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THE EXACT CONDITION NUMBER OF THE TRUNCATED
SINGULAR VALUE SOLUTION OF A LINEAR ILL-POSED
PROBLEM*

EL HOUCINE BERGOUT, SERGE GRATTONT, AND JEAN TSHIMANGA'

Abstract. The main result of this paper is the formulation of an explicit expression for the
condition number of the truncated least squares solution of Az = b. This expression is given in
terms of the singular values of A and the Fourier coefficients of b. The result is derived using the
notion of the Fréchet derivative together with the product norm on the data [A,b] and the 2-norm
on the solution. Numerical experiments are given to confirm our results by comparing them to those
obtained by means of a finite difference approach.

Key words. truncated singular value decomposition, condition number, Fréchet derivative,
least squares solution, perturbation theory
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1. Introduction. Perturbation analysis is the study of the sensitivity of the
solution of a given problem to perturbations in the data. The concept of condition
number allows us to assess the sensitivity of the solution. Sensitivity and conditioning
theory has been applied to many fundamental problems of linear algebra, such as lin-
ear systems, linear least squares, or eigenvalue problems [1, 2, 8, 4, 13]. In this paper,
we investigate the condition number for the so-called truncated singular value de-
composition (TSVD) solution to linear least squares problems. TSVD solutions arise
in a wide variety of applications in science, technology, and engineering. In inverse
problems, for example, the TSVD can be considered as a regularization technique
for ill-conditioned matrices with well-determined numerical rank; see [5, 6, 14]. Ap-
plications of TSVD solutions in this area include computational tomography, image
deblurring, digital signal processing, and geophysical inversion in seismology. Some
numerical solutions of partial differential equations may also require techniques such
as TSVD; see [11].

Let A be an n x p matrix (n > p) with rank(A) = r* < p and let

A=UxvT

be the full singular value decomposition of A with singular values of A arranged in
descending order in Y. Then, given an n-vector b, the least squares problem

min || Az — b||2
TERP

has the minimum 2-norm solution z* = V;~ 221 ULb, where 5, is the diagonal matrix
consisting of the first r* singular values of A in descending order, and U,.~and V,.are
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formed from the first 7* columns of U and V', respectively. In some applications (e.g.,
problems arising from the discretization of an ill-posed problem), a better solution,
in the sense that it is less sensitive than the original one to errors in the data (A, b),
is obtained by a truncated least squares solution of the form

z, =V, 2 UlD,

for some r < r*, and where V., X, and U, are defined as before but with r replacing
r*. It turns out that if U, and V, are any orthonormal bases for range (U,) and
range (V.), then

2. = V(U AV,) 10T b,

Now let A and b be perturbed to yield A = A+ E and b = b+ f, and let U, and
V, form a pair of bases for the left and right singular subspaces associated with the
first singular values of A. The corresponding truncated least squares solution of the
perturbed problem is then

(1.1) & = V(UL AV,) U .

Now it turns out that if the Fréchet derivative, 2., of the function x, exists, then we
have

Iy =z, +2,.(E, f) +o(|(E, f)]).

Here, 2/..(E, f) is the application of a linear operator to (E, f). Given a norm on
(E, f), call'it ||.[|(a,p), the condition number of x, is defined to be the operator norm

27 - (E, f)ll2

x — ma .
llerlllemz = max B Alws

The particular norm we use is defined by

I(E, Hlliasy = /22 ElI% + 821113

where ||.|| g is the usual Frobenius norm and « € ]0, 4-00[, 8 € ]0, +oo[. Note that the
purpose of the norm ||.[|(4,) is to tag the contributions of perturbations of A and b

in the condition number; see [3].
The purpose of this paper is to exhibit the square of the condition number of
z, as the 2-norm of a symmetric nonnegative matrix A that can be formed from

the singular values of A, and the_Fourier coefficients given by the entries of U7b.
The paper is organized as follows. In section 2, we state preliminary results based on

results from [12]. Section 3 is devoted to an expression for the first-order expansion
of x, with respect to the data (A,b). The main result of this section is the matrix

representation for the corresponding Fréchet derivative leading to the formula for the

condition number of z, using the singular values of A and the Fourier coefficients of
b. We perform some numerical tests to validate our analysis by comparing it with

results produced by a finite difference approach in section 4. A brief conclusion is
given in section 5.



