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In this paper we establish the existence of solutions to a time-dependent problem for a linearly elastic body subjected to a confinement condition, expressing that all the points of the deformed reference configuration remain confined in a prescribed half space. This problem takes the form of a set of hyperbolic variational inequalities. The fact that any solution of the studied problem takes the form of a vector field instead of a real-valued function, the generality of the confinement condition under consideration, the fact that the integration domain is a subset of R 3 , and the choice of the function space where solutions are sought make the analysis substantially more complicated, thus requiring the adoption of new resolution strategies.

Introduction

Hyperbolic models are used to describe many phenomena arising in classical mechanics like, for instance, the vibration of a string under the action of an external force. In this paper, we study the existence of solutions to an obstacle problem modelling the displacement of a three-dimensional linearly elastic body confined in a half space.

Obstacle problems arise in many applicative fields: For instance, the motion of three valves of the Aorta, that can be regarded as linearly elastic shells (cf., e.g., [START_REF] Ciarlet | Mathematical Elasticity[END_REF]), is governed by a mathematical model built up in a way such that each valve remains confined in a certain portion of space without colliding with the remaining two valves.

A substantial contribution to the theory of hyperbolic obstacle problems can be found in the seminal papers [START_REF] Schatzman | A hyperbolic problem of second order with unilateral constraints: the vibrating string with a concave obstacle[END_REF] and [START_REF] Kim | A boundary thin obstacle problem for a wave equation[END_REF]. Other important contributions in this field can be found in the references [START_REF] Bock | On hyperbolic contact problems[END_REF], [START_REF] Bock | Dynamic contact problem for viscoelastic von Kármán-Donnell shells[END_REF], [START_REF] Bock | A vibrating thermoelastic plate in a contact with an obstacle[END_REF], and [START_REF] Bock | On the solutions of a dynamic contact problem for a thermoelastic von Kármán plate, Nonlinear Anal[END_REF], where the problems are set out as follows: the integration domain ω is a subset of R 2 , and the unknown function, at almost all time instants, is a real-valued function that belongs to H 2 0 (ω). It is also worth mentioning the papers [START_REF] Fundos | Existence theorems of Hartmann-Stampacchia type for hemivariational inequalities and applications[END_REF], [START_REF] Bocea | A perturbation result for a double eigenvalue hemivariational inequality and applications[END_REF], [START_REF] Rȃdulescu | Perturbations of hemivariational inequalities with constraints[END_REF], [START_REF] Papageorgiou | Nonlinear elliptic inclusions with unilateral constraint and dependence on the gradient[END_REF], [START_REF] Papageorgiou | Periodic solutions for implicit evolution equations[END_REF], [START_REF] Rȃdulescu | Global well-posedness for a class of fourth order nonlinear strongly damped wave equations[END_REF], [START_REF] Papageorgiou | Sensitivity analysis for optimal control problems governed by nonlinear evolution inclusions[END_REF] and [START_REF] Mugnai | Maximum principles for inhomogeneous elliptic inequalities on complete Riemannian manifolds[END_REF]. The nonlinear analysis tools used in this paper can be found in the recent monograph [START_REF] Papageorgiou | Nonlinear analysistheory and methods[END_REF].

The first main novelty of this paper is that the unknown, represented by displacement of the linearly elastic body under consideration, is a vector field that, at almost all time instants, belongs to a nonempty, closed , and convex subset of the Sobolev space H 1 (Ω)×H 1 (Ω)×H 1 (Ω), where Ω ⊂ R 3 is a domain.

This will require the implementation of a more general argument to recover the energy estimates in the Galerkin method.

The second main novelty is given by the generality of the confinement condition under consideration, which comprises at once all of the three components of the displacement vector field. Such a confinement conditions were first considered in the papers [START_REF] Ciarlet | An obstacle problem for elliptic membrane shells[END_REF], [START_REF] Ciarlet | Un problème de confinement pour une coque membranaire linéairement élastique de type elliptique[END_REF], [START_REF] Ciarlet | An obstacle problem for Koiter's shells[END_REF], and [START_REF] Ciarlet | A confinement problem for a linearly elastic Koiter's shell[END_REF]. Other types of confinement conditions which are more amenable in the context of numerical simulations are discussed in the paper [START_REF] Piersanti | Numerical methods for static shallow shells lying over an obstacle[END_REF].

Finally, the method we propose here for recovering the initial condition for the first derivative in time of the displacement slightly differs from the one used in [START_REF] Bock | On hyperbolic contact problems[END_REF], [START_REF] Bock | Dynamic contact problem for viscoelastic von Kármán-Donnell shells[END_REF], [START_REF] Bock | A vibrating thermoelastic plate in a contact with an obstacle[END_REF], and [START_REF] Bock | On the solutions of a dynamic contact problem for a thermoelastic von Kármán plate, Nonlinear Anal[END_REF].

The paper is organised as follows. First, some notations and background are provided. Secondly, the main existence theorem for a dynamic linearly elastic body confined in a half space is established. Thirdly, and finally, some final comments about the uniqueness of the solution are made.

Geometrical preliminaries

For details about the classical notions of differential geometry recalled in this section, see, e.g. [START_REF] Ciarlet | Mathematical Elasticity[END_REF] or [START_REF] Ciarlet | An Introduction to Differential Geometry with Applications to Elasticity[END_REF].

Latin indices, except when they are used for indexing sequences, take their values in the set {1, 2, 3}, and the summation convention with respect to repeated indices is systematically used in conjunction with this rule.

Given an open subset Ω ⊂ R 3 , notations such as L 2 (Ω) and H 1 (Ω) denote the standard Lebesgue and Sobolev spaces. The notation D(Ω) designates the space of functions that are infinitely differentiable over Ω and have a compact support in Ω. The notation • X designates the norm of a vector space X.

