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Stochastic Conditionin 
 g of Matrix Functions 

Serge Gratton† and D avid Titley-Peloquin‡

Abstract. We investigate the sensitivity of matrix fun ctions to random noise in their input. We propose the
notion of a stochastic condition number, which determines, to first order, the sensitivity of a matrix
function to random noise. We derive an upper bound on the stochastic condition number that can
be estimated efficiently by using “small-sample” estimation techniques. The bound can be used
to estimate the median, or any other quantile, of the error in a function’s output when its input
is subjected to random noise. We give numerical experiments illustrating the effectiveness of our
stochastic error estimate.

Key words. sensitivity analysis, perturbation analysis, c onditioning, uncertainty propagation, matrix functions
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1. Introduction. How sensitive are matrix functions to perturbations in their input? This
is a fundamental question in numerical linear algebra. By “matrix function” we mean a general
mapping F : Ω → R

p×q, where Ω is an open subset of Rm×n. As for the perturbations, these
might represent uncertainties in the data or rounding errors arising from computations in
finite precision arithmetic. The goal is to quantify the effect that such uncertainties might
have on the computed function value.

Sensitivity analyses in numerical linear algebra are usually deterministic in nature. Worst-
case error bounds are obtained that hold asymptotically in the small-perturbation limit. (For
an excellent overview, we recommend [10, 11].) To the best of our knowledge, few attempts
have been made in the literature to rigorously quantify the sensitivity of matrix functions to
random noise. We believe that it is important to address this issue for the following reasons.

First, although rounding errors are known not to be random, some random models of
rounding have been proposed, and, in fact, some automatic error analysis software does use
random perturbations. (See, for example, the discussion in [10, sections 2.8, 26.5].) Therefore,
it seems worthwhile to attempt to gain at least some insight into the effect of rounding errors on
computed function values by using a stochastic analysis. Furthermore, in many applications,
the uncertainty due to rounding errors is dominated by measurement noise in the data, which
is explicitly modeled as random. In this case, it is a natural idea to take into account the
random nature of the noise in the sensitivity analysis.
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For example, there has been some recent interest in the data assimilation community in
the sensitivity of Krylov method iterates to random noise [22, 16]. In these applications,
the Krylov iteration forms the inner loop of a nested outer-inner iterative scheme, and the
uncertainty must be propagated through the inner loop. Specifically, let x(j)(b+h) denote the
jth iterate of the method of conjugate gradients (CG) applied to solving Ax = b+ h, where
A ∈ R

n×n is deterministic, symmetric, and positive definite, b ∈ R
n is deterministic, and h

is modeled as a normally distributed random vector, h ∼ N (0,Σ). Ideally, one would solve
the linear system exactly. Of course, since the exact solution is a linear function of h, the
distribution of x(b + h) = A−1(b + h) is easily derived. However, in large-scale applications,
one often has no choice but to terminate CG after very few iterations, long before convergence
has occurred. In this setting, statistical information about x(j)(b+ h), for a small fixed j, as
opposed to x(b + h), is required. This is complicated by the fact that, in general, x(j)(b) is
known to be very nonlinear in b. This example motivated us to study the problem in a more
general context.

First, let us review the classical deterministic analysis. Let Ω represent an open subset
of Rm×n, F : Ω → R

p×q be a matrix function defined everywhere on Ω, and A ∈ Ω be given
data. We seek to estimate some measure of the difference F (A + H) − F (A), for instance,
its norm or the magnitude of some of its elements, given some limited information about the
perturbation H. For example, suppose we know that in some norm ‖H‖ is bounded by δ,
and from this information we wish to bound ‖F (A +H) − F (A)‖. In this case the quantity
of interest would be

(1.1) cδ = sup
‖H‖≤δ

‖F (A+H)− F (A)‖.

Unfortunately, it is usually unfeasible to compute cδ. Instead, the normwise absolute condition
number of F at A, defined as

(1.2) κ = lim
δ→0

cδ
δ

= lim
δ→0

sup
‖H‖≤δ

‖F (A+H)− F (A)‖
δ

,

leads to the first-order estimate (FOE)

(1.3) ‖F (A+H)− F (A)‖ . κ ‖H‖.

Rice [19] has shown that if F is Fréchet differentiable at A, then κ is the operator norm of
the Fréchet derivative of F at A. There is a large body of literature dedicated to computing
or bounding normwise and componentwise condition numbers of matrix functions.

Despite its widespread use, sensitivity analysis using condition numbers has some draw-
backs. First, taking the supremum over ‖H‖ ≤ δ as in (1.1) and (1.2) may lead to an
unnecessarily pessimistic estimate of the typical sensitivity of F because of pathological val-
ues of H that are highly unlikely to occur in practice. Furthermore, the FOE (1.3) is only
valid asymptotically for “sufficiently small” ‖H‖. In practice it is usually hard to determine
how small is sufficiently small, and noise present in real data is often not sufficiently small.

This paper addresses the first above-mentioned drawback. Specifically, we model H as
a random matrix and attempt to quantify some of the statistical properties of the random



 
 
 

 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 

 
 

 

 
 

 
 
 
 
 
 
 
 
 

 
 
 

 
 

 

 
 
 
 
 
 
 

variable ‖F (A+H)−F (A)‖F , where ‖·‖F denotes the matrix Frobenius norm. One idea that
has appeared in the literature [21, 6, 20] is estimating to first order the root-mean-squared
(RMS) error

√

E
{

‖F (A+H)− F (A)‖2F
}

.

(Throughout, E{x} denotes the expected value of x and V{x} = E
{

(x− E{x})(x− E{x})T
}

.)
Unfortunately, the above RMS error is infinite for many common matrix functions and com-
mon distributions. We argue that much more insight into the sensitivity of F can be obtained
by considering the quantiles of the random variable ‖F (A+H)−F (A)‖F rather than its RMS
value. In particular, a useful measure of central tendency is the 0.5-quantile, i.e., the median.

As a first step, in analogy with (1.2), we only consider small perturbation asymptotics. We
define a stochastic condition number κ̃Σ in terms of the median, as follows. Let the elements of
H be random variables following some distribution such that E{H} = 0 and V{vec(H)} = σ2Σ
for a given positive semidefinite matrix Σ ∈ R

mn×mn. Then

κ̃Σ ≡ lim sup
σ→0

Med
{

‖F (A +H)− F (A)‖F
}

σ
.

