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One approach to voting on several interrelated issues consists in using a language for compact 
preference representation, from which the voters’ preferences are elicited and aggregated. Such 
a language can usually be seen as a domain restriction. We consider a well-known restriction, 
namely, conditionally lexicographic preferences, where both the relative importance between issues 
and the preference between the values of an issue may depend on the values taken by more 
important issues. The naturally associated language consists in describing conditional importance 
and conditional preference by trees together with conditional preference tables. In this paper, we 
study the aggregation of conditionally lexicographic preferences for several common voting rules 
and several classes of lexicographic preferences. We address the computation of the winning 
alternative for some important rules, both by identifying the computational complexity of the 
relevant problems and by showing that for several of them, computing the winner reduces in a 
very natural way to a maxsat problem.

1. Introduction

There are many situations where a group of agents has to make a common decision in multi-issue domains, i.e. a set of
possibly interrelated binary issues. A typical example of such a situation is that of multiple referenda: there is a set of binary
issues (such as building a sport centre, building a cultural centre etc.), and the group must make a yes/no decision on each
of them [1]. Another example is group product configuration, where the group must agree on a complex object consisting of
several components, each taking one of two possible values.

Voting on several interrelated issues is a challenging problem. If the agents vote separately on each issue, then paradoxes
generally arise [1,2]. Such paradoxes rule out this ‘decompositional’ approach, except in the very restricted case when
voters have separable preferences. A second way consists in using a sequential voting protocol: issues are considered one
after another, in a predefined order, and the voters know the assignment to the earlier variables before expressing their
preferences on later ones (see, e.g., [3–5]). This method, however, works reasonably well only if we can guarantee that there
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exists a common order over issues such that every agent can express her preferences unambiguously on the values of each
issue at the time she is asked to report them.

A third class of methods consists in using a language in which the agents can express their preferences over the space of
combined alternatives for all issues simultaneously. If the language is expressive enough to allow for expressing any possible
preference relation, then the aforementioned paradoxes are avoided. However, this expressivity implies significant elicitation
and computation costs: in a multi-issue domain, the number of alternatives is exponential in the number of issues, therefore
the number of possible preference relations is doubly exponential and whichever language we use to represent them, the
input will be exponential in the worst case. One way around this problem is to use some compact preference representation
language; this comes at the cost of some domain restriction, depending on the chosen language.

Therefore, when aggregating preferences on multiple interrelated issues, a choice, or a trade-off, must be made between
(a) being prone to severe paradoxes, (b) requiring a heavy communication and computation burden or (c) imposing a domain
restriction.

In this paper, we explore a particular domain restriction by focusing on conditionally lexicographic preferences. Standard
lexicographic preferences are a simple model, where alternatives are first sorted according to one issue, considered to be
the most important one; alternatives that have equal values for that issue are then sorted according to the second most
important issue, and so on until the set of alternatives is totally ordered. The psychology literature shows evidence that
lexicographic preferences are often an accurate model for human decisions [6,7]. Although very intuitive, this model is quite
restrictive. However, it can be extended by allowing the preferences over the values of an issue, as well as the relative
importance of two issues, to depend on the values of more important issues. The relative importance of issues is no longer
a linear ordering, but a tree, with the most important issue at its root. A preference relation is conditionally lexicographic if
it is defined by such a lexicographic preference tree. To the best of our knowledge, conditionally lexicographic preference
trees were first introduced by Fraser [8,9], and have been considered in individual decision making (and especially in
constraint satisfaction problems) by Wilson [10,11] and Wallace and Wilson [12], as well as, from the learning point of
view, by Booth et al. [13], Brauning et al. [14,15] and by Liu and Truszczyński [16]. Note that Wilson [11] and Brauning et
al. [14,15] propose to extend further the lexicographic preference model by allowing several variables to appear at the same
importance level/node in the tree; we do not consider such trees in this paper.

Lexicographic preferences appear to be a reasonable assumption in many domains (see the work of Taylor [17] for a
discussion on the plausibility of lexicographic preferences in various political contexts). However, it implies a strong domain
restriction: for q binary variables, there are (2q)! preference relations and only 2q (respectively q! × 2q) lexicographic prefer-
ence relations if the importance order is fixed (respectively, not fixed). As explained above, domain restrictions are needed
to escape strong paradoxes and significant communication cost, but the risk, by making a too strong domain restriction, is
to be on the weak side regarding its plausibility, since only a tiny fraction of the whole set of preference relations falls in
the class of lexicographic preference relations. (A similar problem occurs with separable preferences.) Conditionally lexico-
graphic preference models still are a domain restriction, but a much weaker one than standard lexicographic preferences,
as there are exponentially more conditionally lexicographic preferences than lexicographic preferences [13]. Therefore, this
assumption can be seen as a reasonable trade-off between expressivity and complexity.

The aggregation of lexicographic preferences over combinatorial domains has received only little attention. Taylor [17]
considers the aggregation of lexicographic preferences on a domain of two attributes with real-valued domains. Each voter
has unconditional, single-peaked preferences on each of the two attribute domains. He shows that when voters all have
the same importance order, there always exists a weak Condorcet winner, but that this is no longer the case if voters may
diverge on the relative importance of the two attributes (and he characterizes situations where a weak Condorcet winner
exists). Pattanaik [18] generalizes the former results on domains of more than two attributes, and establishes conditions
for the existence of a socially best alternative for a wider class of voting rules including simple majority. Bhadury et al.
[19] generalize Taylor’s latter result to more than two attributes. Encarnacion [20] focuses on preference aggregation (with
a preference relation as output) rather than voting: he also considers lexicographic preferences with a unconditional im-
portance order, common to all agents, and single-peaked preferences on the domain of each variable, and shows that this
domain restriction is Arrow-consistent.

More recently, Liu and Truszczyński [21] obtained results completing the results we obtained in our conference paper
[22] (see Section 5 for more discussions) and used answer-set programming to encode and solve preference aggregation
problems on combinatorial problems with conditionally lexicographic preferences (we will come back to this in more detail
in Section 4).

Dividino et al. [23] make use of lexicographic preferences for preference aggregation in multi-attribute domains. A major
difference with our work is that they use lexicographicity for the preference aggregation phase and not for defining each of
the individual preferences. They start with a set of items (pieces of information on the web), each associated with a tuple
of values corresponding to various criteria such as the time the item was posted, its source, etc. Each criterion corresponds
to a weak order over items (for instance, for time, the more recent the better). Finally, given an importance order ⊲ on
criteria, the global preference relation over items is defined lexicographically according to ⊲.



The generic problem of aggregating conditionally lexicographic preferences can be stated as follows. The set of alter-
natives is a multi-issue domain D composed of a finite set of binary issues.1 We have a set of voters, each providing a
conditionally lexicographic preference relation over D under the compact and natural form of a lexicographic preference
tree (LP-tree for short) [13], which we will define soon. Therefore, a (compactly represented) profile V consists of a collec-
tion of LP-trees. Finally, for a given voting rule r, we ask whether there is a simple way to compute the winner, namely
r(V ), where ‘simple’ means that the winner should be computed efficiently and directly from V . This means that we must
avoid producing the entire preference relations of every voter explicitly, which would require exponential space. For many
cases where winner determination is computationally hard, we show that these problems can be efficiently converted to
maxsat problems and can be solved by maxsat solvers.

The rest of the paper is organized as follows. Conditionally lexicographic preferences and their compact representation
by LP-trees are defined and discussed in Section 2. In Section 3 we state the problem considered in this paper, namely the
application of voting rules to profiles composed of conditionally lexicographic preferences. We will focus on three families
of rules. First, k-approval rules in Section 4: we show that for many values of k, we can give a quite satisfactory answer to
our question above, even for our most general models. Note that by ‘satisfactory’ we do not necessarily mean ‘computable
in polynomial time’. For instance, we will show that in some cases, there is a model-preserving translation between the
winner determination problem and a maximum (weighted or unweighted) satisfiability problem. Since efficient maxsat

solvers exist, in such cases we can consider preference aggregation as tractable to some extent. In Section 5 we focus on
the Borda rule (and, to a lesser extent, to some other positional scoring rules sharing some properties with Borda): we
show that winner determination can be solved in polynomial time for some of the simplest LP-tree models, and propose a
translation into a weighted minimum satisfiability problem for some general models. We also provide a natural family of
scoring rules for which similar translations exist. Then in Section 6 we consider the existence of a Condorcet winner, and
show that even deciding whether a given alternative is a Condorcet winner is hard. In Section 7, we consider a particular
setting where all voters have a common, possibly conditional, importance structure among issues, but can have varying,
conditional preferences over the values of each issue. Section 8 is devoted to the specific case of LP-trees with fixed local
preferences but possibly different structures. In Section 9 we discuss the application of our results to committee elections,
as well as the importance of our domain restriction, and the extension of our results to variables with nonbinary domains.
Finally, Section 10 concludes.

2. Conditionally lexicographic preferences and LP-trees

Let I = {X1, . . . , Xq} (q ≥ 2) be a set of issues, where each issue Xi takes a value in a binary local domain D i , denoted
as {0i, 1i}, or as {xi, xi}, or, when there is no ambiguity, as {0, 1}. The set of alternatives is D = D1 × · · · × Dq , that is,
an alternative is identified by its values on all issues. Alternatives are denoted by d, e, etc. For any Y ⊆ I we denote
DY =

∏

Xi∈Y D i . An element of DY is called a partial alternative. Let L(D) denote the set of all linear orders over D .
We first give a high-level description of lexicographic preferences. Any two alternatives d, e are compared by looking at

the issues in sequence, according to their importance, until we reach an issue X such that the value of X in d is different
from the value of X in e. d and e are then ordered according to the local preference relation over the values of X . For such
lexicographic preference relations we need both an importance relation between issues, and local preference relations over
the domains of the issues. Both the importance between issues and the local preferences may be conditioned by the values
of more important issues. Such lexicographic preference relations can be compactly represented by Lexicographic Preference
trees (LP-trees) [13], formally defined in the upcoming subsection.

2.1. Lexicographic preference trees

An LP-tree L is composed of two parts:

1. A tree T where each node t is labelled by an issue, denoted by Iss(t) = Xi , such that every issue appears once and only
once on each branch; each non-leaf node either has two outgoing edges, labelled by the two values in the local domain
(0i and 1i ) respectively, or one outgoing edge, labelled by {0i, 1i}.

2. A conditional preference table CPT(t) for each node t , which is defined as follows. Let Anc(t) denote the set of issues
labelling the ancestors of t . Let Inst(t) (respectively, NonInst(t)) denote the set of issues in Anc(t) that have two (re-
spectively, one) outgoing edge(s). There is a set Par(t) ⊆ NonInst(t) such that CPT(t) is composed of the agent’s local
preferences over D Iss(t) for all valuations of Par(t). That is, if Iss(t) = Xi then for every valuation u of Par(t), the CPT
contains either u : 0i ≻ 1i or u : 1i ≻ 0i .

An LP-tree L represents a linear order ≻L over D as follows. Let Xi be the issue associated with the root of L, and let ≻Xi

denote the associated local preference relation. We denote by LXi=xi (respectively LXi=xi ) the subtree of L corresponding to

1 The assumption that issues (or variables) are binary is made for the sake of simplicity, and because it holds in many practical domains, especially 
multiple referenda (see [24]). We discuss the extension of our results to non-binary domains in Subsection 9.3.
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Fig. 1. Four LP-trees.

the branch Xi = xi (respectively Xi = xi ). Let d = (d1, . . . , dq) and e = (e1, . . . , eq) be two different alternatives. Then d ≻L e

if either (1) di ≻Xi
ei , or (2) di = ei and d ≻LXi=di

e.
Moreover, to each alternative d ∈ D corresponds a single branch in the tree: at each node labelled with issue Xi with

two outgoing edges, the branch corresponding to d follows the edge labelled with di . The importance order associated with d

in L, denoted by IO(L, d), is the order in which issues appear along that branch. We use ⊲ to denote an importance order
to distinguish it from agents’ preferences ≻ over D . If in L each node has no more than one child, then all alternatives are
associated with the same importance order ⊲, and we say that ⊲ is the importance order of L.

The size |L| of an LP-tree L is the number of its nodes plus the accumulated size of its conditional preference tables.
Note that the size of L may be exponential in q even in the case of a linear structure.

Example 1. Suppose there are three binary issues to be decided among the inhabitants of a city.

1. Should the city build a metro?
2. Should the city centre be pedestrian?
3. Should there be a fee for cars entering the city?

The three issues are M (metro) with domain {m, m}, P (pedestrian) with domain {p, p}, and F (fee) with domain { f , f }.
There are four voters. Each voter has conditionally lexicographic preferences represented by the LP-trees LP1 , LP2 , LP3 and
LP4 respectively as depicted in Fig. 1.

Consider the LP-tree LP1 . Let P1 be the node at the extremity of the left branch. We have Iss(P1) = P, Anc(P1) = {M, F},
Inst(P1) = {M}, NonInst(P1) = {F}, and Par(P1) = ∅ because the preferences over {p, p} do not depend on the value of F. On
the other hand, if F1 is the node at the extremity of the right branch, then Par(F1) = {P}. The linear order represented by
LP1 is

mf p ≻mfp ≻m f p ≻m f p ≻mpf ≻mp f ≻mp f ≻mp f .

Moreover, IO(LP1, mfp) = [M ⊲ F ⊲ P] and IO(LP1, m f p) = [M ⊲ P ⊲ F].

We say that an LP-tree has unconditional local preferences when the preference relation on the value of every issue
is independent from the values of all other issues. In other words, each issue in the tree only contains unconditional
preferences. This is the case for trees LP3 and LP4 but not for LP1 nor LP2 . In LP1 , for instance, the preference between
p and p depends on the value of M. We note that when the preferences are unconditional it is still possible that the
importance relation be conditional, i.e. the tree may have branches.