Spaces of vector-valued functions are denoted by boldface letters. Lebesgue-Bochner spaces (see, e.g., [START_REF] Leoni | A First Course in Sobolev Spaces[END_REF]) are designated by the notation L p (0, T ; X), where 1 ≤ p ≤ ∞, T > 0, and X is a Banach space satisfying the Radon-Nikodym property. The notation M([0, T ]; X) designates the space of X-valued measures defined over the compact interval [0, T ] (see, e.g., [START_REF] Diestel | Vector measures[END_REF] and [START_REF] Dinculeanu | Vector measures[END_REF]). The notation X * designates the dual space of a vector space X and the notation X * •, • X denotes the duality pair between X * and X. The notation C 0 ([0, T ]; X) denotes the space of X-valued continuous functions defined over the compact interval [0, T ] and the special notation •, • X denotes the duality pair between (C 0 ([0, T ]; X)) * and C 0 ([0, T ]; X). The notations η and η denote the first weak derivative with respect to t ∈ (0, T ) and the second weak derivative with respect to t ∈ (0, T ) of a scalar function η defined over the interval (0, T ). The notations η and η denote the first weak derivative with respect to t ∈ (0, T ) and the second weak derivative with respect to t ∈ (0, T ) of a vector field η defined over the interval (0, T ). A domain Ω ⊂ R 3 is a nonepmpty, open, bounded and connected subset with Lipschitz continuous boundary Γ, the set Ω being locally on the same side of Γ. The notation dx designates the volume element in Ω, the symbol dΓ designates the area element along Γ. Finally, let Γ 0 and Γ 1 be a dΓ-measurable portion of the boundary such that Γ 0 ∩ Γ 1 = ∅, Γ = Γ 0 ∪ Γ 1 , and area Γ 0 > 0.

As a model of the three-dimensional "physical" space R 3 , we take a real three-dimensional affine Euclidean space, i.e., a set in which a point O has been chosen as the origin and with which a real three-dimensional Euclidean space, denoted E 3 , is associated. We equip E 3 with an orthonormal basis consisting of three vectors e i . The Euclidean inner product of two elements a and b of E 3 is denoted by a • b; the Euclidean norm of any a ∈ E 3 is denoted by |a|; the Kronecker symbol is denoted by δ ij .

The definition of R 3 as an affine Euclidean space means that with any point x ∈ R 3 is associated an uniquely defined vector Ox ∈ E 3 . The origin O ∈ R 3 and the orthonormal vectors e i ∈ E 3 together constitute a Cartesian frame in R 3 and the three components x i of the vector Ox over the basis formed by e i are called Cartesian coordinates of x ∈ R 3 , or the Cartesian components of Ox ∈ E 3 . Once a Cartesian frame has been chosen, any point x ∈ R 3 may be thus identified with the vector Ox = x i e i ∈ E 3 . We then denote

∂ i = ∂/∂x i .
The set Ω is the reference configuration occupied by a linearly elastic elastic body in absence of applied body forces. We assume that Ω is a natural state, i.e., that the body is stress-free in this configuration. We also assume, following [START_REF] Ciarlet | Mathematical Elasticity. Vol. I: Three-Dimensional Elasticity[END_REF], that the constituting material is isotropic, homogeneous, and linearly elastic. Under these assumptions, the behaviour of the linearly elastic material is governed by its two Lamé constants λ ≥ 0 and µ > 0. The positive constant ρ designates the mass density of the linearly elastic body per unit volume.

We also assume that the linearly elastic body to be subjected to applied body forces in its interior, whose density per unit volume is defined by means of its

contravariant components f i ∈ L ∞ (0, T ; L 2 (Ω)) over the vectors e i .
In what follows, "a.e." stands for "almost everywhere". Define the space

V (Ω) := {v = (v i ) ∈ H 1 (Ω); v = 0 on Γ 0 },
and equip it with the norm

v V (Ω) := i v i 2 H 1 (Ω) 1/2 .
Next, we define the three-dimensional elasticity tensor in Cartesian coordinates and we denote its components by A ijkl . We recall that the contravariant components of this tensor are defined by (see, e.g., [START_REF] Ciarlet | Mathematical Elasticity. Vol. I: Three-Dimensional Elasticity[END_REF])

A ijkl := λδ ij δ kl + µ(δ ik δ jl + δ il δ jk ),
and that

A ijkl = A jikl = A klij ∈ C 1 (Ω).
For each v ∈ H 1 (Ω) we consider the linearised change of metric tensor e(v),

whose components e i j (v) are defined by

e i j (v) := 1 2 (∂ j v i + ∂ i v j ) ∈ L 2 (Ω).
This tensor is symmetric, i.e., e i j (v) = e j i (v), for all v ∈ H 1 (Ω). Likewise, we can define the time-dependent version of the linearised change of metric tensor by considering the operator

ẽi j : L 2 (0, T ; H 1 (Ω)) → L 2 (0, T ; L 2 (Ω)) defined by ẽi j (v)(t) = e i j (v(t)), for all v ∈ L 2 (0, T ; H 1 (Ω)),
for almost all ("a.a." in what follows) t ∈ (0, T ). It is easy to see that such an operator is well-defined, linear and continuous. It can be easily verified (cf., e.g., [START_REF] Piersanti | An existence and uniqueness theorem for the dynamics of flexural shells[END_REF]) that the continuity constant is independent of t ∈ (0, T ).
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To begin with, we state Korn's inequality in Cartesian coordinates (see, e.g., Theorem 6.3-6 of [START_REF] Ciarlet | Mathematical Elasticity. Vol. I: Three-Dimensional Elasticity[END_REF]).

Theorem 1.

Let Ω be a domain in R 3 and let Γ 0 be a nonzero area subset of the whole boundary Γ. Then, there exists a constant C > 0 such that

C -1 v H 1 (Ω) ≤ e(v) L 2 (Ω) ≤ C v H 1 (Ω) ,
for all v ∈ V (Ω).

Various proofs have been given of this delicate inequality; see in particular [START_REF] Friedrichs | On the boundary-value problems of the theory of elasticity and Korn's inequality[END_REF], [START_REF] Gobert | Une inégalité fondamentale de la théorie de l'élasticité[END_REF], [START_REF] Hlaváček | On inequalities of Korn's type. I. Boundary-value problems for elliptic system of partial differential equations[END_REF], [START_REF] Hlaváček | On inequalities of Korn's type. II. Applications to linear elasticity[END_REF], page 110 of [START_REF] Duvaut | Inequalities in Mechanics and Physics[END_REF], Sect. 6.3 of [START_REF] Nečas | Mathematical theory of elastic and elasto-plastic bodies: an introduction[END_REF]; in [START_REF] Temam | Problèmes mathématiques en plasticité[END_REF], Korn's inequal-100 ity is proved in the space W 1,p (Ω), 1 ≤ p ≤ ∞; an elementary proof is given in [START_REF] Nitsche | On Korn's second inequality[END_REF] (see also Appendix (A) in [START_REF] Miyoshi | Foundations of the numerical analysis of plasticity[END_REF]).