We shall obtain an upper bound on the stochastic condition number that holds regardless of
the distribution of the elements of H. With minor modifications the bound applies to other
quantiles as well. The results are obtained by bounding the probability

Prob
{

‖F (A+H)− F (A)‖F ≥ τ
}

for any given τ > 0, to first order in σ. Our hope is that this investigation will be the first
step toward obtaining global bounds that hold for arbitrary σ > 0, at least for some classes
of matrix functions. We shall make further comments about this point in the conclusion.

Our upper bound on the stochastic condition number can be estimated efficiently, for
example, by using the small-sample estimates of Kenney et. al. [14, 9]. The resulting error
estimate is much more representative of the sensitivity of F to random perturbations than an
FOE based on the deterministic condition number.

The rest of the paper is organized as follows. In section 2 we review some basic notions
that are useful in later derivations. In section 3 we present some measures of sensitivity
to random noise and show how these compare to the deterministic condition number (1.2)
and FOE (1.3). Section 4 covers the efficient computation of our stochastic error estimate.
Numerical experiments illustrating the theory are given in section 5, and we conclude with a
short discussion in section 6.

2. Preliminaries. First we establish our notation and review some basic notions that are
used in later sections.

Notation. We use uppercase letters to denote matrices and lowercase Roman letters for
vectors and indices. Subscripts are used to denote elements of a vector or matrix, while
superscripts denote terms in a sequence. For example, Aij is the (i, j)th element of the matrix
A, and hj is the jth element of the vector h, while u(i) ∈ R

n is the ith term in a sequence of
vectors. Otherwise, scalars are designated by lowercase Greek letters.



 
 
 

 

 
 

 
 

 

 
 
 
 

 
 

 

 
 

 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Fréchet derivative. Throughout we assume that F : Ω ⊆ R
m×n → R

p×q is Fréchet differ-
entiable at A ∈ Ω. The Fréchet derivative of F at A is the unique bounded linear operator
F ′(A) defined by the relation

(2.1) F (A+H) = F (A) + F ′(A)(H) +R(H), lim
H→0

‖R(H)‖
‖H‖ = 0.

The matrix representation of F ′(A) in the standard basis is the Jacobian matrix JA ∈ R
pq×mn.

In other words,

(2.2) vec(F ′(A)(H)) = JAvec(H).

Multi-index notation. A multi-index is simply a vector of natural numbers,

v = [v1, v2, . . . , vn]
T ∈ N

n
0 ,

where N0 = {0, 1, 2, . . . }. The magnitude and factorial of an n-dimensional multi-index are
defined as

|v| = v1 + · · · + vn, v! = v1! · · · vn!,
while, for v ∈ N

n
0 and h = [h1, . . . , hn]

T ∈ R
n,

hv = hv11 hv22 · · · hvnn .

Higher-order partial derivatives can be written compactly as

∂v
x =

∂v1

∂xv11
· · · ∂vn

∂xvnn
.

In this notation, the Taylor series of an analytic function g : Rn → R can be expressed as

(2.3) g(x+ h) =
∑

v∈Nn

0

∂v
xg(x)

v!
hv = g(x) +∇g(x)Th+

∑

v∈Nn

0

|v|≥2

∂v
xg(x)

v!
hv.

Probability notation. We work with the standard probability space consisting of the sample
space R, its σ-algebra of Borel sets, and Lebesgue measure, with straightforward extension
to random vectors and matrices. We use Prob{X} to denote the probability of an event X.
E{x} and V{x} stand for the expected value and covariance matrix of a random vector x. As
shorthand for E{x} = u and V{x} = Σ we write x ∼ (u,Σ), and if additionally x follows a
multivariate normal distribution, x ∼ N (u,Σ). A median of a random variable α is any scalar
τ satisfying both

(2.4) Prob{α ≤ τ} ≥ 1

2
and Prob{α ≥ τ} ≥ 1

2
.

If α is a continuous random variable, then Prob{α = τ} = 0. In this case, (2.4) is equivalent
to

Prob{α ≤ τ} = Prob{α ≥ τ} =
1

2
.



 
 
 

 

 
 

 
 
 

 

 

 
 

 
 

 
 
 
 

 

 
 
 
 

 
 

 
 

 

 
 
 
 
 
 
 
 
 
 

If additionally α has a strictly positive probability density function, then its median is unique.
In any case, when we write the median of α, or Med{α}, we are referring to

Med{α} = sup
{

τ : (2.4) holds
}

.

More generally, for q ∈ (0, 1), the qth quantile of α is any scalar τ satisfying

(2.5) Prob{α ≤ τ} ≥ q, Prob{α ≥ τ} ≥ 1− q.

When we write the qth quantile of α, we mean

Qq{α} = sup
{

τ : (2.5) holds
}

.

(The median is the 0.5-quantile.) In contrast to the expected value, the quantiles of a random
variable are always finite.

Basic probability inequalities. If α and β are random variables such that α ≤ β, then for
any τ ∈ R,

(2.6) Prob{α ≥ τ} ≤ Prob{β ≥ τ} , Prob{β ≤ τ} ≤ Prob{α ≤ τ} .

For random variables α and β, for any τ, ǫ ∈ R,

(2.7) Prob{α+ β ≥ τ} ≤ Prob{α ≥ τ(1− ǫ)}+ Prob{β ≥ τǫ} .

Markov’s inequality. Given a nonnegative random variable α, then for any τ > 0,

(2.8) Prob{α ≥ τ} ≤ E{α}
τ

.

Quadratic forms. If M ∈ R
m×n and x ∼ (0,Σ),

(2.9) E{‖Mx‖2} ≤
√

E
{

‖Mx‖22
}

= ‖MΣ1/2‖F .

If H ∈ R
m×n and vec(H) ∼ (0,Σ),

(2.10) E{‖H‖F } ≤
√

E
{

‖H‖2F
}

= ‖Σ1/2‖F .

3. Notions of stochastic conditioning.

3.1. “Expected conditioning,” revisited. As mentioned in the introduction, there is not
a large body of literature dealing with the sensitivity of matrix functions to random noise.
We could trace the idea back to Turing [21], who considers the function F (A) = A−1b for
nonsingular A ∈ R

n×n and b ∈ R
n. It is straightforward to verify that

(A+H)−1b−A−1b = −A−1HA−1b+ o(‖H‖).

