+

p
∑

k=r+1

(π
(t)
k )2

σ2
k + σ2

t

σ2
t

θ2k +

n
∑

k=p+1

θ2k
σ4
t



 , 1 ≤ t ≤ r,

∆⊥⊥ = diag

(

r
∑

k=1

(π
(t)
k )2

σ2
k + σ2

t

σ2
k

θ2k

)

, r + 1 ≤ t ≤ p,

Γ⊥r = R⊥R
T
r + S⊥S

T
r

= 2



















(π
(1)
r+1)

2 σr+1

σ1
θ1θr+1 (π

(2)
r+1)

2 σr+1

σ2
θ2θr+1 · · · (π

(r)
r+1)

2 σr+1

σr
θrθr+1

(π
(1)
r+2)

2 σr+2

σ1
θ1θr+2 (π

(2)
r+2)

2 σr+2

σ2
θ2θr+2 · · · (π

(r)
r+2)

2 σr+2

σr
θrθr+2

...
...

. . .
...

(π
(1)
p )2

σp

σ1
θ1θp (π

(2)
p )2

σp

σ2
θ2θp · · · (π

(r)
p )2

σp

σr
θrθp



















,



 

 

 

 
 

 

 
 

 
 
 

 

 

 

 
 
 
 

 

 

 
 

 
 
 

 
 

with (θ1, . . . , θn) = bTU , and π
(t)
k = 1

σ2
t−σ2

k

, with either t = 1, . . . , r and k = r+1, . . . , p

or k = 1, . . . , r and t = r + 1, . . . , p.

Moreover, the quantity π
(t)
k is well defined, since whenever it appears, σ2

t −σ2
k 6= 0

holds.

Proof. First we consider the p× p symmetric matrix

MMT =

[

RrR
T
r + SrS

T
r + TrT

T
r −RrR

T
⊥ − SrS

T
⊥

−R⊥R
T
r − S⊥S

T
r R⊥R

T
⊥ + S⊥S

T
⊥

]

def
=

[

∆rr Γ⊥r

Γr⊥ ∆⊥⊥

]

.

Exploiting their structure, we can write the matrices (3.3)–(3.7) as

Rr =
[

θr+1(Σ
2
r − σ2

r+1Ir)
−1, . . . , θp(Σ

2
r(3.8)

− σ2
pIr)

−1, θp+1Σ
−2
r , . . . , θnΣ

−2
r

]

Ψ(n−r,r),(3.9)

Sr =
[

θr+1σr+1Σ
−1
r (Σ2

r − σ2
r+1Ir)

−1, . . . , θpσpΣ
−1
r (Σ2

r − σ2
pIr)

−1, 0, . . . , 0
]

,(3.10)

R⊥ =
[

θ1σ
−1
1 (σ2

1Ip−r − ΣT
⊥Σ⊥)

−1ΣT
⊥ , . . . , θrσ

−1
r (σ2

rIp−r − ΣT
⊥Σ⊥)

−1ΣT
⊥

]

,(3.11)

S⊥ =
[

θ1(σ
2
1Ip−r − ΣT

⊥Σ⊥)
−1, . . . , θr(σ

2
rIp−r − ΣT

⊥Σ⊥)
−1
]

Ψ(r,p−r),(3.12)

Tr =
[

θ1σ
−1
1 Σ−1

r , . . . , θrσ
−1
r Σ−1

r

]

.(3.13)

In (3.8), the first of the two factors,
[

θr+1(Σ
2
r − σ2

r+1Ir)
−1, . . . , θp(Σ

2
r − σ2

pIr)
−1, θp+1Σ

−2
r , . . . , θnΣ

−2
r

]

(3.14)

is a 1 × (n − r) partitioned matrix. Its blocks consist of r-order diagonal matrices.
Recall that the second factor in (3.8) is

Ψ(n−r,r) =

n−r
∑

i=1

r
∑

j=1

Lij ⊗ LT
ij ,(3.15)

where Lij = eie
T
j ∈ ℜ(n−r)r with ei ∈ ℜ(n−r) and ej ∈ ℜr. Observe that Lij ⊗ LT

ij

is an (n− r) × r partitioned matrix where each block has r rows and n− r columns.
Furthermore, it has the block LT

ij in position i, j and 0 in the remaining blocks.
The multiplication of the partitioned matrices (3.14) and (3.15) results in the 1 × r
partitioned matrix

Rr =

n−r
∑

i=1

r
∑

j=1

[

θr+1(Σ
2
r − σ2

r+1Ir)
−1, . . . , θp(Σ

2
r

− σ2
pIr)

−1, θp+1Σ
−2
r , . . . , θnΣ

−2
r

]

Lij ⊗ LT
ij ,

whose block j can be written as

p−r
∑

i=1

θr+i(Σ
2
r − σ2

r+iIr)
−1LT

ij +
n−r
∑

i=p−r+1

θr+iΣ
−2
r LT

ij .