A natural formulation of the time-dependent obstacle problem for a linearly elastic body

In this paper, we consider a specific obstacle problem for a linearly elastic body subjected to a confinement condition, expressing that any admissible displacement vector field v i e i , must be such that all the points of the corresponding deformed configuration remain in a half-space of the form

H := {x ∈ R 3 ; Ox • q ≥ 0},
where q is a nonzero vector given once and for all. Let us denote by I the identity mapping I : Ω → E 3 and let us assume that the undeformed reference configuration satisfies

I(x) • q > 0, for all x ∈ Ω,
or, in other words, there is no contact between the obstacle and the reference 105 configuration when no applied body forces are acting on the reference configuration. Let us observe that this condition is assumed only for physical reasons and that it is not exploited in the forthcoming proofs.

The general confinement condition can be thus formulated as follows: any admissible displacement vector field must satisfy

(I(x) + v i (x)e i ) • q ≥ 0,
for all x ∈ Ω or, possibly, only for a.a. x ∈ Ω when the covariant components v i are required to belong to the Sobolev space H 1 (Ω). The subset U (Ω) of admissible displacements thus takes the form

U (Ω) := {v =(v i ) ∈ H 1 (Ω); v = 0 on Γ 0 and (I + v i e i ) • q ≥ 0 a.e. in Ω}.
We emphasise that the vectorial confinement condition above, which was originally considered in [START_REF] Ciarlet | An obstacle problem for elliptic membrane shells[END_REF], [START_REF] Ciarlet | Un problème de confinement pour une coque membranaire linéairement élastique de type elliptique[END_REF], [START_REF] Ciarlet | An obstacle problem for Koiter's shells[END_REF] and [START_REF] Ciarlet | A confinement problem for a linearly elastic Koiter's shell[END_REF], considerably departs from the scalar conditions favoured by many authors (see, e.g., [START_REF] Bock | On hyperbolic contact problems[END_REF], [START_REF] Bock | Dynamic contact problem for viscoelastic von Kármán-Donnell shells[END_REF] and [START_REF] Bock | On the solutions of a dynamic contact problem for a thermoelastic von Kármán plate, Nonlinear Anal[END_REF]). Such a confinement condition renders the analysis substantially more difficult, as the constraint now bears on a vector field, the displacement vector field of the reference configuration, instead of on only a single scalar-valued function.

A natural formulation of the corresponding time-dependent obstacle problem takes the form of a set of hyperbolic three-dimensional variational inequalities ("three-dimensional", in the sense that they are posed over the threedimensional subset Ω), which can be derived by slightly modifying the model proposed by Xiao in the papers [START_REF] Xiao | Asymptotic analysis of dynamic problems for linearly elastic shellsjustification of equations for dynamic flexural shells[END_REF], [START_REF] Xiao | Asymptotic analysis of dynamic problems for linearly elastic shellsjustification of equations for dynamic membrane shells[END_REF] and [START_REF] Xiao | Asymptotic analysis of dynamic problems for linearly elastic shellsjustification of equations for dynamic Koiter shells[END_REF].

Let us introduce the problem P(Ω), which constitutes the point of departure of our analysis.

Problem P(Ω). Find u = (u i ) : (0, T ) → V (Ω) such that u ∈ L ∞ (0, T ; U (Ω)), u ∈ L ∞ (0, T ; L 2 (Ω)), ü ∈ M([0, T ]; L 2 (Ω)),
that satisfies the following variational inequalities

2ρ ü(t), v(t) -u(t) L 2 (Ω) + T 0 Ω A ijkl e k l (u(t))e i j (v(t) -u(t)) dx dt ≥ T 0 Ω f i (t)(v i (t) -u i (t)) dx dt, for all v ∈ D(0, T ; V (Ω)) such that v(t) ∈ U (Ω)
for a.a. t ∈ (0, T ), and that satisfies the following initial conditions

     u(0) = u 0 , u(0) = u 1 , (1) 
where u 0 = (u i,0 ) ∈ U (Ω), and u 1 = (u i,1 ) ∈ L 2 (Ω) are prescribed.

Observe that the "acceleration term" in Problem P(Ω) is described in terms of a vector-valued measure. Note in passing that the concept of solution of Problem P(Ω) is inspired by the one given on page 403 of [START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites non linéaires[END_REF]. The concept of solution of Problem P(Ω) will be thoroughly explained in the proof of Theorem 6, which constitutes the main result of this paper.

We recall a very important inequality which is used to study evolutionary problems: Gronwall's inequality (see, e.g., the seminal paper [START_REF] Gronwall | Note on the derivatives with respect to a parameter of the solutions of a system of differential equations[END_REF] and Theorem 1.1 in Chapter III of [START_REF] Hartman | Ordinary Differential Equations[END_REF]). 

Proof of existence of solutions to Problem P(Ω)

Let us recall a compactness result proved by Simons (see, e.g., Corollary 4

of [START_REF] Simon | Compact sets in the space L p (0, T ; B)[END_REF]), which will be used in what follows to recover the initial conditions. In what follows, the symbol " →" denotes a continuous embedding, whereas the symbol " → →" denotes a compact embedding.

Theorem 3. Let T > 0 and let X, Y and Z be three Banach spaces such that

X → → Y → Z.
Let (f n ) ∞ n=1 be a bounded sequence in L ∞ (0, T ; X) and assume that the sequence ( ḟn ) ∞ n=1 is bounded in L ∞ (0, T ; Z). Then, there exists a subsequence, still denoted

(f n ) ∞ n=1 , that converges in the space C 0 ([0, T ]; Y ).
In what follows we identify the spaces L 2 (Ω) and L 2 (Ω) with their respective dual spaces, and we equip them with the following inner products

(v, w) ∈ L 2 (Ω) × L 2 (Ω) → Ω vw dx, (v, w) ∈ L 2 (Ω) × L 2 (Ω) → Ω v i w i dx.
We observe that the following chain of immersions holds

V (Ω) → → L 2 (Ω) → → V * (Ω),
viz., following the notation of [START_REF] Kyritsi-Yiallourou | Handbook of Applied Analysis[END_REF],

V (Ω), L 2 (Ω), V * (Ω) is an evolution triple (or Gelfand triple).
Let us also recall a result on vector-valued measures proved by Zinger in the paper [START_REF] Zinger | Linear functionals on the space of continuous mappings of a compact Hausdorff space into a Banach space[END_REF] (see also, e.g., page 182 of [START_REF] Diestel | Vector measures[END_REF], and page 380 of [START_REF] Dinculeanu | Vector measures[END_REF]). There exists an isomorphism between (C 0 (ω; X)) * and the space of the regular Borel measures with finite variation taking values in X * . In particular, for each F ∈ (C 0 (ω; X)) * , there exists a unique regular Borel measure µ : F → X * in M(ω; X * ) with finite variation such that

α, F X = ω X * dµ, α X ,
for all α ∈ C 0 (ω; X).