Turing ignores the o(‖H‖) term and gives an expression for the RMS value of ‖A−1HA−1b‖2.
Fletcher considers the same problem in [6]. (See also [10, page 136].) In Fletcher’s approach,



 

 
 

 
 
 
 

 
 
 
 
 

 
 

 
 
 
 
 

 
 
 
 
 
 

 
 

 

 
 

 
 
 

 
 
 

 
 

 
 
 
 

the elements Hij of H are independent random variables with mean 0 and variance σ2A2
ij .

Under these assumptions,

√

E
{

‖A−1HA−1b‖22
}

= σ
∥

∥[A−1][A][A−1b]
∥

∥

1/2

1
,

where [A] denotes the matrix whose entries are A2
ij . Fletcher calls the above the expected

condition number of F (A) = A−1b. He also generalizes the above to other matrix functions.
Once again, the idea is to take a first-order expansion,

F (A+H)− F (A) = F ′(A)(H) + o(‖H‖),

ignore the o(‖H‖) term, and find an expression for

(3.1)
√

E
{

‖F ′(A)(H)‖2F
}

.

Stewart [20] independently derives a similar result. In Stewart’s case, the random perturbation
has the form H = ScGST

r , where G is a random matrix whose elements are uncorrelated with
mean 0 and variance 1, and Sc and Sr are deterministic scalings.

The quantity in (3.1) is easy to analyze because it involves a quadratic form in the elements
of H. Suppose that

vec(H) ∼ (0, σ2Σ),

where σ ∈ R and Σ ∈ R
mn×mn is symmetric nonnegative definite. Then from (2.2) and (2.9),

E
{

‖F ′(A)(H)‖2F
}

= E
{

‖vec(F ′(A)(H))‖22
}

= E
{

‖JAvec(H)‖22
}

= σ2‖JAΣ1/2‖2F .

Thus, assuming that one can indeed ignore the o(‖H‖) term in the expansion (2.1), one obtains

√

E
{

‖F (A+H)− F (A)‖2F
}

≈
√

E
{

‖F ′(A)(H)‖2F
}

= σ‖JAΣ1/2‖F .(3.2)

This reduces to the previously mentioned results of Fletcher and Stewart when the covariance
matrix Σ is chosen according to their respective approaches.

One might question whether there is a rigorous theoretical justification for dropping the
o(‖H‖) term in the above. For instance, because it was obtained from a first-order expansion
in H, we might conclude that (3.2) is tight for perturbations with sufficiently small covariance
matrix, i.e., for sufficiently small σ. In fact, as noted by Stewart [20], this is not the case,
and (3.2) is often meaningless. For example, with F (A) = A−1b and vec(H) ∼ N (0, σ2Imn),
the left-hand side of (3.2) is infinite for any σ > 0, while the right-hand side tends to 0 as
σ → 0. Stewart [20, Theorem 2.8] gives some arguments as to why the lower-order terms can
be ignored. Nevertheless, it is not immediately clear under which conditions the approxima-
tion (3.2) does indeed make sense.

In order to guarantee that (3.2) is tight, at least in the small σ limit, we found it necessary
to make the following assumptions on F and the nature of the random noise H. (We abuse
notation and interchangeably use F (A) and F (a), where a = vec(A).)



 
 
 
 
 

 

 
 

 

 
 

 
 
 

 

 
 
 
 
 

 
 
 

 
 

 
 

 
 
 
 

(3.3)

• F : Rm×n → R
p×q is entire, i.e., each component Fij(a) of F has a Taylor

series (2.3) that is absolutely convergent for all a ∈ R
mn.

• vec(H) ∼ (0, σ2Σ), and the elements Hij of H have their kth moment
bounded by cσk for some constant c > 0.

In Theorem 3.2 we show that, under the above assumptions, (3.2) is indeed valid to first
order in σ. Specifically,

lim
σ→0

√

E
{

‖F (A +H)− F (A)‖2F
}

σ
= ‖JAΣ1/2‖F .

Thus, if the assumptions (3.3) hold, (3.2) is indeed a valid FOE of the RMS error:

(3.4)
√

E
{

‖F (A+H)− F (A)‖2F
}

≈ σ‖JAΣ1/2‖F .

This is a stochastic analogue of the deterministic FOE in (1.3).

In the derivation of this result we will need the following lemma, whose proof is given in
the appendix.

Lemma 3.1. Let ξ(x) represent a power series in multi-index notation which is absolutely

convergent for all x ∈ R
n:

ξ(x) =
∑

v∈Nn

0

|v|≥2

αvx
v ∈ R, αv ∈ R, x ∈ R

n.

If h is a random vector whose elements hi have their kth moment bounded by cσk, then for

any u ∈ R
n,

lim
σ→0

∣

∣E
{

(uTh)ξ(h)
}∣

∣

σ2
= 0 and lim

σ→0

E
{

ξ(h)2
}

σ2
= 0.

Theorem 3.2. Suppose that F : Rm×n → R
p×q is entire, and let JA denote the Jacobian

(2.2) at A ∈ R
m×n. Additionally, let the elements of H be random variables whose kth

moments are bounded by cσk, and

h = vec(H) ∼ (0, σ2Σ).

Then

(3.5) lim
σ→0

√

E
{

‖F (A +H)− F (A)‖2F
}

σ
= ‖JAΣ1/2‖F .

Proof. Denote a = vec(A) ∈ R
mn. For each element Fij(a) of F , define

ξij(h) =
∑

v∈Nmn

0

|v|≥2

∂v
aFij(a)

v!
hv ∈ R.



 
 
 
 

 
 
 
 
 
 
 

 

 

 
 

 

 
 
 

 
 
 
 
 

 
 
 
 

 
 
 

 
 

 
 
 
 
 
 

Then, from (2.3),
(

Fij(a+ h)− Fij(a)
)2

=
(

∇Fij(a)
Th+ ξij(h)

)2

= (∇Fij(a)
Th)2 + 2(∇Fij(a)

Th)ξij(h) + ξij(h)
2.

In the above,

E
{

(∇Fij(a)
Th)2

}

= V
{

∇Fij(a)
Th

}

= σ2∇Fij(a)
TΣ∇Fij(a) = σ2‖Σ1/2∇Fij(a)‖22,

while, after dividing by σ2 and taking the limit as σ → 0, from Lemma 3.1, the other two
terms tend to 0. Therefore, the limit in (3.5) is

lim
σ→0

√

∑p
i=1

∑q
j=1 E

{

(

Fij(a+ h)− Fij(a)
)2
}

σ

= lim
σ→0

√

∑p
i=1

∑q
j=1 σ

2‖Σ1/2∇Fij(a)‖22
σ

=

∥

∥

∥

∥

∥

∥

∥







∇F11(a)
T

...
∇Fpq(a)

T






Σ1/2

∥

∥

∥

∥

∥

∥

∥

F

= ‖JAΣ1/2‖F .