Likewise, we say that the importance relation is unconditional when the order of the issues is the same in all branches of
the tree (or, equivalently, when the tree has a single branch). This is the case of trees LP2 and LP4 . Note that LP4 has both
unconditional importance and unconditional local preferences. See [13] for a discussion on various sub-classes of LP-trees.

A property that makes LP-trees appealing for social choice is that it is easy to compute the rank of alternatives:

Observation 1. Consider an alternative d and an LP-tree L. For each issue Xi , let ti be the node labelled with Xi in the
branch of L corresponding to d; we can define the level of Xi w.r.t. d and the local rank of d w.r.t. to Xi as follows:

• level(L, d, Xi) is the level of ti in the tree, that is, the distance from t to the root plus one. The level of the root is 1
and the level of all leaves is q.

• 1(L, d, Xi) is the local rank of the value of d for issue Xi in the local preference at ti . Because issues are binary,
1(L, d, Xi) = 0 if di ≻ di at node ti (given the values of d for the issues that appear above ti ), and 1(L, d, Xi) = 1
otherwise.

Let rank(L, d) be the rank of d in the linear order ≻L defined by L, then:

rank(L,d) = 1+

q
∑

i=1

2q−level(L,d,Xi)1(L,d, Xi) (1)



Example 2. Consider LP1 defined in Example 1.

rank(LP1,mf p) = 1+ 22 × 0+ 21 × 0+ 20 × 0 = 1;

rank(LP1,m f p) = 1+ 22 × 1+ 21 × 1+ 20 × 1 = 8;

rank(LP1,m f p) = 1+ 22 × 0+ 21 × 1+ 20 × 1 = 4.

Note that rank(L, d) can be computed by a simple top-down traversal of L along the branch corresponding to d, in time
linear in the number of issues.

Conversely, Algorithm 1 computes the alternative with rank k in the linear order ≻L corresponding to an LP-tree L: the
base 2 representation of k − 1 is used to guide a top-down traversal of the tree from the root to a leaf. The running time is
again linear in the number of issues.

Algorithm 1: F indAlternative(L, k).

1 Let k − 1 = (kq−1...k0)2 and L∗ =L;
2 for i = q − 1 down to i = 0 do

3 Let Xi be the root issue of L∗. Let the local preferences be xi ≻ xi ;
4 if ki = 1 then

5 L
∗ ←L

∗
Xi=xi

; di ← xi ;

6 else

7 L∗ ←L
∗
Xi=xi

; di ← xi ;

8 end

9 end

10 return d.

3. Applying voting rules to LP-trees

A (voting) profile V over a set of alternatives D is a collection of n votes V1, . . . , Vn , each being a linear order on D .
An (irresolute) voting rule r maps every profile V to a nonempty subset of D: r(V ) is the set of co-winners for V under r.
A scoring function S is a mapping from L(D)n × D to R. Often, a voting rule r is defined in such a way that r(V ) is
the set of alternatives maximizing some scoring function Sr . In particular, a positional scoring rule is defined by a scoring
vector v = (v(1), . . . , v(m)), where m is the number of alternatives (in this paper m = 2q): for any vote V i ∈ L(D) and
any c ∈ D , let Sv(V , c) = v(rankV (c)), where rankV i

(c) is the rank of c in V i . Then for any profile V = (V1 . . . , Vn), let
Sv(V , c) =

∑n
j=1 Sv(V j, c). The winner is the alternative maximizing Sv(V , ·). In particular, the k-approval rule Appk (with

k ≤m), is defined by the scoring vector v(1) = · · · = v(k) = 1 and v(k + 1) = · · · = v(m) = 0. Let SkApp denote scoring vector
for k-approval. The Borda rule is defined by the scoring vector (m − 1, m − 2, . . . , 0). Let SBorda denote the scoring vector for
Borda, that is, SBorda(V i, c) =m − rankV i

(c).
Let NV (c, d) denote the number of votes in V that rank c ahead of d. An alternative c is the Condorcet winner for a

profile V if for every d 6= c, a (strict) majority of votes in V prefers c to d, that is, if NV (c, d) > n/2. If for every d 6= c we
have NV (c, d) ≥ n/2, with equality for at least one d, then c is a weak Condorcet winner.

3.1. Voting restricted to conditionally lexicographic preferences

Applying a voting rule to profiles consisting of arbitrary preferences on multi-issue domains is highly unpractical, be-
cause the specification of such preferences requires exponential space if no domain restriction is made. Does it become
significantly easier when we restrict to conditionally lexicographic preferences? This is the key problem addressed in this
paper. Of course the answer depends on the voting rule used.

A conditionally lexicographic profile is a collection of n conditionally lexicographic preferences over D . As conditionally
lexicographic preferences are compactly represented by LP-trees, we define an LP-profile V as a collection of n LP-trees.

Given an LP-profile V and a voting rule r, a naive way of finding the co-winners would consist in determining the n
linear orders induced by the LP-trees and then applying r to these linear orders. However, this would be very inefficient,
both in space complexity and time complexity. Therefore, we would like to know if it is feasible, and efficient, to compute
the winners directly from the LP-trees. More specifically, we ask the following questions: (a) given a voting rule, how
difficult is it to compute the co-winners (or, else, one of the co-winners) for various classes of LP-trees? (b) for score-based
rules, how difficult is it to compute the score of the co-winners? Formally, for each voting rule r defined as the maximizer
of scoring function S , we consider the following decision and function problems.

EVALUATION (for r):

Input LP-profile V , integer number T



Question Does there exist an alternative d such that S(V , d) > T ?

WINNER (for r):

Input LP-profile V
Output r(V )

Note that if evaluation is NP-hard and the score of an alternative can be computed in polynomial time, then winner

cannot be in P unless P = NP: if winner were in P, then evaluation could be solved in polynomial time by computing a
winner and its score. For the voting rules studied in this paper, if not mentioned specifically, evaluation is w.r.t. the score
functions we present when defining these rules.

3.2. LP-trees and propositional logic

Some of the positive results in the sequel are obtained by translating LP-trees into some particular types of logical
formulas. We briefly recall here some basic notions of propositional logic and some satisfiability problems that will be used
in the sequel.

Given a set of propositional symbols P , logical formulas can be built with the usual connectives ∧ (conjunction), ∨ (dis-
junction) and ¬ (negation). In several translations, we will use one propositional symbol for each issue, and so we will use
the same notation for an issue Xi and the corresponding propositional symbol, so that the set of propositional symbols will
often be I itself.

The literals are the elements of P and their negations; that is, the set of literals is {X, ¬X | X ∈P}. A clause has the gen-
eral form C = l1 ∨ l2 ∨ . . .∨ l|C | , where each li is a literal. When all the literals, except possibly one, are negated propositions,
it is a Horn clause. A dual of a clause is a cube, which is a conjunction of literals.

A valuation of P assigns a Boolean value 0 (false) or 1 (true) to each symbol in P . A valuation satisfies a clause if it
makes at least one literal true, and sat is the problem of deciding if a given set of clauses is satisfiable, that is, if there is at
least one valuation that satisfies all clauses; such a valuation is called a model of the set of clauses. sat is an NP-complete
problem.

The maxsat problem is a generalization of sat: given a set of clauses, we want to find a valuation maximizing the
number of satisfied clauses. In the partial weighted maxsat problem, some clauses have an associated positive weight,
the others are left unweighted; the goal is to maximize the sum of the weights of the satisfied weighted clauses, while
satisfying all the unweighted clauses. These are NP-complete problems, but the 2016 maxsat Evaluation, part of the 19th
International Conference on Theory and Applications of Satisfiability Testing, shows that some solvers are able to solve
industrial benchmarks in a few minutes, with up to hundreds of thousands of variables, and millions of clauses (of size 3).2

Some of the most competitive solvers, at the time of writing, are described in e.g. [25–27]. In the generalized maxsat

problem, the input is not restricted to clauses: given a set of propositional formulas, we want to find a valuation that
satisfies as many of the formulas as possible.

weighted minsat is another variant of sat: given a set of clauses, each associated with a positive cost, we want to find
a valuation with minimum cost, where the cost of a valuation is the sum of the weights of the clauses that it satisfies.
Although it is NP-complete, this problem too can be solved using efficient solvers; some work by translating these instances
into weighted maxsat instances (e.g. [28,29]), whereas more recent ones use branch-and-bound techniques directly on the
minsat instances (see, e.g. [30,31]). [30] reports on experiments where random minsat instances with one hundred variables
and up to five times more clauses were solved in a few minutes. According to [31], the performances of minsat solvers seem
to be comparable to that of maxsat solvers, some particular problems being more efficiently solved with one or the other.

4. k-Approval

Recall that it is possible to compute, in time linear in the number of issues, the k-th ranked issue of any LP tree for
any k (cf. Algorithm 1). Therefore, given an integer k < 2q and an LP profile V , we can compute the top k alternatives of
all LP-trees in V , and store them in a table together with their k-approval scores. As we have at most kn such alternatives,
constructing the table takes time in O (knq). Hence we have the following result.

Proposition 2. For any constant k, given an LP-profile V with n voters, the k-approval co-winners for V can be computed in time in 

O (knq).

Example 3. Let V be the profile of Example 1. The winners for 1-approval (that is, plurality) are mf p, m f p, m fp and
m f p – their 1-approval score is 1. The winners for 2-approval are m f p and m f p, with a 2-approval score of 2.

2 The 2016 maxsat Evaluation webpage is at the address http://www.maxsat .udl .cat /16 /index .html, with links to result tables and benchmarks.



A similar result also holds for computing the (2q − k)-approval co-winners for any constant k. However, unless q is very
small, there is little practical interest in using (2q − k)-approval for a fixed (small) value of k, since in practice, we expect
kn ≪ 2q , so that almost every alternative would be a co-winner.

We now focus on k-approval voting for values of k that are defined via proportions of the number 2q of alternatives.
Let M ≤ q be a positive integer and define Rat(M) as the set of all rational numbers of the form j/2M for some positive
integer M and j ∈ {1, . . .2M − 1}. Equivalently, Rat(M) is the set of all numbers α in the interval (0, 1) with a finite base 2
representation of length at most M . For any α ∈ Rat(M), α-proportion-approval is another name for the α2q approval rule.

We first consider 12 -proportion-approval, or, equivalently, 2
q−1-approval. This rule requires to count the top 50% alterna-

tives, which corresponds to the ‘better’ half of the tree. In this case, each voter only has to communicate her most important
issue and its preferred value. Applying 2q−1-approval here is therefore both intuitive and cheap in communication, and it
turns out that the co-winners can be represented compactly and computed very easily.

Theorem 3. Winner for 2q−1-approval and LP-profiles can be computed in time O (nq).

Proof. An alternative d is among the first half of alternatives in an LP-tree L j if and only if the root issue of L j is assigned
to its preferred value. We build a table with the following 2q entries {11, 01, . . . , 1q, 0q}: for every L j we add 1 to the score
of 1i (resp. 0i) if Xi is the root issue of L j and the preferred value is 1i (resp. 0i). When this is done, for each Xi , we
instantiate Xi to 1i (resp. 0i) if the score of 1i is larger than the score of 0i (resp. vice versa); if the scores are identical, we
do not instantiate Xi . We end up with a partial instantiation, whose set of models (satisfying valuations) is exactly the set
of co-winners. ✷

Example 4. Let V be the profile consisting of the 4 LP-trees of Example 1: P is the most important issue for two voters, both
with preferred value p; M is the most important issue for one voter with preferred value m, and F is the most important
issue for one voter with preferred value f : therefore, the 4-approval winner is mf p. If we add to this profile a fifth LP-tree
with most important issue M and preferred value m then M will not be instantiated, and the two cowinners will be mf p

and m f p.

While 12 -proportion-approval takes into account only the most important issue of each voter together with his preferred

value, 14 - and 34 -proportion approval take into account the most important two issues of each voter; 18 -, 
3
8 -, 

5
8 - and 78 take

into account the most important three issues of each voter, and so on.
We now give a practical way to compute the α-proportion-approval co-winners, using a translation of the problem into

an instance of generalized maxsat, with a one-to-one correspondence between the solutions of the voting problem and the
solutions of its translation (which is usually referred to as a “model-preserving translation”). Using a reverse translation, we
will then prove that, for any α ∈ Rat(M) \ { 12 }, α-proportion-approval is in fact NP-hard.

To illustrate the idea we first give the construction for two special cases: α = 1/4 and α = 3/4. Consider first the case
α = 1/4 and some LP-tree L j whose top issue is Xi1 with preferred value xi1 ∈ {0i1 , 1i1 }. Assume that the second most
important issue given xi1 is Xi2 , with preferred value xi2 . Then, the 

1
42

q best alternatives are those that have precisely
values xi1 and xi2 for Xi1 and Xi2 respectively. We can encode these alternatives by a formula li1 ∧ li2 , whose models are
precisely the 142

q best alternatives for L j : if xi1 = 1i1 then we let li1 = Xi1 , and otherwise li1 = ¬Xi1 ; li2 is defined similarly.
Consider now the case α = 3/4 and some LP-tree L j whose top issue is Xi1 with preferred value xi1 and whose second

most important issue given xi1 is Xi2 , with preferred value xi2 in this case: the 3
42

q best alternatives are those for which
Xi1 = xi1 and those for which Xi1 = xi1 and Xi2 = xi2 . These alternatives can be encoded as the models of the formula
li1 ∨ li2 , where li1 and li2 are the same as defined above for the case α = 1

4 .
More generally, we define, for LP-tree L over a set I of q issues, and a fraction α ∈ Rat(M), a formula φ(L, α) which

characterizes the alternatives that are among the α2q best alternatives of L. We note that, since q ≥ M , α2q is an integer
number. Let Xi be the root issue, let x+

i be the preferred value for Xi , and x−
i be its less preferred value; let li = Xi if

x+
i = 1i , and li = ¬Xi if x

+
i = 0i , then:

φ(L,α) =







li ∧ φ(L+,2α) if 0 < α < 1/2
li if α = 1/2
li ∨ φ(L−,2α − 1) if 1/2 < α < 1

where L+ (respectively L−) is the subtree of L corresponding to x+
i (respectively x−

i ), with the local preference tables
being simplified by removing all conditional preferences where Xi = x−

i (respectively Xi = x+
i ).