2. Preliminary results. It will be worthwhile to define the following matrix
partitions:

Volvilewr, v-pulern s- [T few,
1L
where
V, e §RP><T’ V, € %PX(?*T‘), U, € %nxr’ U, € §Rn><(nfr),
diag(oys1,...,0 N i
2, = diag(oy,...,0,) e R, X = 8l *5 P)] € =X (7).

Furthermore, we define matrices E,., = U,,TEVT, E., = UTTEVJ_, E., = UIEVT,
and £/, | = UIEVJ_ and vectors b, = UTTb, b, = Ufb7 and f,. = UTTf Finally, we
shall denote by I, I,,_, and I,_, the identity matrices of order r, n —r, and p — r,
respectively.

The operator vec (+) and the Kronecker product @ will be of particular importance
in what follows. The vec () operator stacks the columns of the matrix argument into
one long vector. For any matrices B and C, the matrix B® C' = (b;;C). It is enough
for our purpose to recall the following properties concerning these operators.! For
any matrices B, X, and C' having compatible dimensions with respect to the involved
products, we have

(2.1) vec (BXC) = (CT @ B) vec(X),
vec(XT) =V, ,vec(X) forall X € R"*P,

where W, ,y € R"P*"P is the permutation matrix defined by
n o p
Vi = > Lij® LY.
i=1 j=1

Here each L;; € R™*P has entry 1 in position (¢, j) and all other entries are zero.
The following assumption will be of particular importance in what follows.
Assumption 2.1. Let

T
v =I(EL, B,
suppose that
6 =lor —ort1| = [|[Errll2 = |ELL]l2 > 0,
and assume that
~/6 <1/2.

Roughly speaking, the statement of Assumption 2.1 is that the existence of a gap
between o, and 0,41 > 0 is required and that ||E||2 must be small enough compared
to this gap.

I'We refer to [10, Chapter 4] for further properties of these operators.



Now, we state and adapt results from [12] to our context in the following two
theorems.

THEOREM 2.2 (see [12, Theorem 6.4]). Let an n X p perturbation matriz E be
given and partition UT EV with respect to U = [U,, U] and V = [V,., V1] in the form

UTEV _ Err ETL .
E,, FEii

Then under Assumption 2.1, there are matrices Q € RX" gnd P e RP—r)xr
satisfying

QT PT)lr < 2% <1
such that range(V, + V| P) and range(U, — U, Q) form a pair of singular subspaces
for A= A+ E.

Among other things, the theorem above tells us that @) and P approach 0 as E
approaches 0. Other useful results related to the ones above are given in the following
theorem (see again [12] and [13, p. 266]).

THEOREM 2.3. Suppose Assumption 2.1 holds. Then there exist matrices QQ €
RO=1XT and P € RP=X" such that

(23) U, = (U, —UQ)I+QTQ)" 2, UL =(U,Q" +UL)I+QQ") /2,

(24) V.= (V, + Vo PYI+P'P)"2 VvV, =(-V,PT +V.)I+PP")"1/2

with UT AV, = 0 and Ufflf/r = 0. Furthermore, U = [U,,U,] € R"™" and V =
[V, V1] € RPXP are orthogonal matrices.

Since the overall aim of this investigation is to derive the condition number as
the norm of the Fréchet derivative of x,., our intermediate goal will be to write a
first-order expansion of (1.1) in terms of quantities in (2.3) and (2.4) and then replace
Q@ and P with their respective first-order expansions with respect to F. The next
theorem exploits (2.3) and (2.4) together with properties of singular decomposition
to establish these expansions.

THEOREM 2.4. Suppose that o, — 0,11 > 0. Then the first-order expansions for
Q and P are given by

25)  vee(QN)=—(lL,252 - (.5 eL)"

\Ij(n—r,’r)(‘/;:T ® UI)
X [Ln—r @ X, X1 @ 1] vec(E)
vieUur
+o([lE]),
(2.6) vee (P) = (2@ 1, , — I, @ (5T%)""
VieUl
x I @ 21, 5, @ I,—,] o | vee(E)
\P(T,pf’!’) (VL ® Ur )
+o([lE]).
Proof. In agreement with
- UTAV, UTAV, 2,
(2.7) UTAV = | e = € RMP
ULAV, U] AV, 0 X




together with the results of Theorem 2.3, we have

[UT(A+E)V, UN(A+E)V,

UTAV =
UT(A+E)V, Ul'(A+E)V,
(2.8) def (5 + Epy B
| B X+ EL
- pra - (4% a0 T
UTAV, UTAV, 0 *