Theorem 3.2 is applicable to many matrix functions, such as matrix polynomials and the
matrix exponential. However, in order to generalize the result so that it is applicable to more
general classes of functions and random perturbations, a different framework is required. This
is the topic of the following section.

3.2. A more general stochastic condition number. In this section we provide a gener-
alization of Theorem 3.2. Our motivation is the following. First, recall that Theorem 3.2 was
derived under the two assumptions (3.3), one of which being that F is entire. This assumption
is rather restrictive: many interesting functions in numerical linear algebra are Fréchet differ-
entiable but not entire. Furthermore, even if the assumptions (3.3) required by Theorem 3.2
do hold, more insight about the sensitivity of F can be gained from not only the RMS value
of ‖F (A+H)− F (A)‖F but also its quantiles. For example, we might require that the error
remain below a certain threshold with probability 95%, in which case we would work with the
0.95-quantile.

Suppose that F : Ω ⊆ R
m×n → R

p×q is Fréchet differentiable at A ∈ Ω and that

vec(H) ∼ (0, σ2Σ),

without any other assumption on the distribution or the moments of the elements of H. In this
more general setting, it is no longer possible to obtain a meaningful first-order RMS estimate
as in Theorem 3.2. Consider the following quantity:

(3.6) κ̃Σ ≡ lim sup
σ→0

Med
{

‖F (A +H)− F (A)‖F
}

σ
.

This is analogous to the limit in (3.5), but with the RMS replaced by the median. In analogy
to (1.2), we call κ̃Σ the Frobenius-norm stochastic condition number of F at A with respect
to (0,Σ) perturbations, or simply the stochastic condition number of F . We show below that

κ̃Σ ≤ 2‖JAΣ1/2‖F .



 
 
 
 
 
 

 
 
 

 
 

 
 

 
 
 

 
 

 
 

 

 

 
 
 
 

 
 

 
 

 
 

 

 
 
 

With minor modifications the result is applicable not only to the median but to other quantiles
as well; see Remark 3.2 below. The inequality is a consequence of the following theorem.

Theorem 3.3. Suppose that F : Ω ⊆ R
m×n → R

p×q is Fréchet differentiable at A ∈ Ω, and
let JA denote the Jacobian (2.2) at A. If vec(H) ∼ (0, σ2Σ), then for any τ > 0,

lim sup
σ→0

Prob

{‖F (A +H)− F (A)‖F
σ

≥ τ

}

≤ ‖JAΣ1/2‖F
τ

.

Proof. Denote

Pτσ = Prob

{‖F (A+H)− F (A)‖F
σ

≥ τ

}

.

From (2.1) along with (2.6) and (2.7), for any ǫ ∈ (0, 1) we can decompose Pτσ as follows:

Pτσ = Prob

{‖F ′(A)(H) +R(H)‖F
σ

≥ τ

}

≤ Prob

{‖F ′(A)(H)‖F
σ

≥ τ(1− ǫ)

}

+ Prob

{‖R(H)‖F
σ

≥ τǫ

}

.

(3.7)

Under the assumption that vec(H) ∼ (0, σ2Σ), from (2.2), (2.8), and (2.9) we obtain

Prob

{‖F ′(A)(H)‖F
σ

≥ τ(1− ǫ)

}

≤ E{‖F ′(A)(H)‖F }
στ(1 − ǫ)

=
E{‖JAvec(H)‖2}

στ(1− ǫ)
≤ ‖JAΣ1/2‖F

τ(1− ǫ)
.

(3.8)

Next we need to show that for any τ > 0 and any ǫ ∈ (0, 1), the residual term in (3.7) is
bounded above by ǫ if σ is sufficiently small. Actually, this was shown by Stewart in [20,
Theorem 2.8]. For completeness, we include a short proof here. For any β > 0,

Rτσǫ = Prob

{‖R(H)‖F
σ

≥ τǫ

}

= Prob

{‖R(H)‖F
σ

≥ τǫ ∩ ‖H‖F < β

}

+ Prob

{‖R(H)‖F
σ

≥ τǫ ∩ ‖H‖F ≥ β

}

≤ Prob

{‖R(H)‖F
σ

≥ τǫ ∩ ‖H‖F < β

}

+Prob{‖H‖F ≥ β} .

From (2.1), for any α > 0, there exists β such that

(3.9)
‖R(H)‖F
‖H‖F

≤ α when ‖H‖F ≤ β.



 

 
 

 
 

 

 
 
 

 
 
 
 
 

 

 
 

 
 
 
 
 
 
 

 
 
 
 

 

 
 
 

 
 

Therefore, for any α > 0, there is a corresponding β such that

Rτσǫ ≤ Prob

{

α‖H‖F
σ

≥ τǫ ∩ ‖H‖F < β

}

+ Prob{‖H‖F ≥ β}

≤ Prob

{

α‖H‖F
σ

≥ τǫ

}

+Prob{‖H‖F ≥ β}

≤ αE{‖H‖F }
στǫ

+
E{‖H‖F }

β

≤ α‖Σ1/2‖F
τǫ

+
σ‖Σ1/2‖F

β
.

(The last two inequalities follow from (2.8) and (2.10).) Set α = τǫ2/(2‖Σ1/2‖F ) and obtain
the corresponding β such that (3.9) holds. Note that β depends on α but is independent of
σ. Then, for all σ ≤ σ∗(ǫ) = ǫβ/(2‖Σ1/2‖F ),

Rτσǫ ≤
ǫ

2
+

ǫ

2
= ǫ.

Substituting the above and (3.8) into (3.7) we see that for any τ > 0 and any ǫ ∈ (0, 1),

(3.10) Pτσ ≤ ‖JAΣ1/2‖F
τ(1− ǫ)

+ ǫ = γ(ǫ) when σ ≤ σ∗(ǫ).

It follows that

lim sup
σ→0

Pτσ ≤ γ(0) =
‖JAΣ1/2‖F

τ
.

We can use Theorem 3.3 to bound the condition number κ̃Σ as follows. Setting τ to be
the median in (3.10), so that Pτσ ≥ 1/2, we obtain

(3.11)
1

2
≤ ‖JAΣ1/2‖F

Med
{

‖F (A+H)−F (A)‖F
σ

}

(1− ǫ)
+ ǫ.