The translations for LP tree LP1 for two values of α are shown on Fig. 2.

Proposition 4. Let α ∈ Rat(M). Let V be an LP-profile over a set I of q ≥ M issues. Let 8V = {φ(L j, α) | L j ∈ V } be the multiset

of formulae associated with V (note that the same formula can appear in several copies in 8V ). Then the α-proportion-approval 

co-winners are the valuations (i.e., truth assignments) over I that maximize the number of formulas satisfied in 8V .
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Fig. 2. LP tree LP1 and its translations into formulas for 3-approval and 5-approval.

Proof. The result follows from the fact that an alternative d is in the α2q best alternatives of some LP-tree L j if and only
if the corresponding valuation satisfies φ(L j, α). ✷

In order to use state-of-the-art maxsat solvers to compute α-proportion-approval co-winners, we can easily transform
8V into a set of clauses of quadratic size: given some LP-tree L j , we introduce a new propositional variable L j , and define
a set of clauses 4 j in which every clause has the form C ∨ ¬L j , so that an interpretation can satisfy L j and all the clauses
in 4 j only if it satisfies all the constraints encoded in 4 j . The definition of 4 j is recursive, based on the formula φ(L j, α),
of the form li1 ⋄1 (li2 ⋄2 (. . . (liM−1 ⋄M−1 liM ) . . .)):

• 4 j is initialized to {liM ∨ ¬L j};
• at the next stage, if ⋄M−1 is a conjunction, then 4 j becomes {liM−1 ∨ ¬L j, liM ∨ ¬L j}; if ⋄M−1 is a disjunction, then 4 j

becomes {liM−1 ∨ liM ∨ ¬L j};
• more generally, at the (M − k)th stage, if ⋄ik is a conjunction, then we add lik ∨ ¬L j to 4 j ; otherwise, when ⋄ik is a

disjunction, then we add lik as new disjunct to every clause in 4 j .

Example 5. For LP1 and α = 3/8, φ(LP1, 3/8) = M ∧ (F ∨ ¬P ): the set of clauses is initialized to {¬P ∨ ¬L1}; it then
becomes {F ∨ ¬P ∨ ¬L1}, and finally {M ∨ ¬L1, F ∨ ¬P ∨ ¬L1}. For α = 5/8, φ(LP1, 5/8) = M ∨ (P ∧ F ) thus the set of
clauses is initialized to {F ∨ ¬L1}, then becomes {P ∨ ¬L1, F ∨ ¬L1}, and finally {M ∨ P ∨ ¬L1, M ∨ F ∨ ¬L1}.

For an LP-profile V , we obtain a set of “hard” clauses 4(V ) =
⋃

L j∈V 4 j , and the partial weighted maxsat instance

consists in finding valuations that satisfy all clauses in 4(V ), and a maximum number of the L j ’s.
With this translation, the number of hard clauses for each voter is the number of 1’s in α, and the size of the largest

clause becomes one plus the number of 0’s in α. It follows that the size of 4 j for each voter is in O (M2), and the
translation, with n voters, is in O (M2n); in terms of the parameters used in general to describe maxsat instances, the
number of clauses is in O (nM), their size is bounded by M , and the number of variables is q. Given the performances of
the best current maxsat solvers, this approach may be applicable when there are hundreds of thousands of voters, for some
M ≤ 10.

We conclude this section by a proof that winner for α-proportion approval is NP-hard, which means that we may not
expect much better than the above translation. In fact, our proof stems from the reverse translation. We will show that the
model of a class of logical formulas can be encoded by α-proportion approval winners. Note that a formula φ(L, α) for
some LP-tree L and some α always has the form

li1 ⋄1 (li2 ⋄2 (. . . (liM−1 ⋄M−1 liM ) . . .)) (2)

where the li j ’s are literals, each over a different variable, and where each ⋄i is a connective ∧ or ∨, that only depends on
the base 2 representation of α: let α = (0.α1 . . .αM)2 , then ⋄i is ∧ if αi = 0, and ⋄i is ∨ if αi = 1. For any formula φ that
has the form as in (2), we construct an LP-tree L(φ) as follows:

• the importance structure is unconditional: [Xi1 ⊲ Xi2 ⊲ . . . ⊲ XiM−1 ⊲ XiM ⊲ Others], where Xi j is the issue correspond-
ing to the literal li j , and where ‘Others’ refers to all other issues.

• the local preference for issue Xi j is unconditional and is 1i j ≻ 0i j if li j = Xi j , or 0i j ≻ 1i j if li j = ¬Xi j .

Then, given a set of formulas 8 having a common structure corresponding to some fraction α ∈ Rat(M), α 6= 1/2, we
can define the profile V = {L(φ) | φ ∈ 8} of LP-trees with unconditional importance and unconditional local preferences:
the α-proportion approval co-winners correspond to the valuations that satisfy a maximum number of formulas of 8. We
now prove that generalized maxsat remains NP-complete when restricted to this type of formulas.

Formally, given a set of propositional symbols P and a fraction α = (0.α1 . . .αM)2 ∈ Rat(M), let F (P, α) be the set of
formulas of the form as in (2). We define max(α)sat to be the problem that consists in finding a valuation satisfying a
maximum number of formulas of a given set 8 ⊆ F (P, α), for a given set of propositional variables P . In the rest of this
section, we take P = I .



Lemma 5. For any α ∈ Rat(M) \ {1/2}, max(α)sat is NP-hard.

Proof. By induction. The base cases are α = 3/4 and α = 1/4. Consider first α = 3/4 = (0.11)2: F (P, 34 ) is the set of

2-clauses (disjunctions of two literals). So max( 34 )sat is max2sat, known to be NP-complete [32]. Consider next the case

α = 1/4 = (0.01)2: F (P, 14 ) is the set of 2-cubes (conjunctions of two literals). Let 8 ⊆ F (P, 14 ): then 8′ = {¬φ | φ ∈ 8} is
equivalent to a set of 2-clauses, and satisfying as many formulas of 8 as possible amounts to satisfying as few formulas of
8′ as possible. So max( 14 )sat is equivalent to min2sat, known to be NP-complete too [33].

Let α = (0.α1 . . .αM)2 = 1
2α1 + 1

4α2 + . . . + 1
2M

αM . Suppose first that α1 = 0. We give a polynomial reduction from
max(2α)sat to max(α)sat. Note that 2α = (α1.α2 . . .αM)2 = (0.α2 . . .αM)2 has a base-2 representation of length strictly
smaller than that of α. Let 8 ⊆ F (P, 2α), let P ′ = P ∪ {X0}, where X0 is a new variable (not belonging to P), and define
8′ = {X0 ∧ φ | φ ∈ 8}: then 8′ ⊆ F (P ′, α). Now, satisfying as many formulas of 8 as possible is equivalent to satisfying as
many formulas of 8′ as possible, since only positive occurrences of X0 appear in 8′ .

Finally, suppose that α1 = 1: we will prove that max(2α − 1)sat can be reduced to max(α)sat. Note that in this case
2α − 1 = (0.α2 . . .αM)2 has a base-2 representation of length strictly smaller than that of α. Let 8 ⊆ F (P, 2α − 1), let
P ′ =P ∪ {X0}, where X0 is a new variable – not in P , and define 8′ = {X0 ∨φ, ¬X0 ∨φ | φ ∈ 8} ⊆ F (P ′, α): 8′ is obtained
from 8 by two copies of each φ ∈ 8, and appending at the beginning a disjunction, one with X0 and one with ¬X0 .
Suppose that m is a valuation over P that satisfies µ formulas of 8: let m′ be an extension of m with some value for X0 ,
then m′ satisfies |8| + µ formulas of 8′ . Conversely, if a valuation m′ over P ′ satisfies λ formulas of 8′ , then λ ≥ |8|
because m′ must satisfy one of X0 and ¬X0 , and the restriction of m′ to P satisfies λ − |8| formulas of 8. So satisfying as
many formulas of 8 as possible is equivalent to satisfying as many formulas of 8′ as possible.

A simple induction on the length of the base-2 representation of α then proves the result: the base cases correspond to
a length 2 (α = 1/4 or 3/4). ✷

Theorem 6. For any fraction α ∈ Rat(M), α 6= 1/2, winner for α-proportion-approval is NP-complete, even if all trees have uncon-

ditional importance and unconditional local preferences.

Proof. We have seen that α-approval winner is equivalent to max(α)sat, and we have just proved that the latter is
NP-hard. The fact that these problems are in NP stems from the fact that generalized maxsat is in NP. ✷

5. Borda

In this section, we provide a translation of winner determination for the Borda rule into a weighted minsat problem. We
also show that computing the Borda winner given an LP-profile is hard, except in the simple case where the preferences
and the importance relations are unconditional.

Recall that the Borda score of an alternative d w.r.t. LP-tree L is SBorda(L, d) = m − rank(L, d), with m = 2q and
rank(L, d) = 1 +

∑q
i=1 2

q−level(L,d,Xi)1(L, d, Xi). Hence, the Borda score of d for profile V = (L1, . . . , Ln) is:

SBorda(V ,d) =

n
∑

j=1

[

2q − 1−

q
∑

i=1

2q−level(L j ,d,Xi)1(L j,d, Xi)

]

=

n
∑

j=1

q
∑

i=1

2q−level(L j,d,Xi)(1− 1(L j,d, Xi)).

The Borda winner is the alternative d that maximizes this score. As we shall see shortly, this optimization problem is
hard in the general case. Let us start with a case in which the winner can be computed in polynomial time.

If the importance structure is unconditional, then level(L j, d, Xi) does not depend on d; let us write it more simply
level(L j, Xi). It can be computed in polynomial time by a simple exploration of the tree L j . Similarly, if the local preferences
are unconditional, then 1(L j, d, Xi) does not depend on the whole vector d either but only on di , thus we write 1(L j, di) =

1(L j, d, Xi). When, for every voter, the importance structure and the local preferences are unconditional, we can thus write:

SBorda(V ,d) =

n
∑

j=1

q
∑

i=1

2q−level(L j,Xi)(1− 1(L j,di))

This means that we can choose in polynomial time the winning value for each issue independently: it is the value di that
maximizes

∑n
j=1 2

q−level(Xi ,L j)(1 − 1(L j, di)).

Theorem 7. If, for every voter, the importance structure and the local preferences are unconditional, then winner for Borda can

be computed in polynomial time.
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Fig. 3. LP tree LP1 and its translation into weighted formulas.

As we will see shortly, if we lift either one of the unconditionality conditions, computing the Borda winners becomes
NP-hard. However, we first describe how this problem can be converted to a weighted minsat problem.

We consider one propositional variable Xi for each issue Xi ∈ I . Let L be an LP-tree and t a node of L. Let Xi be the
issue associated with t , and l be the level of t in L (where level 1 corresponds to the root and level q to the leaves). Let
v be the instantiation of Inst(t) in that branch, we can associate with it a conjunction V of literals as follows: for every
variable Xi in Inst(t), V contains either Xi if v has value 1i for Xi , or ¬Xi if v has value 0i for Xi . Then for each rule
u : x ≻ x′ in the table associated with Xi at t , let U be the similar logical translation of u; we define the formula ψt,u , with
weight 2q−l for minsat, as follows:

• 2q−l : U ∧ V ∧ Xi if x = 1i ; and
• 2q−l : U ∧ V ∧ ¬Xi if x = 0i ,

As an example, LP tree LP1 is recalled on Fig. 3 with the corresponding weighted formulas. Alternative m̄p̄ f̄ satisfies
the formula ¬M ∧ ¬P ∧ ¬F , with weight 1: this alternative will be ranked 8 − 1 = 7th; alternative m f̄ p̄ satisfies M and
M ∧ ¬P , with weight 4 + 1 = 5, so it is ranked 8 − 5 = 3rd.

Proposition 8. Let L be an LP tree, let 9(L) = {ψt | t node of L}, and let d be an alternative. The sum of the weights of the formulas

of 9(L) that are satisfied by d is the Borda score of d w.r.t. L.

Proof. The formulas that are satisfied by d are all on the branch corresponding to d in L. Considering a node ti on this
branch labelled with variable Xi , the level of ti is precisely level(L, d, Xi), so the weight is 2p−level(L,d,Xi) , and the formula
is satisfied if and only if the preferred value for Xi – given the values of d for the issues above ti in this branch – is the
value given by d, so the overall weight is

q
∑

i=1

2p−level(L,d,Xi)(1 − 1(L,d, Xi))

which is exactly the Borda score of d w.r.t. L. ✷

Given an LP-profile V = (L1, . . . , Ln), we consider the multiset of weighted formulas 9(V ) = ∪ j9(L j) (note that there
may be several copies of the same weighted formula) and we look for a valuation maximizing the sum of the weights of the
formulas in 9(V ) that it satisfies. Since the formulas in 9(V ) are conjunctions of literals, 8(V ) = {(w : ¬φ) | (w : φ) ∈ 9(V )}
is a set of weighted clauses, and a valuation minimizes the weights of the clauses satisfied in 8(V ) if and only if it
maximizes the sum of the weights of the cubes satisfied in 9(V ), and this is an instance of weighted minsat.