Consequently, multiplying R⊥ and Rr block by block yields

R⊥R
T
r =

r
∑

j=1

θjσ
−1
j (σ2

j Ip−r − ΣT
⊥Σ⊥)

−1ΣT
⊥

p−r
∑

i=1

Lijθr+i(Σ
2
r − σr+iIr)

−1(3.16)

+
r
∑

j=1

θjσ
−1
j (σ2

j Ip−r − ΣT
⊥Σ⊥)

−1ΣT
⊥

n−r
∑

i=p−r+1

Lijθr+iΣ
−2
r .



 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Since ΣT
⊥

∑n−r
i=p−r+1 ei = 0, one has ΣT

⊥

∑n−r
i=p−r+1 Lij = ΣT

⊥

∑n−r
i=p−r+1 eiej

T = 0 and
hence the last term in (3.16) vanishes. Thus

R⊥R
T
r =

p−r
∑

i=1

r
∑

j=1

θr+iθjσ
−1
j (σ2

j Ip−r − ΣT
⊥Σ⊥)

−1ΣT
⊥eie

T
j (Σ

2
r − σ2

r+iIr)
−1.

A direct computation gives

θr+iθjσ
−1
j (σ2

j Ip−r − ΣT
⊥Σ⊥)

−1ΣT
⊥ei =







θr+iθjσr+i

σj(σ2
j
−σ2

r+i
)
ei, i = 1, . . . , p− r,

0, i = p− r + 1, . . . , n− r,

where ei ∈ ℜ(n−r) in the left-hand side and ei ∈ ℜ(p−r) on the right-hand side. Then
from

eTj (Σ
2
r − σ2

r+iIr)
−1 =

1

(σ2
j − σ2

r+i)
eTj ,

where ej ∈ ℜr on both sides, we deduce that

R⊥R
T
r =

p−r
∑

i=1

r
∑

j=1

1

(σ2
j − σ2

r+i)
2

σr+i

σj
θr+iθjeie

T
j ,

=

p−r
∑

i=1

r
∑

j=1

(π
(j)
r+i)

2σr+i

σj
θr+iθjeie

T
j ∈ ℜ(p−r)×r

with π
(j)
r+i =

1
(σ2

j
−σ2

r+i
)
. In the same manner we can compute and show that S⊥S

T
r is

equivalent to R⊥R
T
r .

The remaining blocks in MMT are computed by performing the block matrix-
matrix multiplications. So,

RrR
T
r =

p
∑

k=r+1

θ2k(Σ
2
r − σ2

kIr)
−2 +

n
∑

k=p+1

θ2kΣ
−4
r = diag

(

p
∑

k=r+1

(π
(t)
k )2θ2k +

n
∑

k=r+1

θ2k
σ4
t

)

,

SrS
T
r =

p
∑

k=r+1

θ2kσ
2
kΣ

−2
r (Σ2

r − σ2
kIr)

−2 = diag

(

p
∑

k=r+1

(π
(t)
k )2

σ2
k

σ2
t

θ2k

)

,

TrT
T
r =

r
∑

k=1

θ2k
σ2
k

Σ−2
r = diag

(

r
∑

k=1

θ2k
σ2
kσ

2
t

)

for t = 1, . . . , r;

R⊥R
T
⊥ =

r
∑

k=1

θ2k
σ2
k

ΣT
⊥Σ⊥(σ

2
kIp−r − ΣT

⊥Σ⊥)
−2 = diag

(

r
∑

k=1

(π
(t)
k )2

σ2
t

σ2
k

θ2k

)

,

S⊥S
T
⊥ =

r
∑

k=1

θ2k(σ
2
kIp−r − ΣT

⊥Σ⊥)
−2 = diag

(

r
∑

k=1

(π
(t)
k )2θ2k

)

for t = 1, . . . , p− r.
Putting the above results together yields the result.