Let us denote the penalty parameter by κ and let us introduce the corresponding penalised problem P(κ; Ω).

Problem P(κ; Ω). Find u κ = (u i,κ ) : (0, T ) → V (Ω) such that u κ ∈ L ∞ (0, T ; V (Ω)), uκ ∈ L ∞ (0, T ; L 2 (Ω)), üκ ∈ L ∞ (0, T ; V * (Ω)),
that satisifes the following nonlinear variational equations

2ρ V * (Ω) üi,κ (t)e i , v j e j V (Ω) + Ω A ijkl e k l (u κ (t))e i j (v) dx - 1 κ Ω {[I + u i,κ (t)e i ] • q} -(v i e i • q) dx = Ω f i (t)v i dx,
for all v ∈ V (Ω), in the sense of distributions in (0, T ), and that satisfies the initial conditions (1).

We first prove, by Galerkin method, that Problem P(κ; Ω) admits a solution.

Theorem 5. For each κ > 0, Problem P(κ; Ω) admits a solution.

Proof. The proof is carried out via a Galerkin argument and is subdivided into three steps. To begin with, we fix κ > 0.

(a) Construction of a Galerkin approximation. In order to construct such a scheme, we rely on the fact that V (Ω) is an infinite dimensional separable Hilbert space which is also dense in L 2 (Ω), in order to infer the existence of an orthogonal basis (w k ) ∞ k=1 of the space V (Ω), whose elements also constitute a Hilbert basis of the space L 2 (Ω).

The existence of such a basis is assured by the spectral theorem (Theorem 6.2-1 of [START_REF] Raviart | Introduction à l'Analyse Numérique des Équations aux Dérivées Partielles[END_REF]). For each positive integer m ≥ 1, we denote by E m the following m-dimensional linear hull

E m := Span (w k ) m k=1 ⊂ V (Ω) ⊂ L 2 (Ω).
Since each element of this Hilbert basis is independent of the variable t, we have that

w k ∈ L ∞ (0, T ; V (Ω)) for each integer 1 ≤ k ≤ m.
We now discretise Problem P(κ; Ω) and, in order to keep the notation simple, we drop the dependence of the vector fields entering the variational equations on the penalty parameter κ. Observe that the duality pair between E m and its dual coincides with the inner product of L 2 (Ω) introduced beforehand.

Problem P m (κ; Ω). Find functions c k : [0, T ] → R, 1 ≤ k ≤ m, such that u m (t) := m k=1 c k (t)w k , for a.a. t ∈ (0, T ),
and satisfying the following penalised variational equations a.e. in (0, T )

2ρ

Ω üm i (t)w p i dx + Ω A ijkl e k l (u m (t))e i j (w p ) dx - 1 κ Ω {[I + u m i (t)e i ] • q} -(w p i e i • q) dx = Ω f i (t)w p i dx, for each integer 1 ≤ p ≤ m.
Such a function u m must satisfy, in addition, the following initial conditions

u m (0) = u m 0 , um (0) = u m 1 , u m 0 ∈ V (Ω) and u m 0 → u 0 in V (Ω) as m → ∞, u m 1 ∈ L 2 (Ω) and u m 1 → u 1 in L 2 (Ω) as m → ∞, (2) 
where the initial data u m 0 and u m 1 are, respectively, the projections of u 0 and u 1 onto the finite dimensional space E m .
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We immediately observe that the projections of u 0 = (u i,0 ) and u 1 = (u i,1 ) onto E m can be expanded as follows (cf., e.g., Theorem 4.9-1 of [START_REF] Ciarlet | Linear and Nonlinear Functional Analysis with Applications[END_REF])

u m 0 = m k=1 Ω u i,0 w k i dx + Ω ∂ j u i,0 ∂ j w k i dx w k , u m 1 = m k=1 Ω u i,1 w k i dx w k .
Since the elements of the Hilbert basis do not depend on the time variable we can take the coefficients c k as well as their derivatives outside the integral sign, getting a m × m nonlinear system of second order ordinary differential equations with respect to the variable t. Such a system can be rewritten in the form 2ρ C(t) = -

Ω

A ijkl e k l (w r )e i j (w p ) dx m p,r=1

C(t) + 1 κ Ω {[I + (C(t) • (w 1 i . . . w m i ))e i ] • q} -(w p i e i • q) dx m p=1 + Ω f i (t)w p i dx m p=1 (3) 
where C(t) := (c 1 (t) . . . c m (t)), and satisfies the following initial conditions

c k (0) = Ω u i,0 w k i dx + Ω ∂ j u i,0 ∂ j w k i dx, ċk (0) = Ω u i,1 w k i dx.
Observe that the negative part operator is a Lipschitz continuous function, i.e.,

|b --a -| ≤ |b -a|, for all a, b ∈ R. (4) 
By the Cauchy-Lipschitz theorem (cf., e.g., Theorem 3.8-1 of [START_REF] Ciarlet | Linear and Nonlinear Functional Analysis with Applications[END_REF]), we deduce that for each integer m ≥ 1 there exists a unique global solution u m to Problem P m (κ; Ω), defined a.e. over the interval (0, T ), such that

u m ∈ L ∞ (0, T ; E m ), um ∈ L ∞ (0, T ; E m ), üm ∈ L ∞ (0, T ; E m ). (5) 
(b) Energy estimates for the Galerkin scheme. Let us multiply the variational equations in Problem P m (κ; Ω) by ċk (t), with 0 < t < T , and sum with respect to k varying in the discrete set {1, . . . , m}. As a result, we obtain that the penalised variational equations in Problem P m (κ; Ω) take the form

ρ d dt Ω um i (t) um i (t) dx + 1 2 d dt Ω A ijkl e k l (u m (t))e i j (u m (t)) dx + 1 2κ d dt Ω [I + u m i (t)e i ] • q -2 dx = Ω f i (t) um i (t) dx, (6) 
for a.a. t ∈ (0, T ).