If we substitute (2.3)—(2.4) into the extradiagonal blocks of (2.9) (that are zero), we
obtain

—(QUT AV, + QUI AV, P+ QUTEV, + QU'EV, P

~vtav, -vrav,p -UTEV, -UTEV, P) =0,
—wrav,pt —urav, +urev,P" ~UT'EV,

+UTAV,PT —Q"UT AV, + QTUTEV,PT — QTUTEV,) = 0.

Furthermore, using relations (2.7) and (2.8) and after rearranging terms, we obtain
(see also [12, equation (6.2)]) the pair of quadratic matrix equations

(210) Q(Er + Err) + (EJ_ + EJ_J_)P - _EJ_’I‘ - QETJ_Pa
(2.11) P(Z.+EL)+ (T +E1)Q=E] + PET,Q,

where unknowns are ) and P. We retain only first-order terms? in ||E|| in (2.10) and
(2.11) leading to

(2.13) PE +51Q=E +o(|El),

from which we obtain the system

(2.14) Q=-X.PX ' —E,Z 7 +o(|E|),
(2.15) P=—3TQs + BL 571 + o))
by a postmultiplication of both (2.12) and (2.13) by X, (which exists because
o1 > - > o0, > 041 > 0). Replacing P in (2.14) by the right-hand side of
(2.15) and conversely replacing @) in (2.15) by the right-hand side of (2.14) we have

(216) Q = _Zl(_EfQEr_l + E’ITLE’I'_l)Er_l - EJ—T’E’I'_l + O(HE”)v
@171  P=-3I(-5P5 - Bl NS 4 EL S 4ol B,

Postmultiplying (2.16) and (2.17) by X2 and rearranging terms yields

(2.18) 22T - QT2 8] = —E,. 2T - S.ET, +o(|El)),
(2.19) P2 - 515 P=5TE,, + E', 5, + o(|El)).

2This is why the terms PEL | E}:J_Q7 PE}:TQ7 QEr-, E, | P, and QF, | P no longer appear.



According to property (2.1), (2.18) and (2.19) may be rewritten as

(v @ 22 — (2. 5T) @ 1) vee(QT)
= —vec (ETJ_ZI + ErEJT_r) +o([[El])
vec (ET))
ec (Er1)
(2201, — I, ® (X1 X1)) vec(P)
= vec (EIEJ_T + E;FLET‘) +o(|[£]])
vec (E1,)
ec (E'r,l‘]_)

=l ®Z, 2 L) +o([E]D),

oS5 el +o(|E|).

One can replace vec(ET ) and vec(EL| ) by ¥(n—r,r)vec(E ) and ¥ (r, p—r)vec (E, ),
respectively, based on property (2.2). Note that (I,—, ® ¥? — (¥, XT)®I,) and
(2@ Iy — I, ® (T X)) are diagonal matrices of order (n —r)r and (p — r)r, re-
spectively. In addition, their diagonal entries are strictly positive since o, > o,41.
Hence, their inverses exist. To conclude the proof, observe that

vec (E1,) = (VI @ UT) vec (E), vec (Ey1) = (VE @ UYL vec (E),
vec (E1 1) = (VI @UT) vec (E), vec (Byy) = (VI @ U ) vec (E). O
In what follows, we use the results in Theorem 2.3 to introduce the first-order

expansion for z, around (A, b) in terms of the partitioned singular value decomposition
matrices of A, the perturbation matrix F, the vector b, and the perturbation vector f.

3. The Fréchet derivative and the condition number of x,.. The continu-
ity and the differentiability of z,. rely on the fact that one supposes that there is a gap
between o, and 0,41, that is, o, — 0,41 > 0. Consider the following counterexample.

