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Abstract

In order to approximate the exit time of a one-dimensional diffusion
process, we propose an algorithm based on a random walk. Such an
algorithm was already introduced in both the Brownian context and in
the Ornstein-Uhlenbeck context. Here the aim is therefore to generalize
this efficient numerical approach in order to obtain an approximation
of both the exit time and position for either a general linear diffusion
or a growth diffusion. The efficiency of the method is described with
particular care through theoretical results and numerical examples.

Key words and phrases: exit time, linear diffusion, growth diffusion,
random walk, generalized spheroids, stochastic algorithm
2010 AMS subject classifications: primary: 65C05; secondary: 60J60,
60G40, 60G46.

1 Introduction

In many domains, the simulation of the first exit time for a diffusion plays a
crucial role. In reliability analysis, for instance, first passage times and exit
times are directly related to lifetimes of engineering systems. In order to
emphasize explicit expressions of the lifetime distribution, it is quite usual
to deal with simplified models like Ornstein-Uhlenbeck processes. Indeed
they satisfy the mean reverting property which is essential for modeling
degradation processes. In mathematical finance studying barrier options also
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requires to describe exit times since it is of prime interest to estimate if the
underlying stock price stays in a given interval. In the simple Black-Scholes
model, the distribution of the first exit time is therefore well-known. In more
complex models corresponding to general diffusion processes, such an explicit
expression is not available and requires the use of numerical approximations.

Several methods have been introduced in order to approximate first exit
times. The classical and most common approximation method is the Eu-
ler–Maruyama scheme based on a time discretization procedure. The exit
time of the diffusion process is in that case replaced by the exit time of
the scheme. The approximation is quite precise but requires to restrict the
study on a given fixed time interval on one hand and to describe precisely
the probability for the diffusion to exit inbetween two consecutive nodes of
the time grid on the other hand.

In this study, we aim to introduce a random walk in order to approximate
the diffusion exit time from a given interval. Let us introduce (Xt, t ≥ 0)
the unique solution of a stochastic differential equation:

dXt = b(t,Xt) dt+ σ(t,Xt) dWt, t ≥ 0,

where (Wt, t ≥ 0) stands for a one-dimensional Brownian motion. Let us
also fix some interval I = [a, b] which strictly contains the starting position
X0 = x. We denote by T the diffusion first exit time:

T = inf{t ≥ 0 : Xt /∈ [a, b]}.

Our approach consists in constructing a random walk (Tn, Xn)n≥0 on R+×R
which corresponds to a skeleton of the Brownian paths. In other words,
the sequence (Tn, Xn) belongs to the graph of the trajectory. Moreover
we construct the walk in such a way that (Tn, Xn) converges as time elapses
towards the exit time and location (T , XT ). It suffices therefore to introduce
a stopping procedure in the algorithm to achieve the approximation scheme.
Of course, such an approach is interesting provided that (Tn, Xn) is easy to
simulate numerically. For the particular Brownian case, the distribution of
the exit time from an interval has a quite complicated expression which is
difficult to use for simulation purposes (see, for instance [12]) whereas the
exit distribution from particular time-dependent domains, for instance the
spheroids also called heat balls, can be precisely determined. These time-
dependent domains are characterized by their boundaries:

ψ±(t) = ±

√
t log

(
d2

t

)
, for t ∈ [0, d2], (1.1)
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where the parameter d > 0 corresponds to the size of the spheroid. The first
time the Brownian motion paths (t,Wt) exits from the domain
{(t, x) : |x| ≤ ψ+(t)}, denoted by τ , is well-known. Its probability density
function [5] is given by

p(t) =
1

d
√

2π

√
1

t
log

(
d2

t

)
, t ≥ 0. (1.2)

It is therefore easy to generate such an exit time since τ and d2Ue−N
2are

identically distributed. Here U and N are independent random variables,
U is uniformly distributed on [0, 1] and N is a standard gaussian random
variable. Let us notice that the boundaries of the spheroids satisfy the
following bound:

|ψ±(t)| 6 d√
e
, ∀t ∈ [0, d2]. (1.3)

This remark permits to explain the general idea of the algorithm. First we
consider (T0, X0) the starting time and position of the Brownian paths, that
is (0, x). Then we choose the largest parameter d possible such that the
spheroid starting in (T0, X0) is included in the domain R+ × [a, b]. We ob-
serve the first exit time of this spheroid and its corresponding exit location,
this couple is denoted by (T1, X1). Due to the translation invariance of the
Brownian motion, we can construct an iterative procedure, just considering
(T1, X1) like a starting time and position for the Brownian motion. So we
consider a new spheroid included in the interval and (T2, X2) shall correspond
to the exit of this second spheroid and so on. Step by step we construct a
random walk on spheroids also called WOMS algorithm (Walk On Moving
Spheres) which converges towards the exit time and position (T ,WT ). This
sequence is stopped as soon as the position Xn is close enough to the bound-
ary of the considered interval. The idea of this algorithm lies in the definition
of spherical processes and the walk on spheres introduced by Müller [7] and
used in the sequel by Motoo [6] and Sabelfeld [10] [11]. It permits also in
some more technical advanced way to simulate the first passage time for
Bessel processes [3].

In this study, we focus our attention on diffusions which are strongly
related to the Brownian motion: they can be expressed as functionals fo
the Brownian motion that is Xt = f(t,Wt). The idea is to use this link
to adapt the Brownian algorithm in an appropriate way. This link implies
changes on the time-dependent domains for which the exit problem can be
expressed in a simpler way. For these diffusion families, we present the ran-
dom walk algorithm (WOMS), describe the approximation error depending
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on the stopping procedure and emphasize the efficiency of the method. We
describe the mean number of generalized spheroids necessary to obtain the
approximated exit time.

2 WOMS algorithm for L-class diffusions

The Walk on Spheroids already introduced for the Ornstein-Uhlenbeck pro-
cess in [4] permits to approximate in an efficient way the exit time. We aim to
extend such numerical procedure to a wider class of stochastic processes. We
focus our attention to the family of L-class diffusions (linear-type diffusions)
which generalizes the Ornstein-Uhlenbeck processes. For such diffusions, all
the coefficients can be time-dependent. Moreover they are based on a strong
relation with a one-dimensional Brownian motion.

2.1 L-class diffusions

This particular family of diffusions was already introduced in [13].

Definition 2.1 (L-class diffusions). We call L-class diffusion any solution
of

dXt = (α(t)Xt + β(t))dt+ σ̃(t)dWt t ≥ 0, . (2.1)

where α and β are real continuous functions, σ̃ is a continuous non-negative
function and (Wt)t≥0 is a one-dimensional Brownian motion.

We solve equation (2.1) in a classical way. Let us introduce

θ(t) := −
∫ t

0
α(s)ds. (2.2)

Lemma 2.2. The unique solution of (2.1) is given by

Xt = X0e
−θ(t) + e−θ(t)

∫ t

0
eθ(s)β(s)ds+ e−θ(t)

∫ t

0
eθ(s)σ̃(s)dWs, t ≥ 0.

Proof. Let us consider g(t, x) = xeθ(t). The statement is therefore an easy
consequence of Itô’s formula:

d(g(t,Xt)) = −α(t)Xte
θ(t)dt+ eθ(t)dXt

= −α(t)Xte
θ(t)dt+ eθ(t)(α(t)Xt + β(t))dt+ eθ(t)σ̃(t)dWt

= eθ(t)β(t)dt+ eθ(t)σ̃(t)dWt, t ≥ 0.
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This expression of the stochastic process X is actually not handy for
the construction of the algorithm. We would like, as for Onstein-Uhlenbeck
processes in [4], to transform the martingale part of the diffusion into a time
changed Brownian motion. However, we cannot apply such a transformation
in the L-class framework, that is why we shall proceed in a quite different
way.
To that end, let us suppose that X, solution of (2.1) can be expressed using
a time-changed Brownian motion:

Xt = fL(t,Wρ(t)) + x0, ∀t ≥ 0, (2.3)

with ρ(0) = 0, ρ′(t) > 0, for all t > 0 and fL(0, 0) = 0.