Observe that the differentiation of the negative part is obtained as a result of the same computational steps as in Stampacchia's theorem (cf., e.g., [START_REF] Stampacchia | Èquations elliptiques du second ordre à coefficients discontinus[END_REF]), together with an application of Theorem 8.28 of [START_REF] Leoni | A First Course in Sobolev Spaces[END_REF]. The change in sign of the penalty term is due to the properties of the Heavyside function.

Carrying out an integration over the interval (0, t), where 0 < t ≤ T , changes

(6) into ρ Ω um i (t) um i (t) dx + 1 2 Ω A ijkl e k l (u m (t))e i j (u m (t)) dx + 1 2κ Ω [I + u m i (t)e i ] • q -2 dx = ρ Ω u m i,1 u m i,1 dx + 1 2 Ω A ijkl e k l (u m 0 )e i j (u m 0 ) dx + 1 2κ Ω [I + u m i (0)e i ] • q -2 dx + t 0 Ω f i (τ ) um i (τ ) dx dτ. (7) 
By Cauchy-Schwarz inequality, there exists a constant C > 0 such that

t 0 Ω f i (τ ) um i (τ ) dx dτ ≤ T 0 f (t) 2 L 2 (Ω) dt 1/2 t 0 um (τ ) 2 L 2 (Ω) dτ 1/2 ≤ 1 2 T 0 f (t) 2 L 2 (Ω) dt + t 0 um (τ ) 2 L 2 (Ω) dτ . (8) 
Since u 0 ∈ U (Ω), we have that

Ω [I + u m i (0)e i ] • q -2 dx → 0, as m → ∞.
As a result, there exists a positive integer m(κ) such that

Ω [I + u m i (0)e i ] • q -2 dx ≤ κ, for all m ≥ m(κ). (9) 
By the uniform positive-definiteness of the elasticity tensor (A ijkl ), Korn's inequality (Theorem 1), ( 7), [START_REF] Fundos | Existence theorems of Hartmann-Stampacchia type for hemivariational inequalities and applications[END_REF], and (9), we obtain that there exists a real constant C > 0 independent of u m (and so independent of t, m and κ) for which the following estimate holds for all m ≥ m(κ)

1 C um (t) 2 L 2 (Ω) + u m (t) 2 V (Ω) + 1 κ C [I + u m i (t)e i ] • q -2 L 2 (Ω) ≤ u 1 2 L 2 (Ω) + u 0 2 V (Ω) + f 2 L ∞ (0,T ;L 2 (Ω)) + t 0 um (τ ) 2 L 2 (Ω) + u m (τ ) 2 V (Ω) dτ + 1 κ t 0 [I + u m i (τ )e i ] • q -2 L 2 (Ω)
dτ.

(

) 10 
An application of the Gronwall's inequality (Theorem 2) with a ≡ C > 0 and

b ≡ C u 1 2 L 2 (Ω) + u 0 2 V (Ω) + f 2 L ∞ (0,T ;L 2 (Ω)) ≥ 0
gives the following upper bound

t 0 um (τ ) 2 L 2 (Ω) + u m (τ ) 2 V (Ω) dτ + 1 κ t 0 [I + u m i (τ )e i ] • q -2 L 2 (Ω) dτ ≤ CT e CT u 1 2 L 2 (Ω) + u 0 2 V (Ω) + f 2 L ∞ (0,T ;L 2 (Ω)) , (11) 
for all t ∈ [0, T ].

Therefore, we obtain that

(u m ) ∞ m=1 is uniformly bounded with respect to m in L ∞ (0, T ; V (Ω)), ( um ) ∞ m=1 is uniformly bounded with respect to m in L ∞ (0, T ; L 2 (Ω)), (12) 
and, moreover, by [START_REF] Papageorgiou | Nonlinear elliptic inclusions with unilateral constraint and dependence on the gradient[END_REF], there exists a positive uniform constant L such that

0 ≤ [I + u m i e i ] • q -2 L 2 (0,T ;L 2 (Ω)) ≤ Lκ. ( 13 
)
Since the following direct sum decomposition holds true

V (Ω) = E m ⊕ (E m ) ⊥ ,
we get that for any v ∈ V (Ω), with v V (Ω) ≤ 1 and a.a. t ∈ (0, T ), the variational equations in Problem P m (κ; Ω) give

| V * (Ω) üm i (t)e i , v j e j V (Ω) | ≤ f L ∞ (0,T ;L 2 (Ω)) + C u m L ∞ (0,T ;V (Ω)) + 1 κ [I + u m i e i ] • q - L 2 (0,T ;L 2 (Ω))
, and, by ( 12) and ( 13), we thus infer that there exists a constant

C κ > 0, independent of m, such that üm L ∞ (0,T ;V * (Ω)) ≤ C κ . (14) 
(c) Passage to the limit and retrieval of Problem P(κ; Ω). By ( 12), ( 13) and ( 14) we can infer that there exist subsequences, still denoted (u m ) ∞ m=1 , ( um ) ∞ m=1 and ( üm ) ∞ m=1 such that the following convergences take place

u m * u κ , in L ∞ (0, T ; V (Ω)) as m → ∞, um * uκ , in L ∞ (0, T ; L 2 (Ω)) as m → ∞, üm * üκ , in L ∞ (0, T ; V * (Ω)) as m → ∞, κ -1 [I + u m i e i ] • q - χ κ , in L 2 (0, T ; L 2 (Ω)) as m → ∞. (15) 
By the Sobolev embedding theorem (Theorem 10.1.20 of [START_REF] Kyritsi-Yiallourou | Handbook of Applied Analysis[END_REF]), we obtain

u m u κ , in C 0 ([0, T ]; L 2 (Ω)) as m → ∞, um uκ , in C 0 ([0, T ]; V * (Ω)) as m → ∞, (16) 
An application of Theorem 8.28 of [START_REF] Leoni | A First Course in Sobolev Spaces[END_REF] to the fourth convergence of the process [START_REF] Mugnai | Maximum principles for inhomogeneous elliptic inequalities on complete Riemannian manifolds[END_REF] gives