On our example we get

8(LP1) =

{

4 : ¬M, 2 : ¬M ∨ ¬F , 1 : ¬M ∨ P ,

2 : M ∨ ¬P , 1 : M ∨ ¬P ∨ ¬F , 1 : M ∨ P ∨ F

}

Theorem 9. For any profile V of LP-trees, there is a set of weighted clauses C of size polynomial in the size of V , such that the set of 

Borda co-winners for V is exactly the set of the valuations of C with the lowest weight.

Some minsat solvers use a translation of minsat instances into maxsat ones. Using the same approach, we can also
directly translate the winner problem for Borda into a weighted maxsat instance, but with more clauses: each weighted
conjunction of literals φ = (w : l1 ∧ . . . ∧ lk) that appears in 9(V ) is translated into a set of k weighted clauses 2(φ) =

{(w : l1), (w : ¬l1 ∨ l2), . . . , (w : ¬l1 ∨ ¬l2 ∨ . . . ∨ lk)}. Let 2(L) denote the union of the 2(φ)’s that we get for a tree L. For
LP1 we get:

2(LP1) =







4 : M, 2 : M, 2 : ¬M ∨ F , 1 : M, 1 : ¬M ∨ ¬P

2 : ¬M, 2 : M ∨ P , 1 : ¬M, 1 : M ∨ P , 1 : M ∨ ¬P ∨ F

1 : ¬M, 1 : M ∨ ¬P , 1 : M ∨ P ∨ ¬F






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Fig. 4. Reduction of 3sat to evaluation with Borda score and unconditional preferences.

For a profile V , 2(V ) then denotes the union of the sets of weighted clauses obtained for each voter in V . To see why
this maxsat formulation is equivalent to our Borda score maximization problem, consider an alternative d, and a weighted
conjunction φ = (w : l1 ∧ . . . lk) ∈ 9(V ):

• if d |= l1 ∧ . . . lk , then d satisfies all clauses in 2(φ); and
• if d 6|= l1 ∧ . . . lk , then there is exactly one clause in 2(φ) that is not satisfied by d (if j is the smallest index such that

d 6|= l j , then d satisfies all clauses in 2(φ) except ¬l1 ∨ . . . ∨ ¬l j−1 ∨ l j).

Therefore, the “score” of d for 2(V ) is
∑

(w:C)∈9(V )
d|=C

w|C | +
∑

(w:C)∈9(V )
d6|=C

w(|C | − 1) =
∑

(w:C)∈9(V )

w(|C | − 1) +
∑

(w:C)∈9(V )
d|=C

w.

It is therefore a constant independent of d, plus the “score” of d for 9(V ); thus maximizing the sum of the weights of the
satisfied cubes in 9(V ) is equivalent to maximizing the sum of the weights of the satisfied clauses in 2(V ). Since 2(V )

contains at most q clauses of size at most q for each node in an LP-tree in V , its size is in O (q2|V |). Whether using a
maxsat solver on this translation would be more efficient than using a recent minsat solver on 8(V ) remains to be tested.

We show next that we cannot expect a much better way of computing the Borda winner in the general case, since the
problem is NP-complete.

Theorem 10. evaluation is NP-complete for Borda, even if a single one of the following restrictions holds:

1. the local preferences of all voters are unconditional; or
2. the importance structure is the same for all voters and is unconditional.

Proof. evaluation is in NP, because the Borda score of each alternative can be computed in polynomial time. We prove
NP-hardness in the two subcases 1 and 2 by two different reductions from 3sat: in a 3sat instance, we are given a formula
F over binary variables X1, . . . , Xq , which is a conjunction of t 3-clauses, F = C1 ∧ . . . ∧ Ct . We are asked whether there
exists a valuation of the variables X1, . . . , Xq under which F is true.

We will now describe how we can reduce a 3SAT instance to two evaluation instances, one with a profile with uncon-
ditional preferences, the other with a profile with common, unconditional importance.

Reduction with unconditional local preferences. There are q + 2 issues: I = {A, B} ∪ {X1, . . . , Xq}. We first define the following
2t + 2 LP-trees from which the profile is constructed.

• For each j ≤ t , we define two LP-trees L j and L′
j with the following structures. Suppose C j contains variables

Xi1 , Xi2 , Xi3 (i1 < i2 < i3), and di1 , di2 , di3 are the valuations of Xi1 , Xi2 , Xi3 that correspond to literals in C j : for in-
stance, if C j = X1 ∨ ¬X3 ∨ X5 then di1 = 1, di2 = 0, di3 = 1. In the importance order of L j , the first three issues are
Xi1 , Xi2 , Xi3 . The fourth issue is A and the fifth issue is B if and only if Xi1 = di1 , Xi2 = di2 , or Xi3 = di3 ; otherwise
the fourth issue is B and the fifth issue is A. The other issues are ranked below in a fixed order, independent of j.
The local preferences in L j are 0 ≻ 1 for all issues except A, for which it is 1 ≻ 0. In L′

j the importance order is
[Xi1 ⊲ Xi2 ⊲ Xi3 ⊲ A ⊲ B ⊲ Others], and the local preferences are 1 ≻ 0 for all issues. The trees are depicted on the left
half of Fig. 4.
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Fig. 5. Reduction of 3sat to evaluation with Borda score and common, unconditional importance.

• There are two additional LP-trees L and L′ with the same importance order [A ⊲ B ⊲ Others]; in L the local preferences
are 1 ≻ 0 for all issues; in L′ the local preferences are 1 ≻ 0 for A and B , and 0 ≻ 1 for all other issues.

Let d = d′ab be an alternative, where a ∈ {0, 1} is its value for issue A, b ∈ {0, 1} its value for issue B , and d′ its projection
onto {X1, . . . , Xq}. Because the preferences concerning each of the Xi ’s are opposite in L j and L′

j , the Borda score of d for

the profile {L j, L
′
j} is a constant K1 independent of j and d, plus the score for issues A and B , ranked fourth and fifth out

of q + 2 issues. If we let 1 j = 1 if d′ |= C j , and 1 j = 0 otherwise we have:

SBorda({L j,L
′
j},d )

= K1 + 1 j(a2
q−2 + (1− b)2q−3) + (1− 1 j)((1 − b)2q−2 + a2q−3) + a2q−2 + b2q−3

= K1 + 2q−3[1 j(2a + 1− b) + (1− 1 j)(2(1 − b) + a) + 2a + b]

The Borda score of d for profile {L, L′} is a constant K2 plus the score for issues A and B , ranked first and second:

SBorda({L,L′},d ) = K2 + 2× (a2q+1 + b2q) = K2 + 2q+1(2a + b).

We now describe the preference profile. It contains 4t LP-trees: V = {L j, L
′
j : 1 ≤ j ≤ t} ∪ V ′ , where V ′ is composed of t

copies of {L, L′}. Let K = K1 + K2 , then:

SBorda(V ,d ) =

tK + 2q−3
∑

j

[1 j(2a + 1− b) + (1− 1 j)(a + 2− 2b)) + 2a + b] + t2q+1(2a + b).

In particular, if a = 0 or b = 0, then 2a + 1 − b + 2a + b ≤ 5 and a + 2 − 2b + 2a + b ≤ 5, thus, independently from the
value of 1 j , the term in the sum is bounded by 5 for every j; thus SBorda(V , d) ≤ tK + 5t2q−3 + 2t2q+1 . Or, equivalently: if
SBorda(V , d) > tK + 5t2q−3 + 2t2q+1 , then it must be the case that a = b = 1.

Now, consider a threshold T = tK + 5t2q−3 + 3t2q+1 . Suppose first that d is such that SBorda(V , d) ≥ T > tK + 5t2q−3 +
2t2q+1 . Then its values for A and B must both be 1, and SBorda(V , d ) = tK + 2q−3 ∑

j[2 × 1 j + (1 − 1 j) + 3] + 3t2q+1 =

tK + 2q−3 ∑

j[4 + 1 j] + 3t2q+1 . Now, since SBorda(V , d ) ≥ T , it must be the case that 1 j = 1 for every clause C j , thus the
projection of d onto D satisfies F ; therefore F is satisfiable.

For the converse, suppose that F is satisfiable: let d′ be a valuation that satisfies F , and consider the alternative d′1A1B :
SBorda(V , d′1A1B) = T , where T = tK + 5t2q−3 + 3t2q+1 .

Reduction with a common, unconditional importance structure. There are q + 1 issues: I = {X1, . . . , Xq} ∪ {A}. Let O = [X1 ⊲

X2 ⊲ · · · ⊲ Xq ⊲ A] denote the fixed importance relation for the LP-trees. We construct a profile V consisting of 4t LP-trees
with conditional importance relation O, defined as follows:

• For each j ≤ t , V contains two LP-trees L j and L′
j with unconditional local preferences for every issue except A:

suppose C j contains variables Xi1 , Xi2 , Xi3 (i1 < i2 < i3), in both LP-trees, Par(A) = {Xi1 , Xi2 , Xi3 }. The CPTs are defined
as depicted on Fig. 5:
– in L j , for every assignment (di1 , di2 , di3) of {Xi1 , Xi2 , Xi3 }, the CPT entry for A is di1di2di3 : 1 ≻ 0 if and only if C j is

satisfied by (di1 , di2 , di3); the local preference is 0 ≻ 1 for every other issue.
– in L′

j , the CPT for A is the same as in L j , and the local preference is 1 ≻ 0 for every other issue.
• V contains 2t additional LP-trees: t copies of L, where the local preference is 1 ≻ 0 for issue A, and 0 ≻ 1 for the other

q issues; and t copies of L′ , where the local preferences are 1 ≻ 0 for all issues.

The additional 2t LP-trees are used to make sure that we only need to focus on alternatives whose A-component is 1.
Let d′ = (d1, . . . , dq) be a valuation of X1, . . . , Xq . Then:



• SBorda({L, L′}, d′0A) =
∑q

i=1 2
q+1−i(1 + 0) = 2(2q − 1): there are q + 1 issues, issues X1, . . . Xq have ranks 1 to q, and

whatever the value of di , it counts for 1 in one of the two trees, 0 in the other; 0A is not the preferred value in L and
L′ , so it does not add anything to the Borda score of d′0A .

• SBorda({L, L′}, d′1A) = 2(2q − 1) + 2, because 1A is the preferred value for A in L and L′ .
• SBorda({L j, L

′
j}, d

′0A) = 2(2q − 1) + 2(1 − 1 j) (where again 1 j = 1 if d′ |= C j , and 1 j = 0 otherwise).

• SBorda({L j, L
′
j}, d

′1A) = 2(2q − 1) + 2 ×1 j .

Thus SBorda(V , d′0A) = 4t(2q − 1) + 2t − 2K (F , d′), where K (F , d′) is the number of clauses in F that are satisfied by d′;
whereas SBorda(V , d′1A) = 4t(2q − 1) + 2t + 2K (F , d′). Hence there exists an alternative whose Borda score is at least T =
4t(2q − 1) + 4t if and only if the 3sat instance is a yes instance. This completes the proof. ✷

Beyond Borda and k-approval. We end this section by discussing the generalization of the constructions of equivalent satis-
fiability problems for k-approval and Borda to other scoring rules. The common point of the two constructions is that the
set of weights has the nice property that only a small number of formulas was needed to encode the scores obtained by
the alternatives: more precisely, the number of formulas generated for a single LP-tree is at most the number of nodes of
the LP-trees, and each formula has a size in O (q), thus the total size of the construction is in O (q. 

∑n
j=1 |L j |), while the

number of alternatives (2q) can, in general, be exponentially larger.

• In the case of k-approval, this is due to the fact that the number of different weights in the scoring vector is very small
(only two).

• In the case of Borda, this is due more generally to the fact that the weights are regular enough so that they can be
generated by a succinct basis.

The construction can thus be generalized to scoring vectors that use a small number of weights, or more generally a
“small basis”. We give an example: s = (s1, . . . , s2q ) where

s j =







2(2q−2 − j + 1) if j ≤ 2q−2

1 if 2q−2 + 1 ≤ j ≤ 2q−1

0 if j > 2q−1

The corresponding set of weighted formulas – assuming for simplicity that LP has an unconditional structure X1 ⊲ X2 ⊲ X3

and local preferences xi ≻ xi for every i – is

{2q−2 : X1 ∧ X2 ∧ X3;2
q−3 : X1 ∧ X2 ∧ X4; . . . ,2 : X1 ∧ X2 ∧ Xq;1 : X1 ∧ X2;1 : X1}

For instance, for q = 4 we get s = (8, 6, 4, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0) and the set of weighted formulas corresponding to
LP is

{4 : X1 ∧ X2 ∧ X3;2 : X1 ∧ X2 ∧ X4; . . . ,2 : X1 ∧ X2 ∧ Xq;1 : X1 ∧ X2;1 : X1}

6. Condorcet

We first observe that the existence of a Condorcet winner is not guaranteed for LP profiles:

Example 6. Consider the following profile with two issues X and Y , and three voters:

1: X ⊲ Y , x ≻ x̄, y ≻ ȳ: her preference relation is xy ≻ xȳ ≻ x̄y ≻ x̄ ȳ.
2: Y ⊲ X, ̄x ≻ x, y ≻ ȳ: her preference relation is x̄y ≻ xy ≻ x̄ ȳ ≻ xȳ.
3: Y ⊲ X, ̄x ≻ x, ȳ ≻ y: her preference relation is x̄ ȳ ≻ xȳ ≻ x̄y ≻ xy.

It can be checked easily that this profile has no Condorcet winner.

For any type of LP profiles, deciding whether a given alternative c is a Condorcet winner is in coNP: a certificate that c
is not a Condorcet winner is an alternative d that beats c, which can be checked by comparing d and c for every LP-tree in
the profile.