Lemma 2.3. Let θ the function defined in (2.2). Then the unique weak
solution of (2.1) is the process (Xt, t ≥ 0) defined in (2.3) with

fL(t, x) =
σ̃(t)√
ρ′(t)

x+ c(t), c(t) = e−θ(t)
∫ t

0
β(s)eθ(s)ds

and ρ(t) = γ

∫ t

0
σ̃(s)2e2θ(s)ds. (2.4)

Proof. Let us first introduce the process (Mt)t∈R+ defined by

Mt :=

∫ t

0

√
ρ′(s)dWs (2.5)

where Wt is the Brownian motion introduced in (2.1). We notice that this
process is a martingale with respect to the Brownian filtration and 〈M〉t =∫ t

0 ρ
′(s)ds = ρ(t). We introduce the process X̂t := fL(t,Mt) + x0. Using

Itô’s formula we get

dX̂t =
∂fL
∂t

(t,Mt)dt+
1

2
ρ′(t)

∂2fL
∂x2

(t,Mt)dt+
∂fL
∂x

(t,Mt)
√
ρ′(t)dWt.

Computing all functions appearing in the previous equality, the stochastic
process X̂t is solution of (2.1). Using Dambis & Dunbins-Schwarz Martin-
gale representation theorem (see Theorem V.1.6 p.170 [9]), there exists a
Brownian motion Bt such that

Mt = B〈M〉t , ∀t ≥ 0. (2.6)

We deduce that Mt ∼WρL(t) and therefore (X̂t)t≥0 ∼ (Xt)t≥0 with
Xt = fL(t,Wρ(t)) + x0.
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Remark 2.4. Let us just fix the parameter γ appearing in the expression of
(Xt, t ≥ 0) for notation simplicity: γ = 1.

Remark 2.5. If the starting time associated to the study of the L-class diffu-
sion is not the origin but another time t0, then we also obtain an expression
of the same kind as (2.3). Let Yt the unique weak solution of

{
dYt=(α(t+ t0)Yt + β(t+ t0))dt+ σ̃(t+ t0)dWt, t ≥ 0
Y0 =Xt0 .

Then
Yt = fL(t+ t0,Wρ(t+t0)−ρ(t0)) +Xt0 − e

∫ t+t0
t0

α(s)dsc(t0), (2.7)

with fL given by Lemma 2.3.

2.2 Spheroids associated to a L-class diffusion

Introducing the exit time of the spheroid.

We determine a specific spheroid for the diffusion by using the relation
with respect to the time changed Brownian motion. The boundaries of the
spheroid associated to the diffusion starting at time t0 in x0 are denoted by
ψL±(t; t0, x0) and the corresponding exit time is

τ t0L = inf{t > 0 : Y L
t /∈ [ψL−(t; t0, x0), ψL+(t; t0, x0)]}.

Proposition 2.6. Let us consider the spheroid starting in (t0, Xt0) with
boundaries defined by

ψL±(t; t0, Xt0) = e−θ(t+t0) ψ±(ρ(t+t0)−ρ(t0))+c(t+t0)−c(t0)e−θ(t+t0) +Xt0

for all t ≥ 0, then the associated exit time satisfies

τ t0L
d
= ρ−1

L (τ + ρL(t0))− t0 (2.8)

where τ = inf{u > 0|Wu /∈ [ψ−(t), ψ+(t)]}, ψ± being defined in (1.1).

Proof. By definition,

τ t0L = inf{t > 0 : Yt /∈ [ψL−(t), ψL+(t)]}

= inf
{
t > 0 : e−θ(t+t0)Wρ(t+t0)−ρ(t0) + c(t+ t0) +Xt0 − c(t0)e

∫ t+t0
t0

α(s)ds

/∈ [ψL−(t), ψL+(t)]
}
.
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Using ψL± introduced in the statement, we obtain the following expression
for τ t0L :

inf{t > 0 : Wρ(t+t0)−ρ(t0) /∈ [ψ−(ρ(t+ t0)− ρ(t0)), ψ+(ρ(t+ t0)− ρ(t0))]}
= inf{ρ−1(u+ ρ(t0))− t0 > 0 : Wu /∈ [ψ−(u), ψ+(u)]}
= ρ−1

L (τ + ρL(t0))− t0,

where τ = inf{u > 0 : Wu /∈ [ψ−(u), ψ+(u)]}.

Size determination of the spheroids

To define a WOMS algorithm for the L-class diffusions, we need to determine
a suitable size for the spheroids in order to stay fully contained in the con-
sidered interval. Such size can be chosen by describing both the minimum
and the maximum of the spheroid boundaries.
The size of the Brownian spheroid introduced in (1.1) depends on a scaling
parameter d > 0, the support of the associated boundaries ψ± being there-
fore equal to [0, d2]. Since the generalized spheroids used for L-class diffusion
are directly linked to the Brownian one, the parameter d also changes their
size and the boundaries ψL± are defined on the support [0, ρ−1(d2+ρ(t0))−t0].
Let us now precise this parameter d.

Proposition 2.7. Let m > 0 and 0 < γ < 1. For any (x0, t0) ∈ [a, b]× R+

we define a parameter d = d(x0, t0) such that the spheroid associated to the
L-class diffusion starting in (t0, x0) is totally included in [aγ,x0 , bγ,x0 ]. Here
aγ,x0 and bγ,x0 stands for aγ,x = a+ γ(x− a) and bγ,x = b− γ(b− x). This
parameter is given by

d =

{
min(1,κ+)

∆m
(bγ,x0 − x0) if b− x0 6 x0 − a

min(1,κ−)
∆m

(x0 − aγ,x0) if x0 − a 6 b− x0

(2.9)

where

∆m = e
∫ t0
0 α(s)dse

∫ t0+m
t0

|α(s)|ds
(

1√
e

+

√∫ t0+m

t0

|β(s)|2
σ̃(s)2

ds

)
, (2.10)

and κ± are defined by the following equations:

κ+(bγ,x0 − x0) = ∆m

√
ρ(t0 +m)− ρ(t0)

and
κ−(x0 − aγ,x0) = ∆m

√
ρ(t0 +m)− ρ(t0).
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Remark 2.8. • The previous statement consists in finding d such that
d 6 1

∆m
(bγ,x0 − x0),

d 6 1
∆m

(x0 − aγ,x0),

d2 6 ρ(t0 +m)− ρ(t0).

The last condition in particular leads to t 6 m since ρ is a strictly
increasing function.

• It is possible to let m depend on the couple (t0, x0) which should per-
mit to obtain bigger spheroids which are still included in the interval.
Nevertheless for numerical purposes, such a procedure slow down dras-
tically the algorithm we are going to present.

• The choice of the constant m is important, since it slows down or to
speeds up the algorithm.

Proof. Let us first point out an upper bound for ψL+ starting in (t0, x0). We
assume that d2 6 ρ(t0 +m)−ρ(t0). Let us define RL+(t) := ψL+(t; t0, x0)−x0

Recalling (1.3), we obtain

RL+(t) = e−θ(t0+t)

(
ψ+(ρ(t+ t0)− ρ(t0)) +

∫ t0+t

t0

β(s)e−
∫ s
0 α(u)duds

)
6 e−θ(t0+t)

(
d√
e

+

∫ t0+t

t0

β(s)e−
∫ s
0 α(u)duds

)
6 e−θ(t0)+

∫ t0+t
t0

|α(s)|ds
(
d√
e

+

∫ t0+t

t0

|β(s)|
σ̃(s)

σ̃(s)e−
∫ s
0 α(u)duds

)
,

since σ̃ is a positive function.
Using Cauchy-Schwarz’s inequality, we obtain the following upper-bound for
RL+(t):

e−θ(t0)e
∫ t0+t
t0

|α(s)|ds
(
d√
e

+

√∫ t0+t

t0

|β(s)|2
σ̃(s)2

ds

∫ t0+t

t0

σ̃(s)2e−2
∫ s
0 α(u)duds

)

= e−θ(t0)e
∫ t0+t
t0

|α(s)|ds
(
d√
e

+

√∫ t0+t

t0

|β(s)|2
σ̃(s)2

ds
√
ρ(t+ t0)− ρ(t0)

)
.

Using ρ(t0 + t)− ρ(t0) 6 d2 and t 6 m, leads to

RL+(t) 6 e−θ(t0)e
∫ t0+m
t0

|α(s)|ds
(
d√
e

+ d

√∫ t0+m

t0

|β(s)|2
σ̃(s)2

ds

)
= d∆m.
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The condition for the spheroid to belong to the interval d∆m + x0 6 bγ,x0
implies

d 6
1

∆m
(bγ,x0 − x0). (2.11)

Let us now deal with a lower-bound of ψL−. We define

RL−(t) := ψL−(t; t0, x0)− x0.