Let
01 0 —€2 sin(%) 1 0

We take r = 1. Thus

D iin(;)el if sin(%) >0,
T, = #m(%)ez if Sll’l(%) <0,
T, if sin(1) =0,
where e; = (1,0)7 and e; = (0,1)7 are the canonical vectors of R2. The above

counterexample shows that the unit-vector of Z, fluctuates between e; and es as €
tends to 0. In this case x, is not continuous, and a fortiori not differentiable, around A.
We know from Theorem 2.3 that the singular values of A are the disjoint union of the
singular values of U AV, and those of UT AV, . To define &, by (1.1) it is required that
the r leading singular values of A be those of UTTAV} This is achieved if 0, — 0.1 > 0
and E, sufficiently small.3

:D’Observe that in the presence of a gap o, —o,41 > 0, the bases of the involved singular subspaces
of A tend continuously to those of A as E tends 0.



Now, let us state the following lemma.
LEMMA 3.1. Suppose o, —o,+1 > 0. Then the first-order expansion of x, can be
written in the form

I, I,

31)  F=a4V | |-V 27QTh,

r

vV PE 7 —V | | ETE 57 e + o || [E £

p—r
Proof. We insert (2.3) and (2.4) in expression (1.1) to yield
& = (Vo + VLP)(Ur = ULQ)T (A + E)(Vy + VLP) " (U = ULQ)Th
= (Ve +ViP)(Z = U BV, E7 (U = ULQ) b+ o||[E, f11),
where we used the following result concerning a perturbation of the inverse of a matrix

(F+G)™'=F! - F'GF~ 4 o(||G])); see [13, p. 131]. Developing this equation

def

and recalling that E,.. = U EV, gives, after rearranging terms,

i =2, + V57U -V, 2 QTUTo + vV PE WU - VX E, 2T U
+o([I[E, f1I)
=2 + VX = Ve 5 Q b + VP 0 = Vi X B B, + o([[B A1)

0
Iy |’
=2, +VVIVE - VVTV, QT
+VVIVLPE Y, — VVTIV, S 570, + o(||[E, £,

From the properties

vvT =1, VTV, =

I,
O] and VTV, =

we have

which implies (3.1). O
Now, we are ready to give the expression of the matrix 2. that represents the
Fréchet derivative of x,., with respect to the data (A,b). The expression is given in
terms of the singular value decomposition information of A and the vector b. For that,
we simply use results in Theorem 2.4 to eliminate @ and P from (3.1).
PROPOSITION 3.2. Suppose that o, — o,41 > 0. Then the application

zet (RVPRY) — R (4,0) — a,

is a differentiable function of (A,b). In addition, we have

PR R BT
5y
with
—1
(3.2) o =V 1M,;< ' 0)]Wewﬂw+“>.




Here, W is an orthogonal matriz defined by

vieuT o
vieur o
W= |vieUl 0 |e Rnptn)x (nptn)
vieUuT o
0 ur

and M 1is the partitioned matriz given by

R, S, -1, 0
R, S 0 0

e Rpp*(np)

33) Re=0l0S (T, @250 L) (Inr®5)T 0,
(34) S =0l o5 ) (02— (s eL)  (SLel),

(35) Ri=(0T5 Y el,) (Sel,  —Le =) (Lo,

(36) Si= (05 Y@L ) (820~ L& (ZT80)) (5@ L) ¥ipn,
(B7) Tr=@O'2 e x

The dimensions of these matrices are given in the following:
R,, S, e prx(n=—rir, Ry,S, € jRp—m)x(n=r)r and T, € R

Proof. Consider the quantities in (3.1). Using the properties of the vec operator
applied to a vector, we obtain

I Orz ezt v
0

2B, 2, = vec (B,y) = (VI @ UT) vec(E).

Taking the expressions for vec(Q”) and vec(P) given in (2.5) and (2.6), we have

- bT ® 2;1
0 ET_IQTbl — |t vec (QT)
B Sl WV @ULL By 4 oI, A1)
= — vec 0 , ,
0 o||VieUT
0 » 0
PX 77 = | vec (P)
Ip*"’ (b’r E’r_l) ® Ip*?‘
0 0NV RULE By ol A1)
= ec o . .
R, Si Vf ® UTT v




Injecting these quantities in (3.1) results in

VIeul
Br=a,+V - uTpyv | R N vec (E)
o R, S, o0 ol |vVTeUT
ViUt
+ o([I[&, f1ID,
from which the results are derived. O

We can now establish the expression of the z, condition number. We know by
definition that

[l - (B, |2

z = ax
et = max o= e
Thus, from (3.2) we conclude that the exact condition number of z, is

27l a6y .2 = M (B)

where

r2 0
AL YTy ()Y = —MMT ;2 ( ’ 0) € RPXP.