Rearranging the above shows that for any ǫ ∈ (0, 1/2), when σ is sufficiently small,

Med

{‖F (A+H)− F (A)‖F
σ

}

≤ 2‖JAΣ1/2‖F
(1− 2ǫ)(1 − ǫ)

.

Therefore, as in the proof of Theorem 3.3, we have

(3.12) κ̃Σ = lim sup
σ→0

Med{‖F (A+H)− F (A)‖F }
σ

≤ 2‖JAΣ1/2‖F .

This leads to the the FOE

(3.13) Med
{

‖F (A+H)− F (A)‖F
}

. 2σ‖JAΣ1/2‖F .



 

 

 
 
 
 
 

 
 

 
 
 

 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 

 
 
 

We conclude this section with two additional generalizations of the stochastic condition
number, given in the following remarks.

Remark 3.1. It might also be of interest to measure the sensitivity of a linear function of

F , namely,
∥

∥W T
1

(

F (A+H)− F (A)
)

W2

∥

∥

F
,

for given W1 ∈ R
p×r1 and W2 ∈ R

q×r2. For instance, we might be interested in the error in

just one element of F , in which case W1 and W2 would be standard basis vectors. It can be

verified that the results of Theorem 3.3 carry through in this case:

lim sup
σ→0

Med
{∥

∥W T
1

(

F (A+H)− F (A)
)

W2

∥

∥

F

}

σ
≤ 2‖(W T

2 ⊗W T
1 )JAΣ

1/2‖F ,

where W T
2 ⊗W T

1 ∈ R
r1r2×pq denotes the Kronecker product.

Remark 3.2. We have chosen to define κ̃Σ in terms of the median for two reasons. The

first is so that it may be easily comparable with the RMS approach described in section 3.1.
The second is that we think it is legitimate to be interested in a measure of “central tendency”

or “typical error.” Besides the median, we could bound in the same way any other quantile of

the random variable ‖F (A +H) − F (A)‖F . Replacing 1/2 in the left-hand side of (3.11) by

an arbitrary 1− q ∈ (0, 1), from (2.5) we obtain

lim sup
σ→0

Qq{‖F (A+H)− F (A)‖F }
σ

≤ 1

1− q
‖JAΣ1/2‖F .

For example, we might require that the error remain below a certain threshold with probability

95%, in which case we would set q = 0.95. The resulting error estimate is only a factor 10
larger than κ̃Σ.

3.3. Sharpness of the bounds. Compare the bound on the stochastic condition num-
ber (3.12) and the resulting FOE (3.13) with their RMS counterparts (3.5) and (3.4). Recall
that (3.12) and (3.13) apply much more generally: the only required assumptions are that
F be Fréchet differentiable at A and that vec(H) ∼ (0, σ2Σ), without any restriction on the
distribution of the elements of H. Furthermore, (3.12) and (3.13) can easily be modified to
apply to any other quantile—not just the median.

Being more generally applicable, (3.12) and (3.13) are less sharp than (3.5) and (3.4). The
additional factor 2 in (3.12) and (3.13) is not significant. Typically one is not interested in
the precise value of the error but only in its order of magnitude. Furthermore, our numerical
tests indicate that the factor 2 can typically be ignored.

On the other hand, in (3.5) there is equality, whereas (3.12) is merely an upper bound. It
would be useful to obtain a nontrivial lower bound for κ̃Σ. In fact, this is impossible to achieve
without additional assumptions on the distribution of the elements of H. The following simple
example shows that κ̃Σ can be arbitrarily smaller than ‖JAΣ1/2‖F .

Let H be a random scalar such that

H =

{

±ǫ, each with probability 1/3,

±
√
3, each with probability 1/6,



 
 
 

 
 

 
 

 
 
 
 
 
 
 

 

 
 
 
 
 

 
 

 
 
 
 

 
 
 

 
 

 
 
 
 
 
 
 
 

for ǫ > 0. As required in Theorem 3.3, H has mean 0 and finite variance Σ = 1 + 2ǫ2/3.
Consider the scalar linear function F (A) = A. Then, for all A ∈ R, the stochastic condition
number κ̃Σ in (3.6) simplifies to

κ̃Σ = Med{|H|} = ǫ,

while the upper bound in (3.12) is

2‖JAΣ1/2‖F = 2
√
Σ ≥ 2.

Therefore,
κ̃Σ

‖JAΣ1/2‖F
→ 0

as ǫ → 0, showing that no nontrivial lower bound in (3.12) is possible in general. The above
example can easily be extended to the case in which the distribution of H is continuous.

The limiting behavior of Pτσ in Theorem 3.3 is given by

Prob

{‖F ′(A)(H)‖F
σ

≥ τ

}

= Prob

{‖JAvec(H)‖22
σ2

≥ τ2
}

.

Even if one makes very strong assumptions on the nature of H, it seems difficult to derive a
useful relationship between ‖JAvec(H)‖22/σ2 and its expected value ‖JAΣ1/2‖2F . For example,
if vec(H) ∼ N (0, σ2Σ), then it is straightforward to verify that ‖JAvec(H)‖2F is a linear
combination of independent χ2 random variables with one degree of freedom:

‖JAvec(H)‖22
σ2

=

r
∑

i=1

σ2
i χ

2
i ,

where r and σi are, respectively, the rank and nonzero singular values of JAΣ
1/2. Tail bounds

for linear combination of independent χ2 random variables do exist (e.g., [15, Lemma 1] or [4,
Theorem 5.2]). For example, in our notation, [15, Lemma 1] shows that for any τ > 0,

Prob







‖JAvec(H)‖22
‖JAΣ1/2‖2F

≤ 1− 2

√

τ
∑r

i=1 σ
4
i

∑r
i=1 σ

2
i







≤ exp(−τ).

Therefore, if
√

√

√

√

r
∑

i=1

σ4
i ≪

r
∑

i=1

σ2
i ,

then ‖JAvec(H)‖2 is very unlikely to be much smaller than ‖JAΣ1/2‖F , so (3.12) and (3.13)
are likely to be sharp. Unfortunately, such bounds depend on the coefficients in the linear
combination (here the unknown singular values σi of JAΣ

1/2) and/or are generally quite
pessimistic. The matter is even more complicated if vec(H) is not normally distributed.