The following result shows that checking if a given alternative is a Condorcet winner is hard.

Theorem 11. For LP profiles, deciding whether a given alternative is a Condorcet winner is coNP-hard, even if, for every voter, the local 

preferences are unconditional and the importance tree is unconditional.

Proof. We prove the hardness using a reduction from the decision version of max horn-sat, known to be NP-complete [34]



Input a Horn formula F = C1 ∧ · · · ∧ Ct over variables {X1, . . . , Xq}, and an integer number K .
Question Is there a valuation that satisfies more than K of the t clauses?

Let the set of issues be {c} ∪ {X1, . . . , Xq}. For a valuation d over {X1, . . . , Xq} we consider the completions d0c and d1c
of d, and we define the following LP-trees:

L0: the importance order is [c ⊲ Others], and the local preferences are 0 ≻ 1 for all issues. Note that d0c ≻L0 d1c ºL0 1

for all d.
L j , if C j = ¬X1 ∨ · · · ∨ ¬Xl: the importance order is [X1 ⊲ · · ·⊲ Xl ⊲ c ⊲ Others] and the local preferences are:

• 0 ≻ 1 for X1 . . . Xl;
• 1 ≻ 0 for the other issues.
Note that if d |= C j , then d1c ≻L j

d0c ≻L j
1, and if d 6|= C j , then 1 ºL j

d1c ≻L j
d0c .

L j , if C j = ¬X1 ∨ · · · ∨ ¬Xl ∨ Xl+1: the importance order is [X1 ⊲ · · · ⊲ Xl+1 ⊲ c ⊲ Others], and local preferences 0 ≻ 1 for
issues c, X1, . . . , Xl , and 1 ≻ 0 for other issues; then
• d0c ≻L j

d1c ≻L j
1 if d |= ¬X1 ∨ · · · ∨ ¬Xl;

• d0c ≻L j
1 ºL j

d1c if d |= X1 ∧ · · · ∧ Xl ∧ Xl+1;
• 1 ≻L j

d0c ≻L j
d1c if d 6|= C j (where the first preference comes from the facts that 1 and d0c coincide on

X1, . . . , Xl and that 1l+1 ≻ 0l+1).

Let V be a profile containing two copies of each L j for 1 ≤ j ≤ t , and 2t − 4K copies of L0 . Let N(d) be the number of
clauses satisfied by d. The number of LP-trees in V that rank d0c ahead of 1 is 2t − 4K + 2N(d); since V contains 4t − 4K
LP-trees, d0c ≻V 1 if and only if 2t − 4K + 2N(d) > 2t − 2K , that is:

d0c ≻V 1 if and only if N(d) > K (3)

Hence, if there is a valuation d that satisfies more than K clauses, then 1 is not a Condorcet winner because d0c ≻V 1.
Conversely, assume there is an alternative d′ that beats 1. If d′ is of the form d0c then d′ satisfies more than K clauses

because of equivalence (3) above. If d′ is of the form d1c , then 2t − 4K + 2N1(d) > 2t − 2N1(d), where N1(d) is the number
of clauses in which d satisfies at least one negative literal: then 4N1(d) > 4K , i.e., N1(d) > K , and since N(d) ≥ N1(d), again
d satisfies more than K clauses.

This shows that 1 is not a Condorcet winner if and only if there is a valuation that satisfies more than K clauses, hence
the coNP-completeness result. ✷

From this result we infer that deciding the existence of a Condorcet winner for a profile consisting of LP-trees with fixed
importance structure is in NP

NP = 6P
2 . Whether it is 6P

2 -complete is an open problem.
This hardness result is likely to extend to the winner problem for most Condorcet-consistent rules, which elect the Con-

corcet winner whenever there exists one. This is left for further research (see however the conference version of our paper
for some preliminary results).

7. Fixed importance LP-profiles

We now focus on the class of profiles with fixed importance tree (conditional or unconditional), common to all voters:
LP-trees given by all voters have a common importance structure but may have different local preferences on the values
of issues. Let us refer to such LP profiles as FCI profiles; if the fixed importance structure is unconditional then we say that
the profile is FUI. This restriction is practically significant, as in many contexts we may assume that there is an objective

relative importance of issues, common to all agents. (This can be compared to the assumption that all agents have common
preferential dependency structure between variables, commonly made in voting on combinatorial domains [24].) We may
wonder whether this restriction makes winner determination easier for some of the voting rules we consider. The existence
of a Condorcet winner for FCI profiles was proven in [35]. We first define below a rule which is specifically tailored for FCI
profiles, and then give some tractability results for other rules in this case.

7.1. The sequential majority winner and Condorcet-consistent rules

A rule which, for this domain restriction, is easy to compute and cheap in terms of communication, is defined in [3]: we
choose a value for the issue at the root of the tree according to the majority rule (possibly with a tie-breaking mechanism
if we have an even number of voters); then, we go down the branch corresponding to the winner for this issue, and choose
a value for the issue at the next node using again the majority rule; and so on. The winner is called a sequential majority

winner. When n is odd, there is a unique winning value at each step, and therefore, a unique sequential majority winner.
When n is even, all winners obtained by choosing an arbitrary value in case of a tie are called sequential majority cowinners.

It was proven in [35] that for profiles composed of conditionally lexicographic preferences, and with an odd number
of voters, the sequential majority winner is a Condorcet winner. This, together with the fact that the sequential majority



M

F

P

P

F

mm

Fig. 6. The importance tree T1 for Example 7.

winner can be computed in polynomial time, shows that the winner of any Condorcet-consistent rule applied to FCI profiles
with an odd number of voters can be computed in polynomial time.3

Example 7. Consider the conditional importance tree T I depicted on Fig. 6. Consider a profile V ′ with three voters, all having
conditionally lexicographic preferences with the same importance tree T I . To determine the sequential majority winner, we
first look at the voters’ preferences over the values of the most important issue, namely, M. Assume that two voters prefer
m to m: the winning value is m. Now, given that M = m, the second most important issue (for all voters) is F. We look
at the voters’ preferences over the values of F. Assume that two voters prefer f to f̄ : the winning value is f . Finally, we
look at the voters’ preferences over the values of P. Assume all voters prefer p to p: the winning value is p, and finally the
sequential Condorcet winner is m f p.

7.2. k-Approval for FCI profiles

We have seen that computing the winners for α-proportion approval is hard in general for α ∈ Rat(M) \ { 12 }, for any
positive integer M ≤ q. It turns out that it is easier for FCI profiles, because in this case we can reduce the problem to
computing the co-winners for j-approval, with j = α2M , over a set of partial alternatives that correspond to the paths
of length M from the root in the common importance tree T . Formally, this set C(T ) of partial alternatives is defined as
follows:

• for every node t of T at level M , labelled with issue X , let C(t) = {x, x};
• if t is a node at a level < M , labelled with issue X , and t has two children, one child t′ for value x, and another one t′′

for value x, let C(t) = {xu | u ∈ C(t′)} ∪ {xu | u ∈ C(t′′)};
• if t is a node at a level < M , labelled with issue X , and t has one child t′ , let C(t) = {xu, xu | u ∈ C(t′)}.
• finally, C(T ) = C(root).

For instance, for the tree T1 depicted on Fig. 6 and for M = 2, C(T1) = {mp, mp, m f , m f }.
The set C(T ) has the following properties:

• every complete alternative extends one and only one partial alternative in C(T ); and for every partial alternative there
are 2q−M complete alternatives that extend it;

• given an LP-tree L with importance tree T , the order ≻L induces a ranking ≻M
L

of the partial alternatives in C(T ):
let u, u′ be two different partial alternatives of C(T ), let d, d′ be two complete alternatives that extend u and u′

respectively, then u ≻M
L

u′ if d ≻L d′;
• a partial alternative u is among the best j in C(T ) w.r.t. ≻M

L
if and only if every complete alternative d that extends u

is among the j2q−M = α2q best alternatives of ≻L .

This means that the α2q best alternatives for ≻L are entirely defined by the best α2M partial alternatives in C(T ) w.r.t.
≻M
L
. Therefore:

Theorem 12. Let M ≤ q, let α ∈ Rat(M), and let j = α2M . For FCI profiles, winner for α-proportion approval can be computed in

time O ( jnM).

Proof. The procedure proposed at the beginning of section 4 works here too: for all of the n LP-trees in the profile, compute
their j best partial alternatives, and compute the j-approval scores of these. ✷

For instance, for the importance tree of Fig. 6, let M = 2 and α = 3/4: each voter will add 1 to the scores of three
of the four partial alternatives mp, mp, m f and m f , and the partial winner will be the one with the highest score. The
3/4-proportion-approval co-winners will be the two alternatives that extend that partial winner.

This is efficient only if M is a constant: in this case, the running time is linear (in n).

3 This result extends to profiles with an even number of voters, provided that the rule outputs all weak Condorcet winners when there exists at least 
one; in this case, the sequential majority cowinners are the weak Condorcet winners.



7.3. Borda for FCI profiles

We already know, from Theorem 7, that for profiles with unconditional preferences and unconditional importance, the
Borda winner can be computed in polynomial time. However, in the case of a common, unconditional importance tree and
unconditional preferences, we have moreover an interesting characterization of the Borda (co)winner(s):

Theorem 13. For FCI profiles with unconditional importance and unconditional preferences: when n is odd, the Borda winner is the 

sequential majority winner, and when n is even, the Borda cowinners are the sequential majority cowinners.

Proof. Without loss of generality, assume that the common, unconditional importance order is X1 ⊲ X2 ⊲ . . . ⊲ Xq . Con-
sider profile V = (L1, . . . , Ln) where all the L j ’s have that importance order. Let x = x1 . . . xq denote a sequential majority
cowinner. For every i ∈ 1, .., q, let ki be the number of voters with local preference xi ≻ xi : because x is a sequential majority
cowinner, we have ki ≥ n

2 ; and the Borda score of x for V can be expressed as SBorda(x) =
∑q

i=1 2
q−iki . Moreover, for any

other alternative y = y1 . . . yq , for every issue Xi , let k′
i be the number of voters who prefer yi over yi : either yi = xi and

ki − k′
i = 0, or yi = xi and k′

i = n − ki ≤
n
2 because ki ≥

n
2 , thus ki − k′

i ≥ 0. Since SBorda(y) =
∑q

i=1 2
q−ik′

i , we have

SBorda(x) − SBorda(y) =

q
∑

i=1

2q−i(ki − k′
i) ≥ 0

and the difference can only be equal to 0 if ki − k′
i = 0 for every issue, that is, if y too is a sequential cowinner.

When n is odd, there is a unique sequential majority winner x, and for every other alternative y there is at least one
issue Xi such that yi = xi , and then k′

i = n − ki <
n
2 ; thus SBorda(x) > SBorda(y). Therefore, in this case, x is the unique Borda

winner. ✷

This result is specific to LP-trees with fixed unconditional importance and unconditional preferences. Here is a coun-
terexample for fixed unconditional importance and conditional preferences (note that we already know that in this case,
the problem is NP-hard, and therefore we already knew that the Borda winner cannot always be the sequential majority
winner).

Example 8. Consider three issues, common importance order X1 ⊲ X2 ⊲ X3 , and five LP-trees:

• LP1 , LP2 , LP3 with unconditional preferences x1 ≻ x1 , x2 ≻ x2 , x3 ≻ x3;
• LP4 , LP5: x1 ≻ x1 , x1 : x2 ≻ x2 , x1 : x3 ≻ x3 , x1 : x2 ≻ x2 , x1 : x3 ≻ x3 .

The sequential majority winner is x1x2x3 . It is ranked first in the first three votes and last in the last two, therefore its
Borda score is 21. The Borda score of x1x2x3 (ranked 5th in the first three votes and first in the last two) is 23.

Here is now a counterexample for fixed conditional importance and unconditional preferences.

Example 9. Consider the conditional importance tree of Example 7, with three issues M, P and F. We have 19 voters, all
preferring f to f , and

• for 10 of them we have m ≻m and p ≻ p;
• for the other 9 we have m ≻m and p ≻ p.

The sequential majority winner is mpf . Its Borda score is 79 (it is ranked first by the voters of the first group and 7th by
those of the second group); however, the Borda winner is mpf , with Borda score 84 (it is ranked 5th by voters of the first
group and 2nd by those of the second group).

Although, in the case of fixed conditional importance and unconditional preferences, the Borda winner is not always the
sequential majority winner, still, it can be computed in time polynomial in the number of nodes of the importance tree,
with a bottom-up algorithm that collects the optimal value for each issue in each branch with its contribution to the Borda
score, and then chooses, at each binary node, the best value depending on the optimal contributions found in the two
branches below it. Before giving the algorithm, we illustrate the method on an example.

Example 10. We consider the same profile as in Example 9. We start with the m branch: outcomes in this branch are of the
form mxy, where x is the value for F and y is the value for P. The Borda score of mxy is of the form 4α + 2β + γ , where α
(respectively β , γ ) is the number of voters whose preferred value is m for issue M (respectively, x for F and y for P). We
can look for the values for F and P that maximize β and γ : starting at the leaf, there are 10 voters who prefer p, 9 who



prefer p̄, so we choose y = p, and get a local score of 1 ×10 = 10. Going up at the F node, all voters prefer f , so we choose
x = f , and get a local score of 2 ×19, that we add to what has been scored at the leaf to get a current score of 38 +10 = 48:
this is the best score that we can have for outcomes of the form mxy, and it is reached for m fp. Similarly, outcomes of the
form mxy have a score of the form 4α + 2γ + β . We maximize again β and γ by choosing values f and p respectively,
and get 2 × 10 + 1 × 19 = 39 as optimal ‘subscore’ in the m branch: this is the highest we can get for outcomes of the form
mxy, and is reached for mfp. Finally, the Borda score of m fp is 4 × 9 + 48 = 84, whereas that of mfp is 4 × 10 + 39 = 79,
so the winner is m fp.