Hence

RL−(t) = e−θ(t0+t)

(
ψ−(ρ(t+ t0)− ρ(t0)) +

∫ t0+t

t0

β(s)e−
∫ s
0 α(u)duds

)
> e−θ(t0+t)

(
− d√

e
+

∫ t0+t

t0

β(s)e−
∫ s
0 α(u)duds

)
> e−θ(t0+t)

(
− d√

e
−
∫ t0+t

t0

|β(s)|e−
∫ s
0 α(u)duds

)
> −e−θ(t0)e

∫ t0+m
t0

|α(s)|ds
(
d√
e

+

∫ t0+t

t0

|β(s)|e−
∫ s
0 α(u)duds

)
.

Using then the same arguments as for the upper bound, we obtain

ψL−(t; t0, x0) > −∆md+ x0.

The condition −∆md+ x0 > aγ,x0 implies

d 6
1

∆m
(x0 − aγ,x0). (2.12)

Combining (2.11), (2.12) and d2 6 ρ(t0+m)−ρ(t0), we deduce the announced
statement.

2.3 WOMS algorithm for L-class diffusions

Let us present the random walk on spheroids which permits to approximate
the L-class diffusion exit time.
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ALGORITHMm (L-class WOMS)
Parameter: m > 0.
Initialization: Z0 = x0 and Tε = 0
From step n to step n+ 1
while Zn 6 b− ε and Zn > a+ ε do

• simulate a Brownian exit time from the spheroid defined by ψ±
with coefficient

d = d(Tn, Zn) defined in (2.9). We denote this time τn+1

• we set τLn+1 = ρ−1(τn+1 + ρ(Tε))− Tε.

• simulate a Bernoulli distributed r.v. B ∼ B(1
2), if B = 1 then set

Zn+1 = ψL−(τLn+1; Tε, Zn) otherwise set Zn+1 = ψL+(τLn+1; Tε, Zn).

• Tε ← Tε + τLn+1.

Outcome: Tε the approximated exit time from the interval [a, b] for the
diffusion (Xt, t ≥ 0).

As usual let us describe the efficiency of the algorithm. This algorithm is
particularly efficient since its averaged number of steps is of the order | log(ε)|
and since its outcome Tε converges towards the value of the exit time as ε
tends to 0. We present these two results in details in the following subsec-
tions. Even if the statement of these results look like the Ornstein-Uhlenbeck
ones presented in [], the situations are clearly different.
Since the L-class diffusions are non homogeneous, the sequence (Zn)n of suc-
cessive exit positions, appearing in the algorithm, does not define a Markov
chain. We need therefore the consider both the successive times and posi-
tions (Tn, Xn) in order to deal with a Markov chain. Here Tn stands for the
cumulative time:

Tn =

n∑
k=1

τLk , n ≥ 1. (2.13)

2.3.1 Average number of steps

In order to describe precisely the average number of steps in ALGORITHMm,
we introduce deux essential hypotheses.

Assumption 2.1. There exist q ∈ [0, 1], m > 0, Cα > 0, Cσ̃,β > 0 and
σ > 0 such that
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|α(t)| 6 Cαt
q ∀t ≥ 0, (2.14)

and
σ 6 σ̃(t) 6 Cσ̃,βe

mtq , |β(t)| 6 Cσ̃,βe
mtq , ∀t ≥ 0. (2.15)

Assumption 2.2. There exists χm > 0 such that for any t ∈ R+:

inf
s∈[t,t+m]

σ̃(s) > χm sup
s∈[t,t+m]

σ̃(s) (2.16)

Theorem 2.9. Let us assume that Assumptions 2.1 and 2.2 are satisfied with
some paramter m > 0. Then there exists a constant Cq > 0 such that Nε, the
number of steps observed in ALGORITHMm has the following upper-bound:

E[N1−q
ε ] 6 Cq log(ε),

for any ε > 0 small enough.

In particular, if q = 0, corresponding to a L-class diffusion with bounded
coefficients, we obtain E[Nε] 6 C0 log(ε), for ε small enough.
We postpone the proof of Theorem 2.9 and present several preliminary re-
sults. First we shall focus our attention on a comparison result between
the L-class diffusion and a particular autonomous diffusion. Secondly we de-
scribe particular solutions of PDEs related to the diffusion generator. Finally
we prove Theorem 2.9 using the martingale theory.

A comparison result for SDEs

We introduce two different results: the first one permits to skip the diffusion
coefficient in (2.1) and the second one permits to replace the time-dependent
drift term by a constant drift.

Proposition 2.10. Let (Xt, t ≥ 0) the solution of the SDE (2.1). We define
the strictly increasing function γ:∫ γ(t)

0
σ̃2(s)ds = t, t ≥ 0.

Then Yt := Xγ(t) satisfies the following SDE

dYt =
( α(γ(t))

σ̃2(γ(t))
Yt +

β(γ(t))

σ̃2(γ(t))

)
dt+ dBt, t ≥ 0. (2.17)

where (Bt)t≥0 is a one-dimensional Brownian motion.

11



Proof. Using the definition of Yt, we get

Yt = Xγ(t) = x+

∫ γ(t)

0

(
α(s)Xs + β(s)

)
ds+

∫ γ(t)

0
σ̃(s)dWs

= x+

∫ t

0

(
α(γ(s))Xγ(s) + β(γ(s))

)
γ′(s) ds+Bt

= x+

∫ t

0

(
α(γ(s))Ys + β(γ(s))

)
γ′(s) ds+Bt

where Bt =
∫ γ(t)

0 σ̃(s)dWs is a standard Brownian motion.

We obtain the following comparison result, its proof can be found in [14]
(Chapter VI).

Proposition 2.11. Let T > 0 and let us define

µT := inf
x∈[a,b], t≤γ−1(T )

{ α(γ(t))

σ̃2(γ(t))
x+

β(γ(t))

σ̃2(γ(t))

}
.

Let (ZTt )t≥0 the Brownian with drift satisfying

ZTt = x+ µT t+Bt, t ≥ 0. (2.18)

Then (Yt) the solution of (2.17) with initial condition x satisfies

ZTt ≤ Yt a.s., ∀t ≤ γ−1(T ) and ZTγ(t) ≤ Xt a.s. ∀t ≤ T.

Remark 2.12. Choosing

µT := sup
x∈[a,b], t≤γ−1(T )

{ α(γ(t))

σ̃2(γ(t))
x+

β(γ(t))

σ̃2(γ(t))

}
,

we obtain, ZTt ≥ Yt a.s. for all t 6 γ−1(T ).

An Initial-Boundary Value problem

We consider a value problem which is directly linked to the L-class diffusions:
let F : (R+, [a, b])→ R the solution of

∂F

∂t
+ (α(t)x+ β(t))

∂F

∂x
+

1

2
σ̃(t)2∂

2F

∂x2
= 0 (2.19)

with initial and boundary conditions F (0, x) = x, F (t, a) = a, F (t, b) = b.
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It is well-known (see, for instance, [1], Chap.II) that F admits a proba-
bilistic representation. Indeed

F (t, x) = Ex[Xt∧τab ], ∀t ≥ 0, ∀x ∈ [a, b]. (2.20)

We list some useful properties of the function F .

Proposition 2.13. The function x 7→ F (t, x) defined in (2.20) is increasing
on the set [a, b].

Proof. It suffices to compare two paths X and X ′, having different starting
points x and x′ with x > x′ and satisfying the same SDE. By coupling we
obtain that for all s > 0, Xs > X ′s and if there exists s0 such that Xs0 = X ′s0
then Xs = X ′s for all s > s0. Several cases can occur concerning the values
of Xt∧τab and X ′t∧τab . Either both exit times occurs after the fixed time t,
either both exit times occur after t, either only one of them occurs before
t. Different situations are illustrated in Figure 1. Observing carefully all
possible scenario, it is straightforward to see that Xt∧τab ≥ X ′t∧τab is always
satisfied.

b

a

x

t

x
′

b

a

t

x

x
′

b

a

x
′

x

t t

b

a

x
′

x

Figure 1: Possible scenarios occuring when studying the two paths

Proposition 2.14. The function x 7→ F (t, x) defined in (2.20) is continuous
on [a, b].
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Proof. We consider two strong solutions (Xx
t )t≥0 and (X̃x+h

t )t≥0 satisfying
(2.1) with different starting point spaced by h > 0. The exit time of the
diffusions should be denoted by τab, respectively τ̃ab but for notational sim-
plicity, we skip the index ab.
Let T be a fixed time, using the definition of F , we have

0 6 F (T, x+ h)− F (T, x)

= E[X̃x+h
T∧τ̃ − X̃

x+h
T∧τ∧τ̃ + X̃x+h

T∧τ∧τ̃ −X
x
T∧τ +Xx

T∧τ∧τ̃ −Xx
T∧τ∧τ̃ ]

= E[χT∧τ∧τ̃ ] + E[(X̃x+h
T∧τ̃ − X̃

x+h
T∧τ )1τ̃>τ − (Xx

T∧τ −Xx
T∧τ̃ )1τ̃6τ ]

where χT∧τ∧τ̃ := X̃x+h
T∧τ∧τ̃ − Xx

T∧τ∧τ̃ = he
∫ T∧τ∧τ̃
0 α(u)du 6 he

∫ T
0 α(u)du for all

T ≥ 0. Let δ > 0. We can split each term

E[(X̃x+h
T∧τ̃ − X̃

x+h
T∧τ )1{τ̃>τ}] 6 E[(X̃x+h

T∧τ̃ − X̃
x+h
T∧τ )1{τ̃>τ, X̃x+h

T∧τ̃−X̃
x+h
T∧τ>δ}

]

+ δP(τ̃ > τ, 0 6 X̃x+h
T∧τ̃ − X̃

x+h
T∧τ 6 δ)

6 (b− a)P(τ̃ > τ, X̃x+h
T∧τ̃ − X̃

x+h
T∧τ > δ) + δ

6 (b− a)P(τ̃ > τ, T > τ, X̃x+h
T∧τ̃ − X̃

x+h
τ > δ) + δ.