To summarize, it is possible to create distributions such that our bound (3.12) and
FOE (3.13) are arbitrarily larger than the actual stochastic condition number. Furthermore,



 
 
 
 

 
 
 

 
 
 

 

 
 

 

 
 

 
 
 
 
 
 
 

 
 
 

 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

even in simple specific cases, it appears to be quite difficult to fully quantify the sharpness
of (3.12) and (3.13). Nevertheless, our numerical experiments indicate that these give reason-
able order-of-magnitude estimates of error quantiles, and we believe that they are suitable for
practical use.

3.4. Comparison with a deterministic error estimate. Using (2.1) and (2.2), we can
write the Frobenius-norm deterministic condition number (1.2) as follows:

(3.14) κ = lim
δ→0

sup
‖H‖F≤δ

‖F (A+H)− F (A)‖F
δ

= sup
‖H‖F≤1

‖F ′(A)(H)‖F = ‖JA‖2.

Therefore, in the Frobenius norm, the deterministic FOE (1.3) is

(3.15) ‖F (A+H)− F (A)‖F . ‖JA‖2‖H‖F .

In general, it is difficult to compare the above to the stochastic FOE from (3.13):

Med{‖F (A+H)− F (A)‖F } . 2σ‖JAΣ1/2‖F .

In fact, (3.14) and (3.15) are not particularly suitable for measuring the sensitivity of F
to random noise since they are based on the condition ‖H‖F ≤ δ. In general, from the
distribution of the elements of H, not much is known about the distribution of ‖H‖F .

Nevertheless, some insight can be gained from some specific cases. For example, suppose
that vec(H) ∼ N (0, σ2Imn). In this case, it is highly unlikely that ‖H‖F lies far from its RMS
value, and (3.15) leads to

‖F (A+H)− F (A)‖F . σ
√
mn‖JA‖2 ≡ δdet.

Compare the above to the stochastic FOE (3.13) of the median with Σ = Imn:

Med{‖F (A+H)− F (A)‖F } . 2σ‖JA‖F ≡ δmed.

Because JA ∈ R
pq×mn, ‖JA‖F ≤ ‖JA‖2 min{√mn,

√
pq}, and it follows that

(3.16)
δmed

δdet
=

2‖JA‖F√
mn‖JA‖2

≤ 2min{√mn,
√
pq}√

mn
.

In particular, if

• ‖JA‖F ≪ ‖JA‖2 min{√mn,
√
pq}, i.e., the Jacobian matrix has a few singular values

that are very large relative to its remaining singular values; and/or
• pq ≪ mn, i.e., the domain of F is in a much larger space than its range,

then δmed/δdet ≪ 1, and there can be a very large difference between the worst-case sensitivity
and the typical sensitivity of F to random noise, at least asymptotically in the small σ limit.
Numerical examples comparing stochastic and deterministic FOEs are given in section 5.



 
 
 

 
 
 

 

 
 
 
 
 
 

 

 
 
 
 
 

 
 

 
 

 
 
 
 

 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

4. Estimating the stochastic condition number. Recall that the deterministic Frobenius-
norm condition number κ in (3.14) involves the operator norm of F ′(A) or, equivalently, the
spectral norm of the Jacobian matrix:

κ = sup
‖H‖F≤1

‖F ′(A)(H)‖F = ‖JA‖2.

The above can be computed using the power method; see, e.g., [11, Algorithm 3.20]. This
requires the evaluation of the Fréchet derivative F ′(A)(H) and its adjoint at a few different val-
ues of H or, equivalently, the computation of a few matrix-vector products with the Jacobian
matrix and with its transpose. These can be computed by standard automatic differentiation
techniques. (See, for example, [18, section 7.2] or [8] for an introduction to automatic dif-
ferentiation.) A number of specialized algorithms have also recently been developed for this
purpose; see, e.g., [12, section 7], [2], and [1, 3, 13] for methods specific to some important
matrix functions.

On the other hand, the upper bound 2‖JAΣ1/2‖F on the stochastic condition number
in (3.12) involves the matrix Frobenius norm of the scaled Jacobian matrix JAΣ

1/2 ∈ R
pq×mn.

Several randomized estimators can be used for this purpose. For a recent survey, we recom-
mend [4]. An attractive feature of these methods is that they are adjoint-free: only matrix-
vector products with JA (and not its transpose) are required.

In our numerical experiments we use the “small-sample” estimator of Gudmundsson, Ken-
ney, and Laub [9, 14], defined as

(4.1) ηk(JAΣ
1/2) =

√

mn

k
‖JAΣ1/2Q‖F =

√

√

√

√

mn

k

k
∑

i=1

‖JAΣ1/2q(i)‖22,

where Q = [q(1), . . . , q(k)] ∈ R
mn×k is the “thin” Q factor in the QR decomposition of an

mn × k matrix whose elements are mutually independent standard normal variables. Small
values of k are required to obtain good order of magnitude estimates with a high probability.
In our tests we use k = 5.

From (4.1) we see that computing ηk(JAΣ
1/2) reduces to computing k matrix-vector prod-

ucts with JAΣ
1/2. This entails the computation of u(i) = Σ1/2q(i), which can be very expensive

if an appropriate factorization of Σ is not known a priori. Nevertheless, this step can some-
times be performed easily, for example, if Σ is diagonal as in Fletcher’s approach discussed in
section 3.1. For large-scale problems involving noise following a multivariate normal distribu-
tion with general covariance matrices Σ, an iterative strategy for computing u(i) is proposed
in [5]. Finally, several methods can be used to compute the matrix-vector products JAu

(i), as
mentioned above in our discussion of the power method.

5. Numerical experiments. To illustrate the theory we give numerical examples involv-
ing the solution of linear equations, least squares problems, and a Krylov subspace iterative
method. Our tests are meant to compare the effectiveness of the FOEs of the error ob-
tained from the deterministic condition number and the stochastic condition number when



 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

vec(H) ∼ (0, σ2Σ) for a wide range of values of σ.

Deterministic FOE
(see (3.15))

:
‖F (A +H)− F (A)‖F

‖F (A)‖F
.

‖JA‖2‖H‖F
‖F (A)‖F

.(5.1)

Stochastic FOE
(see (3.13))

:
‖F (A +H)− F (A)‖F

‖F (A)‖F
.

σ‖JAΣ1/2‖F
‖F (A)‖F

.(5.2)

Note that, H being random, the deterministic FOE is random, while the stochastic FOE is a
deterministic quantity.

5.1. Solution of linear systems of equations. First, we provide examples using the prob-
lem discussed in section 3.1 that originally motivated the investigations of Turing, Fletcher,
and Stewart: F (A) = A−1b for nonsingular A ∈ R

n×n and b ∈ R
n.