It remains to show how A can be expressed with the singular values of A and the
Fourier coefficients given by the elements of UTb.
PROPOSITION 3.3. Assume that the singular values of the matriz A are such that

01220, >0p412>-2>0p>0.

Then
A+ 55 572 =11,
A— « B a2’ L 7
LIy, LA
where
, 0} + =07
A, = ding [ Y- =5+ Z “))20“ Jt9k+ >k 1<tsy
k1kt k=r+1 kp+1t
r 2 2
Ay = diag Z(ﬂf{t)f@@i ; r+1<t<p,
k=1 Tk
I, =R R'+8.8"
(M2 0000 (120 T 000 o (11 %50,001
(52222010, (10222000, 15 oo (n))2 720,60, 5

1 op 2 op T op
(m$)2 226,06, ()2 200, - (7)) 26,6,



with (01, ...,0,) =bTU, andﬂ,(f) = 021027 with eithert =1,...,randk =r+1,...,p
t k
ork=1,....randt=r+1,...,p
(t)

Moreover, the quantity 7, is well defined, since whenever it appears, ol —02 #0
holds.
Proof. First we consider the p X p symmetric matrix

R.RT + 8,87 + T,TT  —R.RT - 5,5T] uet
~R,RT -8,8"  R,RT+5,8T|

ATT FLT
e Al

MMT =

Exploiting their structure, we can write the matrices (3.3)—(3.7) as

(38) Ry = [0,41(22 — o2 L)t 0,(57

(3.9) — oo L) 01 B 005 W)

( ) ST = [67““!'10-7““!'127’_1(23 _U$+1I7’)_ GPUP 1(22 2]’7_)—1’0’”.’0} )
(3.11) Ry = [broy (01l — ST Z) 12T, .. .,erar (021,—, — XT2) 2],

( ) SL = [91(0’%[;,_7" - EIEL)_la“'aGT(O—EIP—T - EJ,Z:EL)_l] \IJ(T,pfr)v

(3.13) T, = [bhoy ' 27,

T

00 S
n (3.8), the first of the two factors,
(314)  [0r1(Z2 =02 L)Y 0p(52 = 02L) 0,1 520,577

is a 1 x (n — r) partitioned matrix. Its blocks consist of r-order diagonal matrices.
Recall that the second factor in (3.8) is

n—r r

(3'15) (n—ryr) — Z Z sz ® sza

=1 j=1
where L;; = eiejT e R with e; € R and e; € R". Observe that L;; ® Lz;-
is an (n — r) X r partitioned matrix where each block has r rows and n — r columns.
Furthermore, it has the block L;TZ- in position 7,7 and 0 in the remaining blocks.
The multiplication of the partitioned matrices (3.14) and (3.15) results in the 1 x r
partitioned matrix

n—r r

R, = Z Z [0r41(82 =02 1 L)1, 0,(22

i=1 j=1
—0oL) " 01 B2 0057 Ly © L

a5

whose block j can be written as

Zam(z o2 1) LT+ Z 015, LY

1=p—r+1

Consequently, multiplying R, and R, block by block yields

(3.16) Ry RT Ze o7 07 — ETE) T I Lij0r (52 — orgily)
i=1
+ Ze o7 (02, — ST 2 ) 2T Z Lij0ryi 572

1=p—r+1



. T n—r . . T n—r T
Since ST 3310y ei =0, 0onehas XT3 L Ly =T

hence the last term in (3.16) vanishes. Thus

LT _
imp— T_Helej =0 and

p—r r

RiRI =" 0,400 (03, — 8T8, ) Sl eie] (82 — 02, 1) 7"

=1 j=1
A direct computation gives

011004 )
e, =1,
;

(52
07”4”0]‘0';1(0']2»[1)77" — EIEJ_)_lzfei _ 0.7(0j ol
0, t=p—r+1,...,n—7

Leap =T,

where e; € R ") in the left-hand side and e; € R?~") on the right-hand side. Then
from