 

 

 
 
 

 

 

 

 

 
 
 

 
 

 

Table 1
The exact value of cond(xr) using the expression in Proposition 3.3 versus the finite difference

estimate value using jacobianest for 12 problems.

Problem cond(xr) Finite difference estimate n p r

from 3.3 value of cond(xr)
baart 7.156e+3 7.087e+3 20 20 5
blur 2.516e+1 2.516e+1 16 16 6
derive 1.698e+3 1.698e+3 12 12 10
foxgood 2.896e+1 2.896e+1 20 20 2
heat 4.486e+1 4.478e+1 12 12 10
i laplace 1.448e+4 1.367e+4 20 20 7
parallax 1.412e+5 1.411e+5 26 12 10
phillips 5.731e+1 5.731e+1 12 12 10
shaw 1.044e+3 1.044e+3 12 12 8
spikes 8.178e+2 8.178e+2 12 12 4
ursell 3.716e+5 3.716e+5 20 20 3
wing 3.429e+6 3.010e+6 20 20 5

Let us point out the fact that an early result in [3], when r = p, that is, when we

do not perform truncation (i.e., we assume that A is a full rank matrix), is a particular
case of the results above. In fact, in this case, ∆ becomes diagonal and simplifies to

∆rr = diag





p
∑

k=1

θ2k
σ2
kσ

2
t

+

n
∑

k=p+1

θ2k
σ4
t



 = diag





1

σ2
t





p
∑

k=1

θ2k
σ2
k

+

n
∑

k=p+1

θ2k
σ2
t









for t = 1, . . . , p. This implies the result given in [3], that is,

‖|x′
r‖|(α,β),2 =

√

√

√

√

√

1

α2

1

σ2
min





p
∑

k=1

(

θk
σk

)2

+
1

σ2
min

n
∑

k=p+1

θ2k



+
1

β2

1

σ2
min

= ‖A†‖

√

1

α2
(‖x‖2 + ‖A†‖2‖r‖2) +

1

β2
,

where A† denotes the Moore–Penrose inverse (see [9, p. 421]) of A, and x denotes the
solution of the linear least squares problem associated with A and b.

Looking at the general result of Proposition 3.3, we see that the quantities
(scalars) involved in the computation of the xr condition number are nothing but
the singular values σk of A and the components θk of b along singular vectors uk.
Finally, observe that the critical gap is σr − σr+1.

4. Numerical experiments. We now describe some numerical tests carried

out in MATLAB. Our test cases come from the pac kage Regularization Tools4 by 
Hansen [7]. We arbitrarily choose values of n, p, a nd r. By means of a specific 
routine in this package, we generate pairs (A, b) assoc iated with some test problems 
indicated by their name. To validate the expression o f the exact condition number, 
we use the numerical derivative code5 by D’Errico, ca  lled jacobianest.m, to estimate 
the corresponding Jacobian at a given particular poi nt z. The code jacobianest.m 
uses a centered finite differences approach with Rom berg extrapolation to improve

4See http://www2.imm.dtu.dk/∼pch/Regutools.
5See http://www.mathworks.com/matlabcentral/fileexchang e/13490-automatic-numerical-

differentiation.



 
 
 
 
 

 
 

 
 
 
 
 
 

 
 

 

 

 
 

 
 

 
 
 

 

 

 

 

 

the estimates to sixth order. For our purpose, we recast xr as f : z = vec([A, b]) → xr

prior to the use of jacobianest.m, and then we approximate the condition number of
xr as the 2-norm of the estimated Jacobian. Note that in all tests we set α = β = 1.

Table 1 displays the exact condition number versus an estimate of the condition
number produced with jacobianest.m. The results show how the derived expression
of the exact condition compares well with the finite difference estimate.

5. Conclusion. We solved the problem of the determination of a closed formula
for the condition number of the truncated singular value solution of an ill-posed prob-
lem which relies on a singular value decomposition of the problem. We anticipate that
the presented formula will therefore stimulate research in several directions. Finding
good estimates of the condition number using iterative techniques would, for instance,
be of crucial relevance for large-scale problems. From a theoretical point of view, we
also believe that the condition number may bring new insight into the problem of
the detection of the truncation index of the singular value decomposition. One of the
topics of future research will be to explore this issue for practical problems.
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comments and suggestions.
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