Similarly we obtain for the second term:

E[(Xx
T∧τ̃ −Xx

T∧τ )1τ̃6τ ] 6 (b− a)P(τ̃ 6 τ, T > τ̃ , Xx
τ̃ −Xx

t∧τ > δ) + δ.

Both probabilities appearing in the previous upper-bound can be treated in a
similar way. We develop the arguments just for one of them: P(τ̃ab > τab, t >
τab, X̃

x+h
t∧τ̃ab − X̃

x+h
τab

> δ) Let us introduce the shift process ξt = X̃x+h
τ+t . If τ

is known (let us say that it is equal to φ) then, due to the Markov property
of the diffusion, (ξt)t>0 satisfies the following SDE:

dξt = (α(t+ φ)ξt + β(t+ φ)) dt+ σ̃(t+ φ)dBt, (2.21)

where (Bt)t≥0 is a standard Brownian motion and ξ0 = X̃x+h
τ . Since X̃x+h

and Xx are two strong solutions and since h > 0, we have X̃x+h
t ≥ Xx

t for
any t ≥ 0. In particular, the event τ ≤ τ̃ implies that Xx

τ = a. Therefore on
the event τ ≤ τ̃ ,

ξ0 ≤ a+ h exp

∫ φ

0
|α(u)| du =: a+ hΘ(φ).

By applying the comparison result described in Proposition 2.11 (just re-
placing α by α(· + φ), β by β(· + φ) and σ̃ by σ̃(· + φ)) we obtain that
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ξγ(t) ≥ ZTt defined in (2.18) for all t ≤ γ−1(T ). Of course ZT and ξ have the
same initial condition. If we denote by Tl the first passage time through the
level l, then

P(τ̃ > τ, T > τ, X̃x+h
T∧τ̃ − X̃

x+h
τ > δ) 6 Pa+hΘ(T )(Ta+δ+hΘ(T )(Z

T ) 6 Ta(ZT )),
(2.22)

since Θ(φ) ≤ Θ(T ).
Let us now let δ depend on h, namely δ =

√
h. Using the scale function of

a drifted Brownian motion, we obtain in the small h limit:

Pa+hΘ(T )

(
Ta+δ+hΘ(T )(Z

T ) 6 Ta(ZT )
)

=
e−2µT (a+hΘ(T )) − e−2µT a

e−2µT (a+δ) − e−2µT a

∼ −hΘ(T )
2µT e

−2µT a

e−2µT (a+δ) − e−2µT a
∼ −hΘ(T )

2µT e
−2µT a

√
h

= −2
√
hΘ(T )µT e

−2µT a.

Finally we observe that F (T, x+h) converges towards F (T, x) as h tends to
0+. By symmetry we obtain also the result for h→ 0−.

Proposition 2.15. There exists κ > 0 such that for all (t, x) ∈ R+ × [a, b],
∂F
∂x (t, x) > κ.

Proof. First let us recall that F has a probabilistic representation given by
(2.20). We shall use this representation in order to lower bound the space
derivative. We consider two different cases: small times that is t ≤ 2 or large
times t > 2.
First case: t > 2
We denote by τx the first time the process Xx starting at x exits from the
interval ]a, b[ and by τx− (respectively τx+) the first exit time from ]a, bh[ (resp.
from the first exit time from ]ah, b[) with

bh := b− he
∫ 1
0 |α(s)| ds and ah := a+ he

∫ 1
0 |α(s)| ds. (2.23)

We also introduce (Y ±t ) the solutions of the shifted SDEs:

dY −t = (α(t+ τx−)Yt + β(t+ τx−)) dt+ σ̃(t+ τx−)dWt+τx−
, (2.24)

with the initial condition Y −0 = a+ he−
∫ 1
0 |α(s)| ds and

dY +
t = (α(t+ τx+h

+ )Yt + β(t+ τx+h
+ )) dt+ σ̃(t+ τx+h

+ )dWt+τx+h+
, (2.25)
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with the initial condition Y +
0 = b − he−

∫ 1
0 |α(s)| ds. We associate to these

diffusions the stopping times T (Y ±), the exit time from ]a, b[ and Ta(Y ±)
(resp. Tb(Y ±)) the first passage times through levels a and b.

In order to minimize the derivative of F , we need to lower bound the
following expectation, for h > 0:

F (t, x+ h)− F (t, x) = E[Xx+h
τx+h∧t −X

x
τx∧t].

Let us observe particular scenarios which permits to the difference between
the diffusions to be equal to the maximal possible value b− a. To that end,
we introduce two events:

Eab := {τx− ≤ 1, Xx
τx−

= a, T (Y −) ≤ 1, Y −T (Y −)
= b},

Eba := {τx+h
+ ≤ 1, Xx+h

τx+h+

= b, T (Y +) ≤ 1, Y +
T (Y +)

= a}.

By Lemma B.1 and Lemma B.2 (presented in the Appendix) Eab∩Eba = ∅
and Eab ∪ Eba ⊂ {Xx+h

τx+h∧t −X
x
τx∧t = b− a} for all t ≥ 2. Hence

F (t, x+ h)− F (t, x) ≥ (b− a)(P(Eab) + P(Eba)). (2.26)

Let us first deal with P(Eab). Conditionally to τx− = φ, the strong Markov
property of the diffusion process implies that Y −t as the same distribution
as the solution of the SDE :

dξt = (α(t+ φ)ξt + β(t+ φ)) dt+ σ̃(t+ φ)dBt, ξ0 = Y −0 , (2.27)

where (Bt) is a standard Brownian motion. Since φ ≤ 1 and T (Y −) ≤ 1 on
the event Eab, we need to describe the paths of the initial diffusions Xx and
Xx+h on a time interval of length at most equal to 2. We can easily adapt
the comparison result of Proposition 2.14 to obtain that ξt ≥ ZTγ(t) for all
t ≤ 1 and T = 2 (ZTt being defined in the statement of Proposition 2.11).
Let us notice that γ depends here on φ. We deduce

P
(
T (Y −) ≤ 1, Y −T (Y −)

= P
(
Tb(Z) ≤ γ−1(1), ZT (Z) = b

∣∣∣τx− = φ
)

≥ P
(
Tb(Z) ≤ σ2, ZT (Z) = b

∣∣∣τx− = φ
)
, (2.28)

where σ is the uniform lower bound of σ̃(t). Indeed

γ−1(1) =

∫ 1

0
σ̃2(s+ φ) ds ≥ σ2.
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We observe that the lower bound of (2.28) does not depend on φ. Conse-
quently

P(Eab) = E
[
1{τx−≤1,Xx

τx−
=a}P

(
T (Y −) ≤ 1, Y −T (Y −)

= b
∣∣∣τx−)]

≥ P
(
τx− ≤ 1, Xx

τx−
= a

)
P
(
Tb(Z) ≤ σ2, ZT (Z) = b

)
.