In the following examples, n = 500 and A is created from its SVD, A = USV T , where
U ∈ R

n×n and V ∈ R
n×n are the Q factors in the QR factorization of random matrices and

S ∈ R
n×n is diagonal with the n singular values of A, logarithmically equally spaced between

10−ℓ and 1, on its main diagonal. To highlight the effect of the smallest singular value of
A, we give results with ℓ = 2 and ℓ = 8. The vector b is formed as follows: b = Ax, where

x =
[

cos(1), . . . , cos(n)
]T

.

We perturb the input A with random noise H satisfying h = vec(H) ∼ (0, σ2Σ) for various
values of σ. In the first test, the elements Hij are independent normal variables with mean 0
and variance σ2; in other words, h ∼ N (0, σ2Σ) with Σ = In2 . In the second test, the elements
Hij are mutually independent and equal to ±σAij each with probability 1/2; in other words,
h follows a scaled Bernoulli distribution with Σ = diag(vec([A])). This last covariance matrix
comes from Fletcher’s approach discussed in section 3.1.

For each value of σ we compute 1000 samples of H and of the resulting normwise relative
error ‖F (A + H) − F (A)‖F /‖F (A)‖F . We plot the sample median, as well as error bars
representing the 5th and 95th sample percentiles, versus σ. Similarly, for the same 1000
random samples of H, we also show the sample median, as well as the 5th and 95th sample
percentiles of the deterministic FOE (5.1), versus σ. We also plot the stochastic FOE (5.2),
which is linear in σ.

In this simple example, expressions for the Fréchet derivative F ′(A)(H) = −A−1Hx and
the Jacobian matrix JA = −xT ⊗ A−1 are known. The spectral norm of the Jacobian is
‖JA‖2 = ‖x‖2‖A−1‖2, which is known from the construction of A and b. As for the scaled
norm ‖JAΣ1/2‖F , for each given covariance matrix Σ, we use the estimate ηk(JAΣ

1/2) with
k = 5 samples.

Results are plotted in Figure 1. In all cases, for sufficiently small σ, the stochastic FOE is
an excellent estimate of the median relative error. Here “sufficiently small” is roughly σ ≈
σmin(A), the smallest singular value of A. We have not found a rigorous explanation for this.
The deterministic FOE is roughly two orders of magnitude larger than the stochastic FOE.
As discussed in section 3.4, the difference between the two may increase with increasing n.
In these examples, the deterministic FOE, which involves the random variable ‖H‖F , is very
concentrated about its mean: the 5th and 95th sample percentiles essentially overlap on the
loglog plot. (This is due to the central limit theorem, ‖H‖2F being a sum of random variables.)
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Figure 1. Relative error, and deterministic and stochastic FOEs plotted versus σ. The function is F (A) =
A−1b, and the input A is perturbed by H satisfying vec(H) ∼ (0, σ2Σ). The dotted vertical lines represent
σmin(A), the smallest singular value of A. Top: σmin(A) = 10−2. Bottom: σmin(A) = 10−8. Left: Normal
distribution, Σ = In2 . Right: Scaled Bernoulli distribution, Σ = diag(vec([A])).

For small σ the distribution of the relative error is also very concentrated; see the comments
in section 3.3. For larger values of σ, the relative error seems to level off and concentrate at
1. Explaining the large σ asymptotics, as well as obtaining nonasymptotic error estimates, is
the subject of ongoing research.

5.2. Linear least squares problems. Our next example involves a linear least squares
problem,

F (b) = argmin
x

‖b−Ax‖2 = A†b,

where A ∈ R
m×n has full column rank and A† = (ATA)−1AT denotes the Moore–Penrose

generalized inverse.

We perturb the input b with random noise h ∼ N (0, σ2Σ). However, instead of fixing
the problem dimensions and varying σ, in this example we fix σ = 10−4 and vary m and n.
Specifically, we test

• n = 101, . . . , 105 and m = 100n as well as
• n = 10 and m = 101, . . . , 107.



 
 
 
 
 
 
 
 

 
 

 

 
 
 

 
 
 

 
 

Although it may seem artificial to create matrices with such a large aspect ratio, we purpose-
fully do so to highlight the fact that when the domain of F is in a much larger space than
its range, i.e., when m ≫ n in this case, then there can be a very big difference between the
deterministic and stochastic FOEs. (See the discussion in section 3.4.)

Once again, A is formed from its SVD: A = USV T . In each case S is diagonal with entries
logarithmically equally spaced between 10−4 and 1, while U and V are Householder matrices:

u =







cos(1)
...

cos(m)






, v =







sin(1)
...

sin(n)






, U = I − 2uu†, V = I − 2vv†.

We do not form U , S, V , or A explicitly to avoid running out of computer memory. We let

b = A
[

1, . . . 1
]T

+ v, where v ∼ N (0, σ2Σ).
The Jacobian matrix is simply Jb = A†, whose spectral norm is known from the construc-

tion of A and whose scaled Frobenius norm ‖JAΣ1/2‖F we estimate using ηk(JAΣ
1/2) with

k = 5 samples.
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Figure 2. Relative error, and deterministic and stochastic FOEs plotted versus m. The function is F (b) =
A†b, and the input b is perturbed by h ∼ N (0, σ2Σ). Top: Constant aspect ratio m/n. Bottom: Increasing
aspect ratio m/n. Left: Σ = Im. Right: Σ = diag(vec([b])).

For each value of m, we compute 1000 samples of h ∼ N (0, σ2Σ). In Figure 2 we plot the



 
 
 
 
 

 

 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 

 
 
 

 

 
 
 

 
 
 
 
 
 
 
 

sample median as well as the 5th and 95th sample percentiles of the normwise relative error,
along with the deterministic and stochastic FOEs, versus m. Once again, in these examples,
the stochastic FOE is an excellent example of the median relative error for all values of m
tested. On the other hand, the deterministic FOE can be several orders of magnitude larger
and sometimes increasingly so with increasing m/n.

5.3. The method of conjugate gradients. As mentioned in the introduction, there has
been some recent interest in the data assimilation and optimization communities in the sen-
sitivity of Krylov subspace iterates (e.g., [22, 16, 17]). Let x(j) denote the jth iterate of the
method of CG applied for solving Ax = b, where A ∈ R

n×n is symmetric and positive definite.
In previous work [7], we derived expressions for the Jacobian matrix of x(j) with respect to
b. This led to bounds on the (deterministic) condition number of x(j) with respect to per-
turbations in b. Here we perform a numerical experiment to investigate the sensitivity of CG
iterates to random noise in the right-hand side vector b.