We now describe the algorithm. Consider a profile V with common importance tree T . For any node t at level l of T
labelled with issue X , let It = I \ (Anc(t) ∪ {X}). For each voter L j , the subtree of L j rooted at t is an LP-tree over It ∪ {X},
and completely orders the valuations of It ∪ {X} – there are 2q−l+1 of them. Thus, for each value x of X , and each valuation
u of It , we can define their Borda score, w.r.t. to the profile that is composed of the subtrees rooted at t of the L j ’s:

SBorda(t, V , xu) =
∑

Y∈It∪{X}

2q−level(t,u,Y )
(

q
∑

j=1

(1− 1(L j,u, Y ))
)

where

• level(t, u, Y ) denotes the level of variable Y in the branch of T going through t and continuing according to u; and
• 1(L j, u, Y ) denotes the rank, in the local preference of voter j, of the value for Y in u.

If we let t′x denote the node below t in the branch corresponding to the value x for X at t , then:

SBorda(t, V , xu) = 2t−l

q
∑

j=1

(1 − 1(L j, xu, X)) + SBorda(t
′
x, V ,u)

This shows that, when looking for the partial valuation xu that maximizes this score, we can, for every value x for X , look
for the partial valuation ux of It that maximizes SBorda(t

′
x, V , ux), and then look for the x that maximizes SBorda(t, V , xux).

Algorithm 2 implements this approach.

Algorithm 2: Borda
+(t, V ).

input: an importance tree T over a set I of q issues, a node t at level l of T , labelled with X ;
a FCI-UP profile V with n voters;

output: a pair consisting of a partial valuation of It that maximizes the partial score at t , and of this optimal partial score;
1. kx ← number of voters in V who prefer x to x; kx ← n − kx;

sx ← 2q−lkx; sx ← 2q−lkx;
2. if t has a single child t′:

(a) (u′, su′ ) ← Borda
+(t′, V );

(b) if sx ≥ sx: return (xu
′, sx + su′ );

else: return (xu′, sx + su′ );
3. else if t has two children t′ and t′′ , corresponding to values x and x:

(a) (u′, su′ ) ← Borda
+(t′, V ); (u′′, su′′ ) ← Borda

+(t′′, V );
(b) if su′ + sx ≥ su′′ + sx: return (xu

′, su′ + sx);
else: return (xu′′, su′′ + sx);

4. else (t is a leaf)
if sx ≥ sx: return (x, sx); else: return (x, sx);

Theorem 14. For fixed, unconditional importance (FUI) profiles with unconditional preferences, the Borda winner can be computed in 

time in O (nN), where N is the number of nodes of the importance tree.

Proof. Algorithm 2 computes a winner with its score. It is called once at each node of the tree, and at each node it must
count the number of times each value of the labelling issue is preferred in the profile. ✷

8. Fixed preferences

We study now the case where all agents have the same local, unconditional preferences. We can assume, without loss of
generality that 1i ≻ 0i for every agent and every issue Xi: issues can be seen as objects, and every agent has a preference
for having an object rather than not, everything else being equal. For instance, if a voter has the unconditional importance
order X1 ⊲ X2 ⊲ X3 then the ordering over alternatives / sets of objects is 123 ≻ 12 ≻ 13 ≻ 1 ≻ 23 ≻ 2 ≻ 3 ≻ ∅ (where a
subset S of {1, 2, 3} represents an alternative that takes 1 on Xi if and only if i ∈ S . For example, 13 represents 110213).



We consider in this section profiles where all preferences are unconditional, of the form 1i ≻ 0i ; we call them FP profiles.
Obviously, the best outcome for every agent is 1, and applying any reasonable voting rule (more precisely, any voting
rule that satisfies unanimity) will select this alternative. However, winner determination ceases to be trivial if we have a
constraint on the set of feasible alternatives. Constraints can take various forms. In a multiwinner voting domain, the usual
constraint is that the number of objects to be taken (that is, the number of elected candidates) is fixed to a constant.
More general constraints can consist of lower and upper bounds on the cardinality of the number of objects taken, on
their cumulated volume, or more generally, arbitrary constraints expressed in a succinct way as in binary aggregation with
constraints [36]. For the sake of simplicity, the only constraint we are considering here is the simplest one: there is a fixed
number K of objects that we can take, or equivalently, a fixed number of issues assigned to true. Let us denote by I[K ] the set
of all alternatives d with exactly K issues assigned to true (the feasible alternatives). Then we define the following problems,
given a voting rule r for which the winner is determined by maximizing a score S:

EXACT-K WINNER DETERMINATION (for r / S):

Input an FP LP-profile V , an integer K ≤ q

Output find an alternative in I[K ] maximizing S(V , ·).

EXACT-K EVALUATION (for r / S):

Input an FP LP-profile V , two integers K and T

Question is there an alternative d in I[K ] such that S(V , d) > T ?

Observation 15. If the voters all have the same importance structure, then for any voting rule satisfying unanimity, exact-K
winner determination and exact-K evaluation are in P.

This is straightforward from the fact that all voters have the same preferred set of K issues.

8.1. Fixed preferences and unconditional importance

An interesting sub-case is when we have unconditional importance for every voter. Let us refer to such LP profiles as
UI-FP profiles. Each voter ranks the objects X1, . . . , Xq according to how important they are for her, and we want to output
the ‘best’ possible combination of objects. Since each voter only has to specify her (importance) ranking of the objects, a
profile has the form (⊲1, . . . , ⊲n), where ⊲i is the object ranking by voter i. We might then be tempted to proceed in two
steps:

1. use a classical aggregation rule to aggregate the voters’ rankings over issues into a collective ranking over issues;
2. select the first K issues in the resulting ranking.

If Step 1 can be done in time polynomial in the number of issues, then this procedure will be tractable. If exact-K

winner determination for voting rule r can be done in such a way using aggregation function f , we say that f simulates r .
The question is, are there any interesting pairs (r, f ) such that f simulates r? The next result answers positively for r =
Borda.

Theorem 16 (exact-K winner determination for Borda with UI-FP profiles). Let V = (⊲1, . . . , ⊲n) be a UI-FP profile and ⊲V be

the ranking of issues obtained by applying the scoring rule Fs with s = (2q−1, 2q−2, . . . , 1). The top K issues in ⊲V form the alternative

d ∈ I[K ] with maximal Borda score SBorda(V , d): Fs simulates Borda.

Proof. For d ∈ I[K ], let Xi1 , . . . , XiK be the issues for which d has value 1. Then SBorda(V , d) =
∑K

j=1 SBorda(V , Xi j ), where

SBorda(V , Xi j ) =
∑n

j=1 2
q−rank(Xi ,⊲ j) is the contribution of issue Xi j to the Borda score of an alternative that assigns it to

true. In order to find the alternative in I[K ] with maximum Borda score, we only have to find the K issues Xi j that
maximize SBorda(V , Xi j ), and they are the top K issues in ⊲V . ✷

Example 11. Consider the FI LP-profile with three voters and five issues V = (X1 ⊲ X4 ⊲ X2 ⊲ X3 ⊲ X5, X2 ⊲ X4 ⊲ X5 ⊲

X1 ⊲ X3, X3 ⊲ X5 ⊲ X4 ⊲ X2 ⊲ X1). We have SBorda(V , d, X1) = 16 + 1 + 1 = 18, SBorda(V , d, X2) = 4 + 16 + 2 = 22,
SBorda(V , d, X3) = 2 + 2 + 16 = 20, SBorda(V , d, X4) = 8 + 8 + 4 = 20, and SBorda(V , d, X5) = 1 + 4 + 8 = 13, thus X2 ⊲V

X3 ∼V X4 ⊲V X1 ⊲V X5 and, for K = 3, the best feasible alternative is 0112131405 .

This result also shows that the Borda rule applied to UI-FP profiles can be seen as a best-K multiwinner scoring rule
[37]. The Borda rule is not the only rule which, applied to UI-FP profiles, can be seen as a best-K rule. For instance, if q = 2,
then the scoring rule associated with scoring function S , applied to UI-FP profiles, corresponds to a best-K voting rule if
and only if Es has the form (t1 + t2, t1, t2, 0).



A much wider family of multiwinner rules, including best-K , but also many others, is known as committee scoring rules

[38]. We may wonder whether other such rules in this family can be obtained by applying some scoring rule to UI-FP
profiles. The answer is yes. Taking K = 2 as an example, 1

4 -proportion approval, applied to UI-FP profiles, corresponds to
the multiwinner rule that elects the pair of items appearing most frequently as the pair of preferred items in the votes. For
instance, if the profile is (a ⊲ b ⊲ c ⊲ d, a ⊲ c ⊲ b ⊲ d, b ⊲ c ⊲ a ⊲ d, c ⊲ d ⊲ a ⊲ b, d ⊲ c ⊲ b ⊲ a), then the winner is
{c, d} since it appears twice as preferred pair of items while all other pairs appear at most once. This rule is known as the
perfectionist rule [39]. This observation can of course be generalised to 1

2K -proportion approval for any K . Characterising the
exact subset of committee scoring rules that can be recovered this way appears to be a more difficult question, which is
left for further study.

We show next that exact-K winner determination for UI-FP profiles and for α-proportion-approval is hard. This implies
that no simple aggregation rule, applied to the importance ordering of the voters, can simulate α-proportion-approval.

Theorem 17. Let α ∈ Rat(M), α 6= 1/2. exact-K winner determination for α-proportion-approval with UI-FP profiles is NP-hard.

Proof. The proof is similar to that of Theorem 6, by reductions from some particular generalized maxsat problems. UI-FP
profiles correspond to logical formulas of the type F (I, α) containing only positive literals, since the local preferences are
always 1 ≻ 0: let F (I, α)+ be the set of such formulas. Let constrained max(α)+sat be the following problem: given a
set S of formulas in F (I, α)+ and an integer K , find a valuation that assigns exactly K variables to true, and satisfies
a maximum number of formulas in S . We prove by induction on the length of the base 2 representation of α that this
problem is NP-hard for every α ∈ Rat(M), α 6= 1/2.

The base case corresponding to α = 1/4 is a generalization of the NP-hard problem bounded densest subgraph (given
a weighted graph and an integer k, find a subset of at most k vertices that induces a densest subgraph / maximizes the
number of “hit” edges, see e.g. [40]).4 For the sake of completeness, here is a simple reduction from maximum clique: given
a graph G = (I, E), the set of formulas S E of F (1/4, I) is defined as {Xi ∧ X j | |(i, j) ∈ E}; and G has a clique of size J if
and only if there is a valuation of I that assigns J variables to true, and satisfies at least J ( J − 1) formulas of S E .

The base case corresponding to α = 3/4, where formulas are of the form Xi ∨ X j , is a generalization of the NP-hard max

K-vertex cover problem (see e.g. [41–43] for a proof of NP-hardness and recent approximation algorithms for max K-vertex

cover): given a graph G and an integer K , find a set of K vertices that covers (i.e., contains one of the extremities of) a
maximum number of edges of G .

For the induction cases, let α = (0.α1 . . .αM)2 . Suppose first that α1 = 0; then 2α = (0.α2 . . .αM)2 , and let 8 ⊆
F (I, 2α)+ . Let I ′ = I∪{X0}, where X0 is a fresh variable, and let 8′ = {X0 ∧φ | φ ∈ 8}. 8′ is a set of formulas of F (I ′, α)+;
and one can satisfy J formulas of 8 assigning exactly K variables to true if and only if one can satisfy J formulas of 8′

assigning exactly K + 1 variables to true.
Now, suppose that α1 = 1. Let α′ = 2α − 1 = (0.α2 . . .αM−1αM)2 and let 8 ⊆ F (I, 2α − 1)+ . We introduce N = 1 + K |8|

fresh variables Y1, . . . , YN , and define I ′ = I ∪ {Y1, . . . , YN} and 8′ = {Y i ∨ φ | φ ∈ 8, 1 ≤ i ≤ N}. 8′ is a set of formulas of
F (I ′, α)+ . We claim that there is a valuation m of I assigning exactly K variables in I to true and satisfying at least J

formulas in 8 if and only if there exists a valuation m′ of I ′ assigning exactly K variables in I to true and satisfying at
least N J formulas in 8′ . If K = |I|, this is straightforward. Assume now K < |I|. For a valuation m of I , let |m| be the
number of variables of I assigned to true by m.

• Assume there is a valuation m of I such that |m| = K and satisfying at least J formulas in 8. Then the extension m′

of m to I ′ evaluating every Y i to 0 satisfies exactly K variables of I ′ , and at least N J formulas of 8′ , since for every
φ ∈ 8 and i ≤ N , m |= φ implies m′ |= Y i ∨ φ.

• Conversely, assume there is a valuation m′ of I ′ such that the number of variables of I ′ satisfied by m′ is K and
satisfying at least N J formulas in 8′ . Let m be the restriction of m′ to I , and let λ be the number of formulas in
8 satisfied by m. Note that, since m and m′ satisfy |m| variables in I , the number of Y i ’s satisfied by m′ is K − |m|.
Consider a formula φ ∈ 8: if m |= φ, then m′ satisfies the N formulas of the form Y i ∨ φ in 8′; and if m 6|= φ, then m′

still satisfies (K − |m|) formulas Y i ∨ φ. Therefore, since m satisfies λ formulas of 8, and falsifies |8| − λ of them, the
number of formulas of 8′ satisfied by m′ is λN + (|8| − λ)(K − |m|) ≤ λN + K |8| < λN + N since N = 1 + K |8|. Since
we assumed that m′ satisfies at least N J formulas in 8′ , we must have N J < N(λ + 1), therefore J ≤ λ: the restriction
of m′ to I satisfies at least J formulas of 8. ✷

Example 12 and Proposition 18 show that no majoritarian aggregation rule, when applied to the importance orders of
the voters, can simulate a Condorcet-consistent rule applied to the set I[K ]. An aggregation rule f is majoritarian if for any
profile V , if the pairwise majority relation5 ≻m

V is transitive then f (V ) = succmV . The notion of Condorcet winner is defined
with respect to the set of feasible alternatives, that is, an alternative d ∈ I[K ] is a Condorcet winner for profile V if and
only if for any d′ ∈ I[K ], a majority of votes in V prefers d to d′ .