Let us assume now that x ∈]a, a+b
2 ] and h ≤ h0. By comparison, the trajec-

tory of Xx always stays below that of X(a+b)/2. Setting rh = (b−a)/(bh−a)
we get

P
(
τx− ≤ 1, Xx

τx−
= a

)
= P

(
T (rhX

x + a(1− rh)) ≤ 1, Xx
τx−

= a
)

= P
(
Ta(rhXx + a(1− rh)) ≤ 1, Xx

τx−
= a

)
= P

(
Ta(Xx) ≤ 1, Ta(Xx) < Tb(rhXx + a(1− rh))

)
≥ P

(
Ta(X(a+b)/2) ≤ 1, Ta(X(a+b)/2) < Tb(rhX(a+b)/2 + a(1− rh))

)
≥ P

(
Ta(X(a+b)/2) ≤ 1, Ta(X(a+b)/2) < Tb(rh0X(a+b)/2 + a(1− rh0))

)
=: κ1

where κ1 is a positive constant independent of both h and x. Hence

P(Eab) ≥ κ11]a,a+b
2

](x)Ψ(h), with Ψ(h) := P
(
Tb(Z) ≤ σ2, ZT (Z) = b

)
.

(2.29)
It suffices to lower bound the function Ψ using scale functions and an inde-
pendent exponential random variable which permits to relate the computa-
tion of Ψ to a particular Laplace transform whose expression is explicit (see,
[2] p309).
Let E an exponentially distributed random variable with parameter λ and
let hα = he−

∫ 1
0 |α(u)|du. Then Ψ(h) can be lower-bounded by the difference

of Ψ1(h) and Ψ2(h):

Ψ(h) > Pa+hα

(
T (Z) ≤ E , T (Z) = Tb(Z)

)
− Pa+hα

(
T (Z) = Tb(Z), T (Z) 6 σ2, E > σ2

)
= Ψ1(h)−Ψ2(h)

17



The first term of the r.h.s Ψ1(h) is evaluated as follows

Ψ1(h) = Ea+hα

[
e−λT 1{T (Z)=Tb(Z)}

]
= eµ(b−a−hα) sinh(hα

√
2λ+ µ2)

sinh((b− a)
√

2λ+ µ2)

∼ eµ(b−a)he
−

∫ 1
0 |α(u)|du

√
2λ+ µ2

sinh((b− a)
√

2λ+ µ2)
, as h tends to 0.

The second term Ψ2(h) has to be upper bounded:

Ψ2(h) = Pa+hα

(
T (Z) = Tb(Z), T (Z) 6 σ2,

)
P
(
E > σ2

)
6 Pa+hα

(
T (Z) = Tb(Z)

)
e−λσ

2
.

Using the scale function of drifted Brownian motion we get

Pa+hα

(
T (Z) = Tb(Z)

)
= e−

∫ 1
0 |α(u)|du e

−2µ(a+hα) − e−2µa

e−2µb − e−2µa

∼ −he−
∫ 1
0 |α(u)|du 2µe−2µa

e−2µb − e−2µa
as h tends to 0.

If then parameter of the exponentially distributed r.v. becomes large then
it is easy to prove that Ψ2(h) becomes negligible with respect to Ψ1(h).
Consequently we can choose a particular value of λ which leads to 2Ψ2(h) ≤
Ψ1(h) and therefore permits to lower bound Ψ(h).
Combining (2.29) and the description of Ψ(h), we manage to lower-bound
P(Eab) for x ≤ (a+ b)/2. If the case where the starting point of the diffusion
is in the lower part of the interval, we lower bound P(Eba) by 0 which implies
the existence of a strictly positive lower bound of P(Eab) + P(Eba). In the
other case (ie the starting point is in the upper part of the interval), we
lower-bound P(Eab) by 0 and deal with P(Eba) in a similar way as previously
described. In any case, the inequality (2.26) leads to the existence of κ > 0
such that

∂F

∂x
(t, x) > κ, ∀(t, x) ∈ [2,∞[×[a, b].

Second case: t 6 2
First we consider the derivative at the boundary of the interval [a, b]. Let
us note that F (t, a) = a. Hence ∂F

∂x (t, a) = limh→0+
1
h (Ea+h[Xt∧τab ] − a).

Since we need a lower bound, we shall use a comparison result concerning
the L-class diffusions. Proposition 3.14 leads to ZTγ(t) ≤ Xt for all t ≤ T .
We set here T = 2 and µT is defined in the statement of the proposition.
If µT ≥ 0 then we replace it by a strictly negative value and therefore the
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comparison result remaining true. So we assume for the sequel that µT < 0.
We deduce that

Ea+h[Xt∧τab ]− a ≥ Ex[ZTγ(t)∧τab ], (2.30)

where τab stands either for the exit time of X either for the exit time of Z.
Let us now consider the convex function f(x) = e−2µT x.

x− a ≥ (b− a)

f(b)− f(a)
(f(x)− f(a)),∀x ∈]a, b[.

As f is the scale function of the drifted Brownian motion, f(ZTt ) is a mar-
tingale and the optimal stopping theorem leads to

Ex[ZTγ(t)∧τab − a] ≥ (b− a)

f(b)− f(a)
Ex
[
e
−2µTZ

T
γ(t)∧τab − e−2µT a

]
=

(b− a)

f(b)− f(a)

(
e−2µT x − e−2µT a

)
.

In particular, for x = a+ h,

Ea+h[ZTt∧τab − a] ≥ (b− a)e2µT (b−a)(e−2µT h − 1)

∼ −2µTh(b− a)e2µT (b−a), as h tends to 0.

We obtained the existence of a constant ηaT > 0 such that ∂F
∂x (t, a) > ηaT ,

for any t 6 2. By similar arguments, we can obtain ∂F
∂x (t, b) > ηbT ,for all

t 6 2. Since ∂F
∂x (t, x) satisfies a second order parabolic PDE with regular

coefficients, we can apply the maximum principle (mettre une référence).
Consequently the minimum of the derivative on the domain [0, 2] × [a, b] is
reached at the boundary. Let us observe what happens on each side of this
rectangle. For x = a we have just proven that there exists a minimum which
is strictly positive so is it for x = b. For t = 0 the derivative is equal to 1 and
for t = 2 the first part of the proof ensures the derivative to be minimized.
To sum up, the derivative is lower bounded by a strictly positive constant
on the whole rectangle [0, 2]× [a, b].

Proposition 2.16. There exists two constants κa > 0 and κb > 0 such that

F (t, x)− a 6 κa(x− a) and b− F (t, x) 6 κb(b− x), (2.31)

for all (t, x) ∈ R+ × [a, b].
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Proof. Let us recall the probabilistic representation: F (t, x) = E[Xx
t∧τab ].

We set T = γ(1) and consider (ZTt ) the diffusion introduced in Remark
2.12 with initial condition ZT0 = Xx

0 = x. We construct a new continuous
diffusion process (Zt) which is equal to (ZTt ) on the time interval [0, 1] and
which satisfies the following SDE otherwise:

dZt =
( α(γ(t))

σ̃2(γ(t))
Zt +

β(γ(t))

σ̃2(γ(t))

)
dt+ dWt, t > 1.

Extending the comparison result of Remark 2.12, we know that Zt ≥ Xγ(t)

for all t ≥ 0. Hence

F (t, x)− a ≤ Ex[Zγ−1(t)∧τab(Z) − a].

We split the study into two different cases :

• First case: γ−1(t) ≤ 1. As in the proof of Proposition 2.15, the function
f(x) = e−2µx plays an important role since f(Zt) is a martingale for
t ≤ γ(1). Using twice the Lagrange mean theorem combined with the
optional stopping theorem implies

F (t, x)− a ≤ η1Ex
[
e
−2µTZ

T
t∧τab − e−2µT a

]
= η1

(
e−2µT x − e−2µT a

)
≤ κa(x− a),

where κa =
(

supx∈[a,b] f
′(x)

)(
infx∈[a,b] f

′(x)
)−1

.

• Second case: γ−1(t) > 1. We decompose F as follows

F (t, x)− a ≤ Ex[(Zγ−1(t)∧τab(Z) − a)1{τab(Z)>1}]

+ Ex[(Zγ−1(t)∧τab(Z) − a)1{τab(Z)≤1}]

≤ (b− a)Px(τab(Z
T ) > 1) + Ex[(ZT1∧τab(ZT ) − a)1{τab(ZT )≤1}]

≤ (b− a)Ex[τab(Z
µ)] + Ex[Zµ1∧τab(Zµ)]− a.

The expression Ex[ZT
1∧τab(ZT )

] − a can be bounded using similar ar-
guments (Lagrange’s mean and optional stopping theorems) as those
presented in the first part of the proof. Moreover, let us note that the
function g(x) := Ex[τab(Z

T )] is solution of ([1], page 45, Theorem 1.2):

1

2
g′′ + µT g

′ = −1 for x ∈]a, b[ and g(a) = g(b) = 0.
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We recall that T = γ(1) and µT is defined in Remark 2.12. The explicit
solution of this equation is given by

g(x) =
(b− a)(e−2µT a − e−2µT x)

µT (e−2µT a − e−2µT b)
− (x− a)

µT
.