Let x(j) = F (b) denote the jth iterate of CG. In this experiment we set j = 10. We
perturb the input b with random noise h, where h ∼ (0, σ2Σ) for various values of σ. As in
the previous examples, we perform tests with h following a multivariate normal distribution
and a scaled Bernoulli distribution, and we test both Σ = In and Σ = diag(vec([b])).

In this example, n = 1000 and the matrix A ∈ R
n×n is created via its spectral decompo-

sition: A = UΛUT . U ∈ R
n×n is the Q factor in the QR factorization of a random matrix,

and Λ contains the eigenvalues λi of A on its main diagonal. The eigenvalues λi are chosen
logarithmically equally spaced between 0.1 and 1, with one extra eigenvalue 10−6 small with

respect to the rest of the spectrum. The vector b is taken as b =
[

cos(1), . . . , cos(n)
]T

.

Because of the small problem dimensions, we can explicitly create the n × n Jacobian
matrix Jb using automatic differentiation. We then directly compute its spectral norm and
scaled Frobenius norm. As in the previous example, for each value of σ we compute 1000
samples of h and of the resulting normwise relative error ‖F (b+h)−F (b)‖2/‖F (b)‖2. We plot
the sample median, as well as the 5th and 95th sample percentiles of the normwise relative
error, versus σ, along with the deterministic and stochastic FOEs of the relative error.

Results are plotted in Figure 3. In all four cases, the behavior is very similar. The
stochastic FOE is an excellent estimate of the median relative error. This seems to be the
case even for large values of σ. In other words, the CG iterates seem to behave linearly with
respect to random perturbations. This is very surprising as Krylov methods are known for
being highly nonlinear. We have not found a theoretical explanation for this behavior. As
before, the deterministic FOE is a few orders of magnitude larger than the stochastic FOE.

6. Conclusions. We have defined a notion of stochastic condition number of a matrix
function F to random noise H in its input. First we gave sufficient conditions for the first-
order RMS approach from [21, 6] to be applicable. Our sensitivity analysis based on the
work of Stewart [20] applies much more generally—for all Fréchet differentiable functions and
any random noise H such that vec(H) ∼ (0, σ2Σ), regardless of the distribution of vec(H).
Consequently, we proposed the stochastic condition number (3.12). Analogously to the deter-
ministic condition number (1.2), this measures the asymptotic sensitivity of F in the small
perturbation limit, but in this setting “small” refers to the norm of the covariance matrix
of vec(H). The stochastic condition number can be computed very efficiently by random
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Figure 3. Relative error, and deterministic and stochastic FOEs plotted versus σ. The function is x10 =
F (b), and the input b is perturbed by h ∼ (0, σ2Σ) following two distributions. Top: Normal distribution.
Bottom: Scaled Bernoulli distribution. Left: Σ = In. Right: Σ = diag(vec([b])).

sampling: few samples are required to obtain excellent order-of-magnitude estimates with
probability close to 1. Our numerical experiments indicate that the resulting error estimates
are excellent measures of the median error when A is subjected to random noise.

One drawback of the stochastic condition number is that, like the deterministic condition
number, it leads only to a first-order error estimate (valid for sufficiently small σ). The
behavior of the error for large values of σ is problem dependent. In our examples involving
linear systems, the error estimate was only valid for values of σ smaller than roughly the
smallest singular value of A. Surprisingly, however, for perturbations to the right-hand side
vector in CG, the small σ asymptotics seemed to be descriptive for arbitrary σ. Obtaining
global bounds on

Prob
{

‖F (A+H)− F (A)‖F ≥ τ
}

for these matrix functions is the subject of current research. Finally, in this work we have
restricted ourselves to real matrices and real perturbations. An extension to the complex case
seems possible, for example, by considering complex random perturbations H = HR + iHI

(where i =
√
−1 and HR,HI are real random matrices) of complex matrices A ∈ C

m×n. This



 

 
 

 
 

 

 
 

 

 
 

 

 

 
 
 

 
 

 

topic is also currently under investigation.

Appendix. Proof of Lemma 3.1.

Proof. For the first part, using linearity of expectation, we obtain

∣

∣E
{

(uTh)ξ(h)
}
∣

∣ =

∣

∣

∣

∣

E

{

n
∑

j=1

ujhj
∑

v∈Nn

0

|v|≥2

αvh
v
}

∣

∣

∣

∣

=

∣

∣

∣

∣

∑

v∈Nn

0

|v|≥2

n
∑

j=1

αvujE{hjhv}
∣

∣

∣

∣

.

Repeatedly using the Cauchy–Schwarz inequality |E{x1x2} | ≤
√

E
{

x21
}

E
{

x22
}

and the fact

that E
{

hki
}

≤ cσk, we obtain

E{hjhv} = E{hjhv11 , . . . , hvnn } ≤ cσ|v|+1.

Therefore, for σ < 1,

∣

∣E
{

(uTh)ξ(h)
}
∣

∣

σ2
≤

∣

∣

∣

∣

∑

v∈Nn

0

|v|≥2

n
∑

j=1

αvujcσ
|v|−1

∣

∣

∣

∣

≤ c‖u‖1
(

∑

v∈Nn

0

|v|≥2

|αv|
)

∞
∑

ω=2

σω−1 = c‖u‖1
(

∑

v∈Nn

0

|v|≥2

|αv |
) σ

1− σ
,

which converges to 0 as σ → 0. (The last summation is bounded since ξ(x) is absolutely
convergent at x = [1, . . . , 1]T .)

Similarly, for the second part,

E
{

ξ(h)2
}

= E

{

(

∑

v∈Nn

0

|v|≥2

αvh
v
)(

∑

w∈Nn

0

|w|≥2

αwh
w
)

}

= E

{

∑

v∈Nn

0

|v|≥4

βvh
v

}

=
∑

v∈Nn

0

|v|≥4

βvE{hv} ≤
∑

v∈Nn

0

|v|≥4

βvcσ
|v|,

so that when σ < 1,

E
{

ξ(h)2
}

σ2
≤ c

(

∑

v∈Nn

0

|v|≥4

|βv|
)

∞
∑

ω=4

σω−2 = c
(

∑

v∈Nn

0

|v|≥4

|βv|
) σ2

1− σ
,

which once again converges to 0 as σ → 0.
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