4 It is more general because the same pair can appear in several LP trees.
5 The pairwise majority relation ≻m

V associated with profile V is defined by: for all alternatives d to d′ , d ≻m
V d′ if a majority of votes in V prefer d to d′ .



Example 12. There are four items A, B, C, D , and K = 2. There are five UI-FP LP-trees: LP1 = LP2 = A ⊲ B ⊲ C ⊲ D , LP3 =
LP4 = D ⊲ C ⊲ B ⊲ A, and LP5 = B ⊲ C ⊲ D ⊲ A. The majority relation is B ⊲ C ⊲ D ⊲ A and its dominating two elements
are B and C . However, {A, D} majority-dominates {B, C}.

Proposition 18. Given an FP-UI profile V , an integer K and an alternative d ∈ I[K ], checking whether d is a Condorcet winner is 

coNP-complete.

Proof. We give a reduction from hitting set to the complementary problem. An instance of hitting set consists of a
collection of subsets S1, . . . , S p of a set S = {1, . . . , s}, and an integer K ; it is a “yes” instance if there exists a subset
S ′ ⊆ S , |S ′| = K , such that S ′ ∩ S i 6= ∅ holds for all i. With an instance of hitting set we associate the following instance
of condorcet winner checking for FP-UI profiles: the set of issues is I = {X1, . . . , Xs, Y1, . . . , YK }, and the profile V is
composed of 2p − 1 FP-UI LP-trees:

• for i = 1, . . . , p, if S i = {i1, . . . , i|S i |} then LP i is defined by the unconditional preference relation Xi1 ⊲ . . . ⊲ Xi|Si |
⊲

Y1 ⊲ . . . ⊲ YK ⊲ Others;
• for i = p + 1, . . . , 2p − 1, LP i is defined by the unconditional preference relation Y1 ⊲ . . . ⊲ YK ⊲ Others

Suppose there is a hitting set S ′ of cardinality K for S . Then the first p voters prefer {X j, j ∈ S ′} to {Y1, . . . , YK }, therefore
{Y1, . . . , YK } is not a Condorcet winner.

Conversely, suppose {Y1, . . . , YK } is not a Condorcet winner. Then for some C ∈ I[K ], C 6= {Y1, . . . , YK }, at least p voters
of V prefer C to {Y1, . . . , YK }. But the last p − 1 voters have {Y1, . . . , YK } as their preferred committee of size K , therefore
the other p must prefer C to {Y1, . . . , YK }, which is the case only if C contains some Xi j for all i; but then {i j, i = 1, . . . , p}
is a hitting set of size ≤ K for S , therefore there is a hitting set of size K for S . ✷

8.2. FP profiles with conditional importance

When the importance order can be conditional, even the Borda rule becomes intractable.

Theorem 19. K -evaluation for Borda with FP profiles is NP-hard.

Proof. We prove NP-hardness by a reduction from restricted x3c, defined as follows: given a set C = {C1, . . . , Cs}, and a
family S = {S1, · · · , St} of subsets of C , with |S j | = 3 for all j, and such that each C i ∈ C appears in no more than three S j ’s,
we ask whether there is a subset S ′ ⊆ S such that each ci ∈ C appears in exactly one S j ∈ S ′ (which implies |S ′| = s/3); S ′

is called an exact cover of C . restricted x3c is known to be NP-complete ([44]; problem [SP2] in [45]).
Given such an instance of restricted x3c, we now describe how to reduce it to an instance of K -evaluation with FP

LP-trees. Let I = S ∪ C ∪ {C}, where C is a fresh issue.
We define first a set of LP-trees where issues in C are more important than issues in S , themselves more important

than C . Specifically, we define the importance order

O = [C1 ⊲ C2 ⊲ . . . Cs ⊲ S1 ⊲ S2 ⊲ . . . ⊲ St ⊲ C]

and consider these two cyclic permutations:

• M = S1 → S2 → ·· · → St → S1 is a permutation over S;
• N = C1 → C2 → . . . → Cs → C1 is a permutation over C .

For 1 ≤ j ≤ t and 1 ≤ i ≤ s, let Li, j be the LP-tree with fixed preferences and unconditional importance order N i(M j(O)); it
is depicted on the left of Fig. 7. We define the profile V = {Li, j|1 ≤ j ≤ t, 1 ≤ i ≤ s}.

Next, for every i ≤ s, we define another set of LP-trees, again depicted on Fig. 7, as follows: let S(C i) be the set of
elements of S that cover C i : recall that 1 ≤ |S(C i)| ≤ 3. Let S ′(C i) be some subset of S of cardinality 3 that contains S(C i)

(therefore, S ′(C i) is obtained by adding 0, 1 or 2 S j ’s to S(C i)). Denote by S j1(i), S j2(i), S j3(i) the elements of S ′(C i), with
j1(i) > j2(i) > j3(i). We define the following two importance orderings over I:

• Oi = [S j1(i) ⊲ S j2(i) ⊲ S j3(i) ⊲ C i ⊲ C ⊲ C \ {C i} ⊲ S \ {S j1(i), S j2(i), S j3(i)}]
• O′

i = [S j1(i) ⊲ S j2(i) ⊲ S j3(i) ⊲ C ⊲ C i ⊲ C \ {C i} ⊲ S \ {S j1(i), S j2(i), S j3(i)}]

The only difference between Oi and O′
i is that C i and C are swapped. Let L′

i be the LP-tree with the importance order
Oi in all branches except in the branches with S j = 0 for every S j ∈ S(C i), where the importance order is O′

i . For 1 ≤ j < t ,

let L′
i, j be the LP-tree with unconditional importance order M j(Oi). For 1 ≤ i ≤ s, let V i = {L′

i} ∪{L′
i, j | 1 ≤ j < t}. We define

the profile V ′ = ∪s
i=1V i , which contains s × t trees.
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Fig. 7. Reduction of restricted x3c to K -evaluation for Borda with fixed preferences.

Now, let sV + V ′ be the profile that contains V ′ and s copies of V . We now analyze the Borda score of alternative d
for this profile. Recall that, since all trees have height t + s + 1, if an issue X is at level l in a tree L, and if d(X) = 1, it
contribution to SBorda(L, d) will be 2t+s+1−l . In the sequel, we denote by SBorda(W , d, X) the contribution of issue X to the
Borda score of d for some profile W .

• Consider first issue S j ∈ S: because of the symmetries, it will appear s times at each level between s + 1 and s + t in
the Li j ’s; thus

SBorda(V ,d, S j) = d(S j)s(2
t + . . . + 21)

= d(S j)s(2
t+1 − 2).

Similarly, in every V i , S j will appear at each level between 1 and 3 and also at each level between s + 5 and t + s + 1;
thus, since there are s V i ’s in V ′:

SBorda(V
′,d, S j) = d(S j)s(2

t+s + 2t+s−1 + 2t+s−2 + 2t−4 + 2t−5 + . . . + 1)

= d(S j)s(7 × 2t+s−2 + 2t−3 − 1).

= d(S j)s2
t+s+1( 7

8
+

1

2s+4
−

1

2t+s+1

)

.

Therefore:

SBorda(sV + V ′,d, S j) = d(S j)s2
t+s+1[1−

1

8
+

1

2s+4
+

s

2s
−

(1 + 2s)

2t+s+1

]

< d(S j)s2
t+s+1(1 − ǫ)

for any ǫ in ]0, 18 [ and for large enough values of s.

For issues in C and for C , the contributions in each V i depend on whether at least one S j ∈ S(C i) has value 1 in d or
not; therefore we define 1i(d) = 0 if S j = 0 for every S j ∈ S(C i), and 1i(d) = 1 otherwise.

• Consider now issue C : it appears at level t + s + 1 in every Li j , so

SBorda(V ,d,C) = d(C)st.

Furthermore, C appears at level 5 in each of the s × (t − 1) L′
i j , and at level 5 or 4 in each Li , depending on whether

1i(d) = 1 or 0; thus

SBorda(V
′,d,C) = d(C)

[

s(t − 1)2t+s−4

+

s
∑

i=1

[

1i(d)2t+s−4 + (1− 1i(d))2t+s−3] ]

= d(C)2t+s−4[st +

s
∑

i=1

(1 −1i(d))
]

.



In particular, SBorda(sV +V ′, d, C) ≤ d(C) s t+ s(t+1)2
                                 [ 

2 t+s−4
]

< SBorda(sV +V ′, d, S j) for any S j ∈ S such that d(S j) = 1
and for large values of t and s.

• Finally, consider issue C i ∈ C: C i will appear t times at each level between 1 and s in the Li j ’s; thus

SBorda(V ,d,C i) = d(C i)t(2
t+s + . . . + 2t+1) = d(C i)t2

t+1(2s − 1).

C i is at level 4 or 5 in Li , depending on whether 1i(d) = 1 or 0; and at level 4 in each of the t − 1 L′
i j ; it also appears

t times at some level between 6 and s + 4 in every V i′ when i′ 6= i. Thus

SBorda(V
′,d,C i) = d(C i)

[

(1i(d) + t − 1)2t+s−3 + (1 −1i(d))2t+s−4

+ t
∑s

i′=1
i′ 6=i

2t+s+1−level(L′
i′
,C i)

]

where level(L′
i′
, C i) denotes the level of issue C i in i′; it is independent of d when i′ 6= i.

In particular, SBorda(sV + V ′, d, C i) > SBorda(sV , d, C i) = d(C i)st2t+s+1(1 − 1
2s ) > d(C i)st2t+s+1(1 − ǫ) for any fixed ǫ ∈

]0, 18 [ and for large values of t and s.

From this analysis, we can see that for any C i ∈ C , S j ∈ S , for large values of t and s, we have that SBorda(sV +V ′, d, C i) >

SBorda(sV + V ′, d, S j) > SBorda(sV + V ′, d, C). Hence, if we fix K = s + t/3, and look for alternatives d that have no more
than K issues equal to 1, and that maximize SBorda(sV + V ′, d), then such a d will have value 1 for all of the s issues in C ,
and value 1 for a third of the t issues in S; it will have value 0 for all remaining issues in S and for C . Moreover, its Borda
score for sV ′ + V will be:

SBorda(sV
′ + V ,d) =

st

3
2t+s+1[1−

1

8
+

1

2s−4
+

s

2s
−

(1+ 2s)

2t+s+1

]

+ st2t+1(2s − 1)

+ 2t+s−4(2t − 1+

s
∑

i=1

1i(d)
)

+ t

s
∑

i=1

s
∑

i′=1
i′ 6=i

2t+s+1−level(L′
i′
,C i)

Now, suppose that the instance of restricted x3c has an exact cover: then it is possible to define d with value 1 for all
C i ’s, value 1 for 1/3rd of the S j ’s – those that are necessary to cover C , and 0 for all the other issues. Because the selected
S j ’s form an exact cover of C ,

∑s
i=1 1i(d) = s, and no alternative with only K issues with value 1 can have a higher Borda

score. Let Smax
Borda

(sV ′ +V ) denote this Borda score: if there exists an exact cover for the restricted x3c instance, then there is
an alternative with no more than K issues with value 1 and whose Borda score is at least Smax

Borda
(sV ′ + V ). For the converse,

suppose that an alternative d has no more than K issues with value 1 and is such that SBorda(sV
′ + V , d) ≥ Smax

Borda
(sV ′ + V ).

Then there must be an alternative d′ with a score at least as high and where all C i ’s have value 1, and 1/3rd of the S j ’s
have value 1, and all other issues have value 0. But then, it must be the case that 

∑s
i=1 1i(d

′) = s: we have found an exact
cover of C . ✷

9. Discussion

9.1. Committee elections

Committee elections are a major application field of our work, which we have only hinted on in Section 8. Here we
discuss in more detail how our work can be applied to this field.

A committee (or multiwinner) voting rule maps a profile into a set of winners, usually of fixed size (corresponding to the
number of seats to be filled in the committee). There are two major trends in multiwinner elections; we discuss below the
applicability of our setting to each of both. In the first trend, profiles consist of approval ballots: each voter approves a subset
of candidates, of arbitrary size (see [46] for a survey of a number of such rules and [47] for a very recent reference). In the
second trend, profiles consist of rankings over candidates (see [38] for a very recent reference). In both cases, preferences
are unconditional: voters are not allowed to approve or disapprove a candidate conditionally on some other set of candidates
being elected or not. A possible generalization of both approval-based and ranking-based multiwinner elections consists in
having voters express LP-trees for which (binary) variables correspond to candidates. For instance, the profile of Example 1
could be reinterpreted this way: M (respectively F, P) now means that Mary (respectively Francis, Patricia) is elected; LP1

now means that the most important for voter 1 is that Mary is elected (maybe because voter 1 is Mary herself!); if she is,



then the second most important thing is that Francis is elected too, and if not, that Patricia is elected, and so on. Also, what
is most important to voter 2 is that Patricia is not elected.