Applying once again Lagrange’s mean theorem, we obtain the existence
of a constant Cg > 0 such that g(x) 6 Cg(x−a) for all x ∈ [a, b]. Using
similar arguments (just replacing Remark 2.12 by Proposition 2.11),
we prove also that b− F (t, x) 6 κb(b− x).

Proof of Theorem 2.9.

Now we have all the necessary ingredients to prove the statement concerning
average number of steps.

Proof. The description of a bound for the average number of steps is based
on the martingale theory. We recall that F is defined by (2.20) and introduce
another important function H defined by H = V ◦ F with

V (x) = log

(
(x− a)(b− x)

γε(b− a− γε)

)
. (2.32)

Let us note that V is non negative on the whole interval [a+ γε, b− γε]. We
postpone the description a this constant to the end of the proof. Since F is a
the solution of (2.19), the function H just introduced satisfies the following
partial differential equation:

∂H

∂t
+ (α(t)x+ β(t))

∂H

∂x
+

1

2
σ̃(t)2∂

2H

∂x2
=

1

2
σ̃(t)2V ′′(F (t, x))

(
∂F

∂x
(t, x)

)2

.

(2.33)
Let us also recall that (Tn, Xn) defined in (2.13) is the sequence of successive
exit times and exit positions issued from Algorithm 2m.
We focus our attention on the sequence Zn = H(Xn) +G(n) with G(0) = 0.
Here G is a positive function, we are going to precise this function in the
sequel. This stochastic process is a super-martingale with respect to the
Brownian filtration (FTn)n∈N. Using Itô’s formula and the partial differential
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equation satisfied by H, we obtain for Dn := E[Zn+1 − Zn|FTn ],

Dn = E
[∫ Tn+1

Tn

∂H

∂t
(s,Xs) + (α(s)Xs + β(s))

∂H

∂x
(s,Xs)

+
1

2
σ̃(s)2∂

2H

∂x2
(s,Xs)ds

∣∣∣∣FTn]
+ E[Mn+1 −Mn|FTn ] + (G(n+ 1)−G(n))

= E

[∫ Tn+1

Tn

1

2
σ̃(s)2V ′′(F (s,Xs))

(
∂F

∂x
(s,Xs)

)2

ds

∣∣∣∣∣FTn
]

+ (G(n+ 1)−G(n)),

where (Mn)n∈N =
(∫ Tn

0 σ̃(s)∂H∂x (s,Xs)dWs

)
n∈N

is a martingale. Using Propo-
sition 2.15, Proposition 2.16 and the lower bound σ of σ̃ we obtain

Dn = −1

2
σ2κ2(I(a) + II(b)) +G(n+ 1)−G(n), (2.34)

where I(x) = E
[∫ Tn+1

Tn
1

κ2x(Xs−x)2
ds
∣∣∣FTn].

We aim to lower bound each term in the previous integral by considering the
shape of the nth spheroid:

ψL+(t)− aγ,Xn 6 dn∆m +Xn − aγ,Xn
6 min(1, κ−)(Xn − aγ,Xn) +Xn − aγ,Xn
≤ 2(Xn − a). (2.35)

This bound implies

I(a) > E
[∫ Tn+1

Tn

ds

4κ2
a(Xn − a)2

∣∣∣∣FTn] = E
[

Tn+1 − Tn
4κ2

a(Xn − a)2

∣∣∣∣FTn]
= E

[
ρ−1
L (ρL(Tn) + τn+1)

4κ2
a(XTn − a)2

∣∣∣∣∣FTn
]

where τn+1 is the Brownian exit time from the spheroid of parameter dn.

I(a) ≥ E

[
ρ−1
L (ρL(Tn) + τn+1)

4κ2
a(Xn − a)2

∣∣∣∣∣FTn
]
≥ E

[
τn+1

4κ2
arn(Xn − a)2

∣∣∣∣FTn]
where rn is the maximum of the derivative ρ′ on the time interval [Tn, Tn+m]
which contains [Tn, ρ

−1
L (ρL(Tn) + τn+1)]. We note that τn+1 ∼ d2

nτ where τ
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denotes the Brownian exit time from the Brownian spheroid of parameter 1.
Hence

I(a) ≥ E
[

τn+1

4κ2
arn(Xn − a)2

∣∣∣∣FTn] =
d2
n

4κ2
arn(Xn − a)2

E[τ ].

Similarly to (2.35) we have bγ,Xn−ψL−(t) ≤ 2(b−Xn) and the same arguments
just presented lead to

I(b) = E
[∫ Tn+1

Tn

ds

κ2
b(b−Xs)2

∣∣∣∣FTn] > d2
n

4κ2
brn(b−Xn)2

E[τ ].

Setting κab = max(κa, κb), we obtain

Dn 6 − d2
n

rnκ2
ab

E[τ ]

(
1

(b−Xn)2
+

1

(Xn − a)2

)
+G(n+ 1)−G(n).

Let us first consider the case: Xn − a 6 b − Xn (the other case can be
studied in a similar way, it suffices to replace Xn − aγ,Xn by bγ,Xn − Xn).
Then dn = min(1,κ−)

∆m
(Xn − aγ,Xn) and

Dn 6 −2
d2
n

rnκ2
ab

E[τ ]
1

(Xn − a)2
+G(n+ 1)−G(n)

6 −min(1, κ−)2

rn∆2
mκ

2
ab

E[τ ] +G(n+ 1)−G(n).

We then find G by seeking a lower bound of min(1,κ−)
rn∆2

m
. We consider two

cases:
First case: κ− ≥ 1. We introduce αn, βn and σ̃n the maximum of |α|
respectively |β| and σ̃ on the time interval [0, nm]. The definition of ∆m

given by (2.10) and the definition of ρ in Lemma 2.3 lead to

∆2
mrn 6 e4

∫ Tn+m
Tn

|α(s)| dsσ̃n

 1√
e

+

√∫ Tn+m

Tn

|β(s)|2
σ̃(s)2

ds

2

6 e4mαn σ̃2
n

(
1√
e

+
√
m
βn
σ

)2

.

For the other case: κ− < 1

min(1, κ−)2

rn∆2
m

>
ρ(Tn +m)− ρ(Tn)

rn(b− a)2
=

∫m
0 ρ′(Tn + s)ds

rn(b− a)2
.
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Using the definitions of ρ, rn and the continuity of σ̃, there exists t0 ∈
[Tn, Tn +m] such that rn = ρ′(t0) and therefore

ρ′(Tn + s)

rn
=
σ̃2(Tn + s)

σ̃2(t0)
e
−2

∫ Tn+s
t0

α(u) du ≥ σ̃2(Tn + s)

σ̃2(t0)
e−2|Tn+s−t0|αn .

Since σ̃ satisfies Assumption 2.2, we obtain the following lower bound by
integration with respect to the variable s,

min(1, κ−)2

rn∆2
m

≥ χm
(b− a)2

∫ m

0
e−2|Tn+s−t0| ds ≥ χm

2αn(b− a)2
.

Denoting ζn+1 the minimum of the two quantities previously computed, we
define recursively the sequence G(n) by

G(n+ 1)−G(n) = ζn+1, ∀n > 0, and G(0) = 0.

The sum of these increments leads to

n−1∑
i=0

G(i+ 1)−G(i) =

n∑
i=1

ζi = G(n)−G(0) = G(n).

Assumption 2.1 implies the existence of a constant C̃ > 0 independent of ε
such that

G(n) >
1

C̃

n∑
k=1

1

kq
>

1

C̃(1− q)
(n1−q − 1), ∀n ≥ 1. (2.36)

Moreover the particular choice of the function G permits to obtain Dn ≤ 0
for all n. Consequently Zn = H(n,Xn) + G(n) is a super-martingale. A
generalization of Proposition A.1 permits to obtain the upper bound

E[G(Nε)] ≤ H(0, x0) = V ◦ F (0, x0) = V (x0). (2.37)

Combining (2.36), (2.37) and the definition of the function V in (2.32) leads
to

E[N1−q
ε ] 6 C̃(1− q) log

(
(x0 − a)(b− x0)

γε(b− a− γε)

)
+ 1.

This bound corresponds to the announced result. In order to conclude the
proof, we just need to precise that Nε is a.s. finite, see Lemma 2.17. Such a
condition is required to apply the generalization of Proposition A.1.

24



Lemma 2.17. The stopping procedure Nε of ALGORITHMm is a.s. finite.
Moreover the outcome of the algorithm Tε is stochastically upper bounded by
T , the diffusion first exit time.