κ -1 [I + u m i e i ] • q - χ κ , in L 2 ((0, T ) × Ω) as m → ∞. (17) 
By ( 4), the first convergence of ( 16) and the weak convergence ( 17), Theorem 8.28 of [START_REF] Leoni | A First Course in Sobolev Spaces[END_REF] and Theorem 8.62 of [START_REF] Leoni | A First Course in Sobolev Spaces[END_REF], we are in a position to apply Theorem 9.13-2 of [START_REF] Ciarlet | Linear and Nonlinear Functional Analysis with Applications[END_REF] (where the involved monotone operator is nothing but the negative part operator ) and, so, to obtain

χ κ = κ -1 [I + u i,κ e i ] • q -∈ L 2 ((0, T ) × Ω). ( 18 
)
We now verify that u κ is a solution to the penalised variational equations in Problem (P(κ; Ω)). Let ψ ∈ D(0, T ) and let µ ≥ 1 be any integer. For each m ≥ µ, we have 2ρ

T 0 Ω üm i (t)v i dxψ(t) dt + T 0 Ω A ijkl e k l (u m (t))e i j (v) dxψ(t) dt - 1 κ T 0 Ω [I + u m i (t)e i ] • q -(v i e i • q) dxψ(t) dt = T 0 Ω f i (t)v i dxψ(t) dt, ( 19 
)
for all v ∈ E µ .
Keeping in mind (4), the convergence process ( 15), ( 18), the arbitrariness of ψ ∈ D(0, T ), as well as the fact that

µ≥1 E µ • V (Ω) = V (Ω),
a passage to the limit as m → ∞ in [START_REF] Ciarlet | An obstacle problem for Koiter's shells[END_REF] shows that u κ is a solution to the penalised variational equations in Problem P(κ; Ω).

The last thing that we have to check is the validity of the initial conditions for u κ . Let us introduce the operator

L 0 : C 0 ([0, T ]; L 2 (Ω)) → L 2 (Ω) defined
in a way such that L 0 (v) := v(0). Such an operator L 0 turns out to be linear and continuous and, therefore, by the first convergence of ( 16), we get that

u m 0 u κ (0), in L 2 (Ω). Since u m 0 → u 0 in V (Ω), we deduce that u κ (0) = u 0 . 180 
Similarly, let us introduce the operator

L 1 : C 0 ([0, T ]; V * (Ω)) → V * (Ω)
defined in a way such that L 1 (v) := v(0). Such an operator L 1 turns out to be linear and continuous and, therefore, by the second convergence of ( 16), we get that

u m 1 uκ (0), in V * (Ω). Since u m 1 → u 1 in L 2 (Ω), we deduce that uκ (0) = u 1 .
We have thus shown that u κ is a solution of Problem P(κ; Ω). This completes the proof.

We are now in a position to prove the existence of solutions of Problem P(Ω), which constitutes the main result of this paper.

Theorem 6. For each κ > 0, let u κ denote a solution to Problem P(Ω).

Assume also that the following "uniformity property" holds: There exists a number t0 > 0, independent of κ, such that

[I + u i,κ (t)e i ] • q ≥ 0 a.e. in Ω,
for a.a. 0 < t < t0 , for all κ > 0.

Then, Problem P(Ω) admits a solution.

Proof. By the energy estimate [START_REF] Rȃdulescu | Perturbations of hemivariational inequalities with constraints[END_REF] in Theorem 5, it can be easily observed that there exists a positive constant

c = c(u 0 , u 1 , f ) such that 1 C uκ 2 L ∞ (0,T ;L 2 (Ω)) + u κ 2 L ∞ (0,T ;V (Ω)) ≤ c.
As a result, the sequences (u κ ) κ>0 and ( uκ ) κ>0 are uniformly bounded in L ∞ (0, T ; V (Ω)) and L ∞ (0, T ; L 2 (Ω)), respectively.
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Let us consider, for a.a. 0 < t < T , the partial differential equation associated with Problem P(κ; Ω)

2ρ üκ (t) + Au κ (t) - 1 κ N u κ (t) = f (t), in V * (Ω), (20) 
where the operator A : V (Ω) → V * (Ω) defined by

V * (Ω) Au, v V (Ω) := Ω A ijkl e k l (u)e i j (v) dx, for all u, v ∈ V (Ω),
is linear and continuous.

Similarly, we define the nonlinear operator N : V (Ω) → V * (Ω) as

V * (Ω) N u, v V (Ω) := Ω [I + u i e i ] • q - v i e i • q dx, for all u, v ∈ V (Ω).
Let us prove the uniform boundedness of the sequence (N u κ ) κ>0 by observing that

1 κ T 0    sup v∈V (Ω) v V (Ω) ≤1 V * (Ω) N u κ (t), v V (Ω)    dt ≤ f L ∞ (0,T ;L 2 (Ω)) + u κ L ∞ (0,T ;V (Ω)) + sup v∈V (Ω) v V (Ω) ≤1 V * (Ω) uκ (T ) -uκ (0), v V (Ω) ,
where the last term in the right hand side derives from an application of Corollary 10.1.26 of [START_REF] Kyritsi-Yiallourou | Handbook of Applied Analysis[END_REF]. We make use of this strategy to gain insight into a uniform bound for the nonlinear term, since nothing is known about the boundedness of the sequence ( üκ ) κ>0 yet.
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Observe that, by Theorem 4, the following chain of embeddings holds

L 1 (0, T ; V * (Ω)) → C 0 ([0, T ]; V * (Ω)) * → C 0 ([0, T ]; L 2 (Ω)) * ∼ = M([0, T ]; L 2 (Ω)).
An application of ( 15) and ( 16) thus gives that the sequence (N u κ ) κ>0 is bounded in L 1 (0, T ; V (Ω)). Therefore, a fortiori, we have

( üκ ) κ>0 is bounded in C 0 ([0, T ]; L 2 (Ω)) * .
Hence, up to passing to a subsequence, we get that the following convergence process takes place

u κ * u, in L ∞ (0, T ; V (Ω)) as κ → 0, uκ * u, in L ∞ (0, T ; L 2 (Ω)) as κ → 0, üκ * ũ, in (C 0 ([0, T ]; L 2 (Ω))) * as κ → 0. ( 21 
)
We immediately deduce, by Theorem 4, that there exists a unique vector-valued

measure µ ∈ M([0, T ]; L 2 (Ω)) such that ũ(t), σ(t) L 2 (Ω) = T 0 Ω dµ i (t)σ i (t) dx dt,
for all σ ∈ C 0 ([0, T ]; L 2 (Ω)). Clearly, the vector-valued measure µ is regular (cf., e.g., [START_REF] Diestel | Vector measures[END_REF]).