1
T 22 -1 T
I - Y5 o €.
( r+1 ) ( ]2 7_3 i)ejv

where e; € 2" on both sides, we deduce that

p—r T

Or+
RIRI=>"%" g, 0ieel
Lljl(g _Ur+z) 0j
p—r T pu
+
722 £7+)z : Tll Or+i0; e,e € Rp=rxr
i=1 j=1
with Wﬂ)l = ﬁ In the same manner we can compute and show that .S LSTT is

equivalent to R R .
The remaining blocks in M M7T are computed by performing the block matrix-
matrix multiplications. So,

p P
R.RT = 3 03(5% - 24 Z 62 5 diag( S (w203 + Z )
t

k=r+1 k=p+1 k=r+1 k=r+1
S,.ST = Z Oior 2, 2 (87 — o) :diag( Z (W(t))QUkHQ)
k=rt1 k=r+1
P8 g/
.77 = Z g z: = diag Z 0202
i1 Ok k=1 k"t
fort=1,...,r;
. 9% . . (t) 2Ut2 2
RIR :Z EJ_EJ-(UkIp = X182 = diag Z(Wk' ) 20 )
=1 7 k=1 7
5157 =3 003,y — 2T 5,) e ( n) 9’°>
k=1

fort=1,...,p—r.
Putting the above results together yields the result. d



TABLE 1
The ezact value of cond(xy) using the expression in Proposition 3.3 versus the finite difference
estimate value using jacobianest for 12 problems.

Problem  cond(z,) Finite difference estimate n  p r
from 3.3 value of cond(z)
baart 7.156e+3  7.087e+3 20 20 5
blur 2.516e+1  2.516e+1 16 16 6
derive 1.698e4+3  1.698e+3 12 12 10
foxgood 2.896e+1  2.896e+1 20 20 2
heat 4.486e+1  4.478e+1 12 12 10
ilaplace  1.448e+4  1.367e+4 20 20 7
parallax 1.412e+5 1.411e+5 26 12 10
phillips 5.731e+1  5.731le+1 12 12 10
shaw 1.044e+3 1.044e+3 12 12 8
spikes 8.178e+2  8.178e+2 12 12 4
ursell 3.716e4+5  3.716e+5 20 20 3
wing 3.429e+6  3.010e+6 20 20 5

Let us point out the fact that an early result in [3], when r = p, that is, when we
do not perform truncation (i.e., we assume that A is a full rank matrix), is a particular
case of the results above. In fact, in this case, A becomes diagonal and simplifies to
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A, = diag Z
k=1

for t =1,...,p. This implies the result given in [3], that is,
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where AT denotes the Moore-Penrose inverse (see [9, p. 421]) of A, and z denotes the
solution of the linear least squares problem associated with A and b.

Looking at the general result of Proposition 3.3, we see that the quantities
(scalars) involved in the computation of the x, condition number are nothing but
the singular values o, of A and the components 05 of b along singular vectors wuy.
Finally, observe that the critical gap is o, — 0y41.

4. Numerical experiments. We now describe some numerical tests carried
out in MATLAB. Our test cases come from the package Regularization Tools? by
Hansen [7]. We arbitrarily choose values of n, p, and r. By means of a specific
routine in this package, we generate pairs (A, b) associated with some test problems
indicated by their name. To validate the expression of the exact condition number,

h . 1 . . 5 D, . 11 . . . .
TS S LB SRS T AT SOl P erse prahied JapRienss B o cefimets

uses a centered finite differences approach with Romberg extrapolation to improve

4See http://www2.imm.dtu.dk/~pch/Regutools.
5See http://www.mathworks.com/matlabcentral/fileexchang/13490-automatic-numerical-
differentiation.



the estimates to sixth order. For our purpose, we recast z, as f : z = vec([A, b]) = x,
prior to the use of jacobianest.m, and then we approximate the condition number of
z, as the 2-norm of the estimated Jacobian. Note that in all tests we set « = 5 = 1.

Table 1 displays the exact condition number versus an estimate of the condition
number produced with jacobianest.m. The results show how the derived expression
of the exact condition compares well with the finite difference estimate.

5. Conclusion. We solved the problem of the determination of a closed formula
for the condition number of the truncated singular value solution of an ill-posed prob-
lem which relies on a singular value decomposition of the problem. We anticipate that
the presented formula will therefore stimulate research in several directions. Finding
good estimates of the condition number using iterative techniques would, for instance,
be of crucial relevance for large-scale problems. From a theoretical point of view, we
also believe that the condition number may bring new insight into the problem of
the detection of the truncation index of the singular value decomposition. One of the
topics of future research will be to explore this issue for practical problems.
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