Proof. Step 1. We emphasize a link between a sample of a L-class diffu-
sion process and the Markov chain generated by the algorithm, denoted
((Tn, Xn))n∈N with (T0, X0) = (0, 0).
Let us consider a sample of a L-class diffusion. At the starting point of this
path, we create a spheroid of maximal size which permits to still belong
to the set [a, b] × R+. The first intersection point of this spheroid and the
path gives us a first point (t1, z1). This construction implies that (t1, z1) and
(T1, X1) are identically distributed. Then considering (t1, z1) as a new start-
ing point we construct a spheroid of maximal size and denote by (t2, z2) the
first intersection point between this spheroid and the diffusion path starting
in (t1, z1). Once again we get from this construction that (t2, z2) and (T2, X2)
are identically distributed. We build step by step a sequence ((tn, zn))n∈N
of intersections between the considered sample and the spheroids in such a
way that the sequences ((tn, zn))n≥0 and ((Tn, Xn))n≥0 are identically dis-
tributed.
If we introduce Nε the stopping time appearing in the stopping procedure
of the algorithm and Ñε = inf{n ∈ N, zn /∈ [a + ε, b − ε]}, the identity in
law of those random variables yields. By construction, tn 6 T for all n ∈ N,
where T stands for the diffusion first exit time from the interval [a, b]. This
inequality remains true when tn is replaced by the random stopping time
tÑε .
Since tÑε and tNε are identically distributed, we deduce that the outcome of
Algorithm 2m is stochastically smaller than T .
Step 2. We prove now that Nε is a.s. finite. Using (2.13) and (2.8) we obtain

Tn = ρ−1
L (d2

1τ1 + d2
2τ2 + . . .+ d2

nτn),

where (τk)k>1 is a sequence of independent Brownian exit times from the
unit spheroid and dk represents the size of the spheroid (2.9) starting in
(Tk, Xk) and included in [a, b]. Let t0 > 0. Then

P(Tn 6 t0) = P(d2
1τ1 + d2

2τ2 + . . .+ d2
nτn 6 ρ−1

L (t0))

6 P

(
τ1 + τ2 + . . .+ τn 6

ρ−1
L (t0)

d(t0)

)
,

where d(t0) is defined by

d(t0) = inf
x∈[a+ε,b−ε], t6t0

d(x, t) > 0.
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Since
n∑
k+1

τk tends to +∞ a.s.,

lim
n→+∞

P(Tn 6 t0) = P(T∞ 6 t0) = 0, ∀t0 > 0.

We deduce that limn→+∞ Tn = +∞ a.s. Combining this limiting result to

the first step of the proof, that is Tn
(d)

6 T , implies Nε < +∞ a.s.

2.3.2 Rate of convergence

The second important result in the study of the algorithm is the description of
the algorithm rate of convergence. It is of prime interest to known how close
the outcome of the algorithm and the exit time of the L-class diffusion are.
The convergence result is essentially based on the strong relation between
the Brownian motion and the L-class diffusion.

Theorem 2.18. Let us denote by αt (respectively βt) the maximal value
of the function |α| (resp. |β|) on the interval [0, t]. We also introduce F
the cumulative distribution function of the L-class diffusion exit time from
the interval [a, b] and Fε the distribution function of the algorithm outcome.
Then, for any t ≥ 0 and any ρ > 1 there exists ε0 > 0 such that

(
1− ρ

√
ε

1 + βt
σ

)
Fε(t− ε) 6 F (t) 6 Fε(t), ∀ε ≤ ε0, (2.38)

the constant σ being defined in (2.15). Moreover this convergence is uniform
on each compact subset of the time axis.

Proof. As in Lemma 2.17, we build step by step a sequence ((tn, zn))n∈N
of intersections between the path of the L-class diffusion process and the
spheroids in such a way that the sequences ((tn, zn))n≥0 and ((Tn, Xn))n≥0

are identically distributed.
If we introduce Nε the stopping time appearing in the stopping procedure
of the algorithm and Ñε = inf{n ∈ N, zn /∈ [a + ε, b − ε]}, the identity in
law of those random variables yields. By construction, tn 6 T for all n ∈ N,
where T stands for the diffusion first exit time from the interval [a, b]. This
inequality remains true when tn is replaced by the random stopping time
tÑε . Hence

1− F (t) = P(T > t) = P(T > t, tÑε 6 t− δ) + P(T > t, tÑε > t− δ)
6 P(T > t, tÑε 6 t− δ) + 1− Fε(t− δ), ∀t ≥ 0. (2.39)
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We focus our attention on the first term of the r.h.s. Using the strong Markov
property, we obtain

P(T > t, tÑε 6 t− δ) 6 Fε(t− δ) sup
(y,s)∈([a,a+ε]∪[b−ε,b])×[0,t−δ]

P(y,τ)(T > δ).

(2.40)
Let us consider the case y ∈ [b−ε, b] (the study of the other case y ∈ [a, a+ε]
is left to the reader since it suffices by symmetry to use exactly the same
arguments). We first note that, for any y ∈ [b− ε, b],

P(y,s)(T > δ) ≤ P(y,s)(Tb > δ) ≤ P(b−ε,s)(Tb > δ),

where Tb stands for the first passage time through the level b. Let us intro-
duce several notations: we denote the translated function αs(t) := α(s + t)
(similar definition for σ̃s, βs and ρs is defined by using the translated func-
tions in (2.4)). The diffusion process on the time interval [s, s + δ] can be
expressed using these translated functions. The condition Tb > δ is equiva-
lent to sup0≤r≤δXs+r < b and becomes, for all r ≤ δ,

b− ε+ e2
∫ r
0 αs(u) duWρs(r) + e

∫ r
0 αs(u) du

∫ r

0
βs(u)e−

∫ u
0 αs(w) dw du < b. (2.41)

Since s ∈ [0, t− δ] and r ≤ δ, we obtain the following bound:

ρs(δ) ≥ σ2 1− e−2αtδ

2αt
.

The inequality (2.41) implies

1√
ρs(δ)

sup
0≤r≤δ

Wρs(r) ≤
e2αtδ

√
1− e−2αtδ

√
2αt
σ

(ε+ βtδ) ≤ e3αtδ ε+ βtδ

σ
√
δ
.

The Désiré-André reflexion principle for the Brownian motion implies that
the l.h.s of the previous inequality has the same distribution than the ab-
solute value of a standard gaussion random variable: |G|. Hence, for any
y ∈ [b− ε, b] and for any s ≤ t− δ:

P(Tb > δ) ≤ P
(
|G| ≤ e3αtδ ε+ βtδ

σ
√
δ

)
≤
√

2

π
e3αtδ ε+ βtδ

σ
√
δ
. (2.42)

It suffices to choose δ = ε in the previous inequality and to combine with
(2.39) in order to prove the statement of the theorem.
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3 WOMS algorithm for G-class diffusions

In this section we present an application of the results obtained so far to
another family of diffusion processes: the growth processes (G-class). We
shall just point out the existence of a strong link between linear and growth
diffusions.

Definition 3.1. (G-class diffusions) We call G-class diffusion any solution
of

dXt = (α(t)Xt + β(t)Xt log(Xt))dt+ σ̃(t)dWt, X0 = x0, (3.1)

where α and β are real continuous functions and σ̃ is a continuous non-
negative function.

We first notice that this kind of process is non negative due to the loga-
rithm function. As for the L-class diffusions case, it is possible to emphasize
an explicit expression of the solution of (3.1). Here, the desired form is:

Xt = x0 G(t,Wγ(t)), ∀t > 0. (3.2)

The function G is described in the following statement.

Proposition 3.2. The solution of the SDE (3.1) is given by (3.2) with

G(t, x) = C(t)e
σ̃(t)√
γ′(t)

x

with C(t) = exp

(
e
∫ t
0 β(s)ds

∫ t

0

(
α(s)− 1

2
σ̃(s)2

)
e−

∫ s
0 β(u)duds

)
and γ(t) =

∫ t

0
σ̃(s)2e−2

∫ s
0 β(u)duds.

This statement is an immediate consequence of the link built between
the linear and the growth diffusions:

Proposition 3.3. If X is solution of{
dXt=(α(t)Xt + β(t))dt+ σ(t)dWt

X0 =x0

then Yt = eXt is solution of{
dYt=(α̃(t)Yt + β̃(t)Yt log(Yt))dt+ σ̃(t)YtdWt

Y0 =y0
(3.3)

with α̃(t) = β(t) + 1
2σ(t)2, β̃(t) = α(t), σ̃(t) = σ(t) and y0 = ex0.
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Hence, we manage to create a link between a solution of a L-class diffusion
equation with α, β, σ and a solution of a G-class diffusion equation with α̃,
β̃, σ̃.