By Theorem 3, the following convergence holds, up to passing to a subsequence

u κ → u, in C 0 ([0, T ]; L 2 (Ω)). (22) 
Besides, by [START_REF] Rȃdulescu | Global well-posedness for a class of fourth order nonlinear strongly damped wave equations[END_REF] we have

0 ≤ [I + u i,κ e i ] • q - L 2 (0,T ;L 2 (Ω)) ≤ √ Lκ. (23) 
Consequently, by ( 4), ( 22) and ( 23), we get

[I + u i (t)e i ] • q -= 0, a.e. in Ω, for a.a. t ∈ (0, T ), (24) 
i.e., u(t) ∈ U (Ω), for a.a. t ∈ (0, T ).

Given any v ∈ D(0, T ; V (Ω)) such that v(t) ∈ U (Ω) for a.a. t ∈ (0, T ), we use (v -u κ ) as a test function in the variational equations of Problem P(κ; Ω), getting 2ρ üi,κ (t)e i , (v j (t) -u j,κ (t))e j L 2 (Ω)

+ T 0 Ω A ijkl e k l (u κ (t))e i j (v(t) -u κ (t)) dx dt - 1 κ T 0 Ω {[I + u i,κ (t)e i ] • q} -((v j (t) -u j,κ (t))e j • q) dx dt = T 0 Ω f i (t)(v i (t) -u i,κ (t)) dx dt. (25) 
Besides, we observe that the third integral term of ( 25) is such that

1 κ T 0 Ω [I + u i,κ (t)e i ] • q -((v j (t) -u j,κ (t))e j • q) dx dt ≥ 0, (26) 
for all κ > 0, since v(t) ∈ U (Ω) for a.a. t ∈ (0, T ).

By virtue of the continuity of the mappings ẽi j and the convergence process [START_REF] Piersanti | Numerical methods for static shallow shells lying over an obstacle[END_REF] we get that, for all v ∈ L 2 (0, T ; V (Ω)), the mapping

u ∈ L 2 (0, T ; V (Ω)) → T 0 Ω A ijkl ẽi j (u)(t)ẽ k l (v)(t) dx dt
is linear and continuous. An application of the convergence process (21) thus gives

T 0 Ω A ijkl ẽi j (u κ )(t)ẽ k l (v)(t) dx dt → T 0 Ω A ijkl ẽi j (u)(t)ẽ k l (v)(t) dx dt, (27) 
as κ → 0.

200 By the convergence process [START_REF] Piersanti | Numerical methods for static shallow shells lying over an obstacle[END_REF], and [START_REF] Ciarlet | An Introduction to Differential Geometry with Applications to Elasticity[END_REF] we infer the following convergence üi,κ (t)e i , (v j (t) -u j,κ (t))e j → ũi (t)e i , (v j (t) -u j (t))e j ,

as κ → 0.

By the convergence process [START_REF] Piersanti | Numerical methods for static shallow shells lying over an obstacle[END_REF], and the continuity of the bilinear form

(u, v) ∈ L 2 (0, T ; V (Ω))×L 2 (0, T ; V (Ω)) → T 0 Ω A ijkl ẽi j (u)(t)ẽ k l (v)(t) dx dt,
we obtain, in particular, that

T 0 Ω A ijkl ẽi j (u)(t)ẽ k l (u)(t) dx dt ≤ lim inf κ→0 T 0 Ω A ijkl ẽi j (u κ )(t)ẽ k l (u κ )(t) dx dt. (29) 
Combining ( 26), ( 27), [START_REF] Friedrichs | On the boundary-value problems of the theory of elasticity and Korn's inequality[END_REF], and (29), we immediately deduce that the limit u is a solution to the variational inequalities in Problem (P(Ω)).

We can observe that, by the convergence process (21), the vector-valued measure µ ∈ M([0, T ]; L 2 (Ω)) can be interpreted as the acceleration of the limit displacement u. Indeed, by the classical definition of weak derivative, we have that, for each i,

T 0 ui,κ (t)ϕ (t) dt = - T 0 üi,κ (t)ϕ(t) dt, for all ϕ ∈ D(0, T ).
By the properties of Lebesgue-Bochner integrals we have that, for all v ∈ L 2 (Ω) and all ϕ ∈ D(0, T ), it results

Ω T 0 ui,κ (t)(ϕ (t)v i ) dt dx = - Ω T 0 üi,κ (t)(ϕ(t)v i ) dt dx, so that, letting κ → 0 (see Comment 3 of Chapter 4 of [49]) gives Ω T 0 ui (t)ϕ (t) dt v i dx = T 0 Ω ui (t)v i dx ϕ (t) dt = -ũ(t), ϕ(t)v L 2 (Ω) = - T 0 Ω dµ i (t)(v i ϕ(t)) dt,
derivative, and, finally, the last equality holds true by Theorem 4.

To sum up, we have obtained that

T 0 Ω ui (t)v i dx ϕ (t) dt = - T 0 Ω dµ i (t)(v i ϕ(t)) dt,
for all ϕ ∈ D(0, T ) and all v ∈ L 2 (Ω).

We can thus regard the vector-valued measure µ as the second weak derivative with respect to t ∈ (0, T ) of the limit displacement u obtained via the process [START_REF] Piersanti | Numerical methods for static shallow shells lying over an obstacle[END_REF]. This justifies the following change in the notation µ = ü, and the symbol ü is now an element of M([0, T ]; L 2 (Ω)).

In conclusion, we have shown that u is in the set U (Ω) and that satisfies the variational inequalities in Problem P(Ω), namely, 2ρ ü(t), v(t) -u(t) L 2 (Ω)

+ T 0 Ω
A ijkl e k l (u(t))e i j (v(t) -u(t)) dx dt

≥ T 0 Ω f i (t)(v i (t) -u i (t)) dx dt, for all v ∈ D(0, T ; V (Ω)) such that v(t) ∈ U (Ω) for a.a. t ∈ (0, T ).
The last thing to check is the validity of the initial conditions for u. Let us introduce the operator L 0 : C 0 ([0, T ]; L 2 (Ω)) → L 2 (Ω) defined in a way such that L 0 (v) := v(0). Such an operator turns out to be linear and continuous and, by the convergence [START_REF] Ciarlet | An Introduction to Differential Geometry with Applications to Elasticity[END_REF], we get that

u κ (0) → u(0) = u 0 , in L 2 (Ω).
For what concerns the initial condition for the first derivative of u with respect to t, we present an argument, making use of the assumed "uniformity property", that slightly differs from the ones used in [START_REF] Bock | On hyperbolic contact problems[END_REF], [START_REF] Bock | Dynamic contact problem for viscoelastic von Kármán-Donnell shells[END_REF], and [START_REF] Bock | On the solutions of a dynamic contact problem for a thermoelastic von Kármán plate, Nonlinear Anal[END_REF]. For sake of clarity, we present all the computations in detail. Observe that, by virtue of the "uniformity property", we have [I + u i,κ (t)e i ] • q ≥ 0 a.e. in Ω, for a.a. 0 < t < t0 , and for all κ > 0.
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As a result, for a.a. 0 < t < t0 , equation ( 20) takes the simpler form

2ρ üκ (t) + Au κ (t) = f (t), in V * (Ω), (30) 
since we have N u κ (t) = 0 in V * (Ω), for a.a. 0 < t < t 0 , for all κ > 0.