Although any of the different assumptions corresponding to the different sections of our paper are applicable to mul-
tiwinner elections, we feel that the one that applies most directly is Section 8, where voters cannot express negative
preferences for a candidate. Expressing LP-trees in this case is a generalization of expressing rankings over candidates,
as a ranking is just a UI-FP LP-tree. In Section 8 we have seen that some well-known multiwinner rules can be captured
as voting rules on lexicographic preferences, such as some K -best rules and perfectionist rules, all belonging to the family
of committee scoring rules [38]. Now, allowing for FP-CI LP-trees leads to a generalized form of ranking-based multiwinner
elections, where the ranking over candidates is conditional.

Can approval-based multiwinner rules be captured in our framework? Not as such, because we would have to be able
to allow LP-trees with indifferences. In such an extension, not only approval ballots are expressible (with all variables being
equally important), but a voter could also express conditional or unconditional (dis)approvals. Note however that in order to
be adapted to conditional approval balloting, the general model of aggregating LP-trees needs to be enriched by a cardinality
constraint such as we did in Section 8.

9.2. How restrictive are conditionally lexicographic preferences?

When the set of alternatives is combinatorial, the number of alternatives is exponential, therefore the number of possible
rankings of alternatives is doubly exponential. This leads to this classical tension between expressivity and communication
complexity (see for instance the introductory section of [24]): if we don’t make any restriction on expressible preferences,
then we must accept an exponential communication complexity which makes the mechanism infeasible in practice; and if
we do accept a domain restriction, then only an exponentially small proportion of all preference relations will be expressible.
The question is to find a domain restriction that is meaningful enough in some classes of situations. Each domain restriction
comes with some way of expressing preferences in a succinct way. The most common such languages, with their associated
domain restrictions, are the following:

1. each voter specifies a ranking over the domain of each variable, independently of other variables (separable preferences),
or a weight function mapping every value of each variable to a number, the weight of a tuple of values then being the
sum of the weights obtained for each variable (additively separable preferences).

2. each voter specifies a ranking over single issues.
3. each voter specifies only her best tuple of values.

For each such way of expressing preferences, the preference relation over the whole domain is then determined using a
preference extension principle. Interestingly, LP-trees are a combination of 1 and 2: 1 for the local preferences and 2 for the
importance relation. As far as we know, this is the first time 1 and 2 are combined in the setting of preference aggregation
over combinatorial domains.

Moreover, the different families of LP-trees offer a wide span of ways of trading off expressivity and communication
complexity. If expressivity matters before all, then unrestricted LP-trees allow for considering nonseparable preferences, via
the expression of conditional preferences, and a (possibly conditional) importance relation between variables.6 Note that 1,
2 and 3 are all restricted to separable preferences, and thus disallow the expression of preferential dependencies between
variables, which is a huge drawback. Very few methods exist for aggregating preferences over combinatorial domains with
preferential dependencies. Among the most prominent ones we find, on the one hand, sequential voting, and on the other
hand, voting with conditional preference networks (CP-nets) — see [24] for a review. But sequential voting, among other
drawbacks, needs voters to interact again and again with the system, while direct, one-shot methods suffer from the fact
that the preference relation induced from a CP-net is generally a partial order, which makes it sometimes impossible to
apply a known voting rule (which needs a collection of complete orders). Admittedly, some voting rules can be naturally
extended to partial orders, and more precisely to partial order obtained from CP-nets (see [48] for extensions of Copeland,
maximin and Kemeny for such profiles); but this is not true for most positional scoring rules such as Borda or k-approval
(which are the focus of our paper), for which no extension to partial orders is commonly agreed to be natural. Thus,
aggregating LP-trees is, as far as we know, the first direct aggregation method ever that allows nonseparable preferences
and makes it possible to apply any classical voting rule.

Of course, expressivity comes with high communication cost: in the worst case, the size of an LP-tree is exponential
in the number of variables. Note however that this happens only in the worst case: if voters have few dependencies for
their preference and importance relations, then the size of their LP-trees will remain small. This may still be a problem,
because in some contexts, the amount of communication between the voters and the voting centre must be very small

6 Even more expressivity can be obtained by considering, as [14], a generalization of LP-trees were a node can contain several variables, deemed to 
have comparable importance; the extension of our algorithms to such extended LP-trees is left for further research. Note that, as suggested by a reviewer, 
it is possible to define a measure of how close a preference order is to be captured by efficient LP-trees: a single node can represent anything in space 
exponential in the number of issues; then the preference order can be decomposed by adding nodes; the “LP-tree-width” can then be the number of issues 
in the largest node.



(as voters are unlikely to be willing to report their preferences if this takes them too long), and then moving to a further
restriction might prove useful: with unconditional importance and unconditional preference (UI-UP), an LP-tree needs only
polynomial space to be expressed and the communication complexity of aggregating LP-trees becomes polynomial. For the
exact communication complexity of expressing various classes of LP-trees see [13].

One possible way of quantifying how drastic a domain restriction is, consists in counting the number of preference
relations that are expressible. This, of course, does not mean that expressing more preferences means being more plau-
sible.7 Moreover, this way of quantifying a domain restriction may look controversial: if it is too restrictive, it is not a
good restriction because too few preference relations can be expressed, but if it is not restrictive enough, then it is not
good either because it induces a high communication complexity. Thus, in a sense, a reasonable domain restriction (at
least for our purposes) should be neither too expressive nor too restrictive — and of course, it should also be cognitively
reasonable.

Now, even in the highly restricted cases such as those considered in Sections 7 and 8, the number of expressible LP-trees
is still larger than with the classical ways of expressing preferences in combinatorial domains reported in the above list, but
exponentially smaller than the number of all preference relations. With fixed importance, there is still a doubly exponential
number of expressible LP-trees due to the expression of conditional preferences, and with fixed preferences there is again
a doubly exponential number of expressible LP-trees due to the expression of conditional importance. In contrast, with 1, 2
or 3 there is only a simply exponential number of expressible preferences. And furthermore, as said in the Introduction, the
lexicographicity assumption, even in its most restricted forms, makes sense from a cognitive point of view.

9.3. Nonbinary domains

Although we restricted our study to the case of binary issues for the sake of clarity, let us briefly explain now why most
results still hold if we allow non-binary issues. Note first that formula (1), that gives the rank of an alternative w.r.t. a given
tree, can be generalized to non-binary domains, using products of the sizes of the domains D i : given an alternative d and
an LP-tree L, if ti is the node labelled with issue Xi in the branch of L corresponding to d, then

• the local rank of the value of d for issue Xi in the local preference at ti , still denoted 1(L, d, Xi), is now a value
between 0 (if di is the preferred value for Xi at node ti , given the values of d for the issues that appear above ti ) and
|D i | − 1 (if di is the least preferred value for Xi at ti);

• moreover, if we denote by Xi ⊲L,d X j the fact that Xi is above X j in the branch of L corresponding to d, then the
number of alternatives that correspond to the leaves of L below ti and to the left of d is 1(L, d, Xi) ×

∏

Xi⊲L,d X j
|D j |

(with the convention that, the empty product, when Xi is at a leaf, equals 1).

Thus

rank(L,d) = 1+

q
∑

i=1

(

1(L,d, Xi) ×
∏

Xi⊲L,dX j

|D j|
)

Therefore, computing, for a given LP-tree, the rank of a given alternative, or the alternative that has a given rank, can both
be done, without significant increase in complexity, through a top-down traversal of the tree guided by the given alternative
or the given rank. In a similar way, it is still possible to compute in polynomial time the Borda winner when importance and
local preferences are both unconditional (Theorem 7), and to design a translation of winner determination into a weighted

minsat instance – using weights that are not powers of 2 but that must again be computed through a traversal of each
tree; to each issue with d values now correspond d propositional variables, and a polynomial number of “hard” clauses are
added to enforce that only one of them can be true.

Consider for instance the tree LP1 , and assume that issue P now has three values p, p′ and p′′ . Let LP ′
1 be the LP-tree

identical to LP1 except that the values for P are ordered p ≻ p′ ≻ p′′ in the left branch, and p′ ≻ p ≻ p′′ in the right branch;
it is depicted on Fig. 8. Then the formula corresponding to the root of LP1 is still M , but now with a weight of 2 × 3 = 6;
then, at the F node down the m branch, the formula is still M ∧ F but with weight 3; there are now two formulas at the
leaf of the m branch: M ∧ P with weight 2, and M ∧ P ′ with weight 1; alternative mfp′ now satisfies M , M ∧ F and M ∧ P ′

and has a Borda score of 10 (mfp′ is indeed the second best alternative for LP1 .
The α-proportion approval rule can still be defined, and the translation of winner determination for this rule into a

generalized maxsat instance can still be defined. For instance, if α = 0.8, then assuming that we want the ⌊α × 12⌋ = 9 =
(1/2 + 1/6 + 1/12) × 12 best alternatives, φ(LP ′

1, α) = M ∨ (P ′ ∨ (P ∧ F )). Similarly, if α′ = 0.45, then assuming that we
want the ⌊α′ × 12⌋ = 5 = (0/2 + 1/4 + 2/12) × 12 best alternatives, φ(LP ′

1, α) = M ∧ (F ∨ (P ∨ P ′)). (Again there is one
propositional variable for every value in the domain of every non-binary issue and hard clauses enforce that only one of

7 An example suggested by a reviewer: single-peakedness with respect to a fixed axis is certainly more plausible than the weird domain restriction 
obtained by fixing the best and the worst alternatives, although the latter can express more preference relations.



M m≻m̄ 6 : M

F3 : M ∧ F f ≻ f

P
2 : M ∧ P

1 : M ∧ P ′ p≻ p′ ≻ p′′

P p′ ≻ p≻ p′′ 4 : ¬M ∧ P ′

2 : ¬M ∧ P

F

p′ : f ≻ f

p : f ≻ f

p′′ : f ≻ f

1 : ¬M ∧ P ′ ∧ F

1 : ¬M ∧ P ∧ F

1 : ¬M ∧ P ′′ ∧ ¬F

m̄m

Fig. 8. LP tree LP ′
1 and its translation into weighted formulas.

them is true.) Note that the length of the decomposition of α depends on the order of the non-binary variables in the
branches, so that the approach of Theorem 12 in the FCI case cannot work in this more general setting.

Finally, membership in NP of the problems we have studied here is not compromised when we consider non-binary
issues, and hardness results obviously still hold.

10. Summary and future work

We first give three tables summarizing the results obtained for Borda, α-proportion approval, and checking whether an
alternative is a Condorcet winner. In these tables, “CP” stands for “Conditional Preferences” (no restriction on the preference
tables), “UP” means “Unconditional Preferences”, whereas “FP” is an abbreviation for “Fixed Preferences”: it is assumed that
all voters prefer value 1 to 0 for every issue, and we studied the “constrained” case, where there is a bound on the number
of issues that can have value 1. Similarly, “CI” and “UI” respectively stand for “Conditional Importance” (no restriction on
the tree structure) and “Unconditional Importance” (all trees in the profile are linear). Finally, “FCI” and “FUI” indicate the
restriction whereby all voters in the profile have the same tree structure.

• Borda:

CP UP Constrained FP

CI NP-hard (Theorem 10) NP-hard (Theorem 10) NP-hard (Theorem 19)
UI NP-hard (Theorem 10) P (Theorem 7) P (Theorem 16)
FCI NP-hard (Theorem 10) P (Theorem 13) P (Observation 15)
FUI NP-hard (Theorem 10) P (Theorem 7) P (Observation 15)

• α-proportion approval (α 6= 1
2 )

8:

CP UP Constrained FP

CI NP-hard (Theorem 6) NP-hard (Theorem 6) NP-hard (Theorem 17)
UI NP-hard (Theorem 6) NP-hard (Theorem 6) NP-hard (Theorem 17)
FCI P (Theorem 12) P (Theorem 12) P (Observation 15)
FUI P (Theorem 12) P (Theorem 12) P (Observation 15)

• Condorcet winner checking:

CP UP Constrained FP

CI coNP-hard (Theorem 11 ) coNP-hard (Theorem 11 ) coNP-hard (Theorem 18)
UI coNP-hard (Theorem 11 ) coNP-hard (Theorem 11 ) coNP-hard (Theorem 18)
FCI P [35] P [35] P (Observation 15)
FUI P [3] P [3] P (Observation 15)

Our conclusions are partly positive, partly negative. On the one hand, there are voting rules for which the restriction to
conditionally lexicographic preferences brings significant simplifications: this is the case, at least, for k-approval for some
values of k. The Borda rule can be applied easily provided that both the importance relation and the local preferences are
unconditional, which is a very strong restriction. The hardness of checking whether an alternative is a Condorcet winner
suggests that Condorcet-consistent rules will be hard to apply as well, which is why we did not focus on them in more
detail.

However, we have shown that some of these problems can be reduced to a compact maxsat problem. From a practical
point of view, it is important to test the performance of maxsat solvers on these problems. Liu and Truszcziński [21] have
proposed translations of winner determination and evaluation problems for the Borda and k-approval rules into Answer Set
Programming, another general paradigm for solving hard combinatorial optimization problems. They showed that winners
can be determined in a few minutes for these rules with 10 issues and 1000 voters, or 15 issues and 500 voters.9 We

8 For α = 1
2 , the problem is in P in all cases (Theorem 3).

9 They also proved a hardness result for a variant of k-approval.



believe that continuing studying preference representation and aggregation on combinatorial domains, taking advantages of
developments in efficient satisfiability techniques, is a promising future work direction.

Although the terminology we used in the paper, as well as the choice of our examples, referred to preference aggregation,
our approach can also be relevant to epistemic social choice, where the goal is no longer to aggregate preferences but to
search for the most plausible state of affairs by aggregating plausibility orders. Here, the lexicographicity assumption makes
sense when an agent considers a state of the world s more plausible than another one s′ when s has a value considered
more plausible than s′ for her most important variable for which s and s′ take different values.
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