Since f = (f i ) ∈ L ∞ (0, T ; L 2 (Ω)), we deduce that ( üκ ) κ>0 is bounded in L ∞ (0, t0 ; V * (Ω)) and, up to extracting a subsequence, we get that the following convergence takes place as κ → 0 üκ ü, in L 2 (0, t0 ; V * (Ω)).

Hence, by the convergence process [START_REF] Hlaváček | On inequalities of Korn's type. II. Applications to linear elasticity[END_REF] and the Sobolev embedding theorem (Theorem 10.1.20 of [START_REF] Kyritsi-Yiallourou | Handbook of Applied Analysis[END_REF]), the following convergence holds uκ u, in C 0 ([0, t0 ]; V * (Ω)). [START_REF] Duvaut | Inequalities in Mechanics and Physics[END_REF] Let us thus introduce the operator L1 : C 0 ([0, t0 ]; V * (Ω)) → V * (Ω) defined in a way such that L1 (v) := v(0), for all v ∈ C 0 ([0, t0 ]; V * (Ω)). Such an operator L1 is linear and continuous and, by the convergence [START_REF] Duvaut | Inequalities in Mechanics and Physics[END_REF] and the reflexivity of the space V * (Ω), we are in a position to recover the initial condition u(0) = u 1 .
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In conclusion, we have shown that u is a solution of Problem P(Ω) and the proof is thus complete.

About the uniqueness of the solution

To conclude the investigation, we observe that the following phenomenon that occurs in the early stage. We can indeed show that, 2ρ ü(t) + Au(t) = f (t), in V * (Ω), [START_REF] Nečas | Mathematical theory of elastic and elasto-plastic bodies: an introduction[END_REF] admits a unique solution, for a.a. 0 < t < t0 . In this direction, we follow [START_REF] Evans | Partial Differential Equations, Second Edition[END_REF] (Theorem 4, Section 7.2).
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To see this, let us show that the only solution to the initial value problem 2ρ ü(t) + Au(t) = 0, in V * (Ω), for a.a. 0 < t < t0 , u(0) = 0, A ijkl e k l (v(0))e i j (v(0)) dx = 0.

u(0) = 0, (34) 
We thus infer, u(s) L 2 (Ω) = 0, for all 0 ≤ s ≤ t0 . By the arbitrariness of s, we conclude that the solution u is uniquely defined in the interval [0, t0 ].

In conclusion, all the solutions to Problem P(Ω) coincide in the interval [0, t0 ].

A sufficient condition ensuring the "uniformity property"

Let us recall the "uniformity property" that we used to prove Theorem 6:

There exists a number t0 > 0, independent of κ, such that [I + u i,κ (t)e i ] • q ≥ 0 a.e. in Ω, for a.a. 0 < t < t0 , for all κ > 0.

In this section we identify a simple sufficient condition that insures the validity of the "uniformity property". Let us consider applied body forces f such that each one of their components f i satisfies f i (t) = 0 a.e. in Ω, for a.a. 0 < t < τ 0 , for some τ 0 > 0. As a result, almost all numbers t0 between 0 and τ 0 ensure the validity of the "uniformity property".

Theorem 2 .

 2 Let T > 0 and suppose that the function y : [0, T ] → R is absolutely continuous and such that dy dt (t) ≤ a(t)y(t) + b(t), a.e. in (0, T ), where a, b ∈ L 1 (0, T ) and a, b ≥ 0 a.e. in (0, T ). Then, it results y(t) ≤ y(0) + t 0 b(s) ds e t 0 a(s) ds , for all t ∈ [0, T ].

Theorem 4 .

 4 Let ω be a compact Hausdorff space and let X be a Banach space satisfying the Radon-Nikodym property. Let F be the collection of Borel sets of 145 ω.

is u ≡ 0 . 0 -

 00 To this aim, for any fixed 0 ≤ s ≤ t0 , let us define the functionv(t) := τ ) dτ , 0 ≤ t ≤ s, 0 , s < t ≤ t0 ,a.e. in Ω, with v ∈ C 0 ([0, t0 ]; V (Ω)). Since u(0) = 0 = v(s), an application of the integration by parts formula (Corollary 10.1.26 of[START_REF] Kyritsi-Yiallourou | Handbook of Applied Analysis[END_REF]) givess 2ρ V * (Ω) ui (t)e i , vj (t)e j V (Ω) + Ω A ijkl e k l (u(t))e i j (v(t)) dx dt = 0.Since v(t) = -u(t), for all 0 ≤ t ≤ s, the latter formula becomes s 0 2ρ V * (Ω) ui (t)e i , u j (t)e j V (Ω) +ΩA ijkl e k l ( v(t))e i j (v(t)) dx dt = 0.Again, by integration by parts formula (Corollary 10.1.26 of[START_REF] Kyritsi-Yiallourou | Handbook of Applied Analysis[END_REF]), we get ijkl e k l (v(t))e i j (v(t)) dx dt = ρ u(s) 2 L 2 (Ω) + 1 2 Ω

Acknowledgements

The author is greatly indebted to Professor Igor Bock, Professor Philippe G.

Ciarlet, and Professor Cristinel Mardare for their valuable advice.

The author acknowledges partial support by the ERC advanced grant 668998 (OCLOC) under the EU's H2020 research program.

where the first equality holds by Fubini's theorem, the second equality holds by Theorem 4, the third convergence of the process [START_REF] Piersanti | Numerical methods for static shallow shells lying over an obstacle[END_REF] and the definition of weak