Proof. To prove this statement, we apply Itô’s formula

Yt = eXt = eX0 +

∫ t

0
eXsdXs +

1

2

∫ t

0
eXsd〈X,X〉s

Hence, using the particular form of Xt we obtain

Yt = Y0 +

∫ t

0
Ys(α(s)Xs + β(s))ds+

∫ t

0
σ(s)dBs +

1

2

∫ t

0
Ysσ(s)2ds

= Y0 +

∫ t

0
(Ys(β(s) +

1

2
σ(s)2) + Ys log(Ys)α(s))ds+

∫ t

0
Ysσ(s)dBs

= Y0 +

∫ t

0
(Ysα̃(s) + Ys log(Ys)β̃(s))dt+

∫ t

0
Ysσ̃(s)dBs.

We consider the exit time from the interval [a, b], a, b ∈ R+
∗ for a G class-

diffusion. The previous link established permits to focus our attention on
the exit time from the interval [log(a), log(b)] for L-class diffusion processes
with modified coefficients.

We present now an adaptation of the WOMS algorithm which permits to
approximate the exit time for G-class diffusions. In such a context we aim to
describe the procedure, the averaged number of steps and the convergence
rate.
The procedure. Let us consider (Xt)t≥0 the unique solution of the stochastic
differential equation (3.1). In order to approximate the first diffusion exit
time T of the interval [a, b] we introduce the linear diffusion (Yt) solution of
(3.3). Since the exit time of the growth process (Xt) from the interval [a, b]
and the exit time of the linear diffusion (Yt) from the interval [log(a), log(b)]
are identically distributed, we use Algorithm 2m with a parameter ε small
enough, with boundaries log(a) and log(b). As a immediate consequence,
Theorem 2.9 points out the logarithmic upper-bound of the average num-
ber of steps and Theorem emphasizes the convergence rate of the algorithm
outcome.
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4 Numerical application

In order to illustrate the efficiency of ALGORITHMm, we present numerical
results associated to a particular linear diffusion.
Let us consider (Xt)t≥0 the solution of (2.1) with

α(t) =
cos(t)

2 + sin(t)
, β(t) = sin(t), σ̃(t) = 2 + sin(t).

Let us just notice that α satisfies α(t) = σ̃′(t)
σ̃(t) , such a property simpli-

fies the link between the diffusion process and a standard one-dimensional
Brownian motion. Given such coefficients, it is therefore possible to deter-
mine the time-change function linking the considered diffusion and the one-
dimensional Brownian motion. In particular, we obtain a simple expression
of the time change appearing in (2.3): ρ(t) = 4t. Indeed (2.4) implies

ρ(t) =

∫ t

0
(2 + sin(s))2e

−2
∫ s
0

cos(u)
2+sin(u)

du
ds

=

∫ t

0
(2 + sin(s))2e−2(log(2+sin(s))−log(2))ds = 4t.

Applying then Proposition 2.6, we are able to determine the frontiers of the
typical spheroid used in the algorithm.

Proposition 4.1. If we denote

ψL±(t; t0, Xt0) :=
2 + sin(t+ t0)

2

(
ψ±(4t) + log

(2 + sin(t+ t0)

2 + sin(t0)

))
+Xt0 .

(4.1)

the spheroids starting in (t0, Xt0), then the exit time defined by
τ t0 = inf{t > 0 : Xt /∈ [ψL−(t; t0, Xt0), ψL+(t; t0, Xt0)]} satisfies

τ t0
d
=

1

4
τ (4.2)

where τ = inf{t > 0 : Wt /∈ [ψ−(t), ψ+(t)]}.

The random walk on spheroids is therefore built using the typical bound-
aries (4.1). At each step of the algorithm, we need to use a scale parameter d
in order to shrink or enlarge the spheroid size in such a way that the domains
always stay in the interval [a, b]. The general statement concerning the scale
parameter (2.9) can be specified for this particular example.
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Let m > 0 and 0 < γ < 1. We recall that aγ,x0 and bγ,x0 are defined by
aγ,x = a+ γ(x− a) and bγ,x = b− γ(b− x). The scale parameter d is given
by

d =

{
min(1,κ+)

∆m
(bγ,x0 − x0) if b− x0 6 x0 − a

min(1,κ−)
∆m

(x0 − aγ,x0) if x0 − a 6 b− x0

where

∆m =
3

2

(
1√
e

+
√
m

)
and κ± are defined by the following equations:

κ+(bγ,x0 − x0) = 2∆m

√
m and κ−(x0 − aγ,x0) = 2∆m

√
m.

This statement is not so different from Proposition 2.7. Nevertheless we
can notice in this particular case that it is possible to find m such that both
min(1, κ−) and min(1, κ+) are equal to 1:

m =

√√√√√1
e + 4

3(b− a)− 1√
e

2
.

Using ALGORITHMm as in Section 2.3 permits to approximate the first
diffusion exit time from the interval [a, b],see Figure 2 and Figure 3.
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Figure 2: A sample of Algorithm 2 for the considered diffusion exit time.
We observe the diffusion process starting at x = 4 in the interval [3, 5] with
ε = 10−2 and γ = 10−4 .
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Figure 3: Histogram of the outcome variable for the diffusion (4) with X0 = 1,
[a, b] = [−1, 2], ε = 10−2 and γ = 10−4 (left). Average number of steps in Algorithm
2m for the exit time of [−1, 2] (right, in logarithmic scale).

A Potential theory and Markov chains

We introduce a result coming from the potential theory and using Markov
chains.
Let us consider a Markov chain (Xn)n∈N defined on a state space I decom-
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posed into two distinct subsets K and ∂K, ∂K being the so-called frontier.
Let us define N = inf{n ∈ N, Xn ∈ ∂K} the hitting time of ∂K. We assume
that N is a.s. finite, then the following statement holds:

Proposition A.1. Let G be a positive increasing function. If there exists
a function U such that the sequence (H(n ∧ N,Xn∧N ))n∈N is non negative
and if the sequence (H(n ∧ N,Xn∧N ) + G(n ∧ N))n∈N represents a super-
martingale adapted to the natural filtration of the considered Markov chain
(Xn), then

Ex[G(N)] 6 H(0, x), ∀x ∈ K.

The proof of this classical upper-bound is left to the reader, it is essen-
tially based on the optimal stopping theorem and on the monotone conver-
gence theorem (see, for instance,[8], p139).

B Path decomposition

We prove in this section the two lemmas used in the proof of Proposition 2.15.
Let us just recall several notations. The process Xx corresponds to the linear
diffusion (3.1) with the starting value x; τx (resp. τx− and τx+) corresponds
to the first exit time of the interval ]a, b[ (resp. ]a, bh[ and ]ah, b[), with ah
and bh defined in (2.23).

We also recall that (Y ±t ) stand for the solutions of the shifted SDEs (2.21)
and (2.22). Their exit time of the interval ]a, b[ is denoted T (Y ±) and the
first passage times through the level a is denoted by Ta(Y ±).

Lemma B.1. Let Eab and Eba the two events defined by

Eab := {τx− ≤ 1, Xx
τx−

= a, T (Y −) ≤ 1, Y −T (Y −)
= b},

Eba := {τx+h
+ ≤ 1, Xx+h

τx+h+

= b, T (Y +) ≤ 1, Y +
T (Y +)

= a}.

Then Eab ∩ Eba = ∅.

Proof. On the event Eab we know that τx− 6 1 and consequently Xx
s ∈

[a, bh[⊂ [a, b[ (for all s < τx−. In particular we observe that τx− = τx. More-
over

Xx+h
s = Xx

s + he
∫ s
0 α(u)du, ∀s ≥ 0.
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Hence
Xx+h
s ∈ [a+ he

∫ s
0 α(u)du, bh + he

∫ s
0 α(u)du[, ∀s ≥ 0.

Since bh+he
∫ s
0 α(u)du = b−h(e

∫ 1
0 |α(u)|du−e

∫ s
0 α(u)du) < b for s ≤ 1, we obtain

Xx+h
s ∈ [a+ he

∫ s
0 α(u)du, b[⊂]a, b[, ∀s ≤ 1.

In conclusion Eab ⊂ {τx < τx+h}.
Using similar arguments, we obtain Eba ⊂ {τx+h < τx}.
The easy observation {τx < τx+h}∩{τx+h < τx} = ∅ implies the announced
statement.

Lemma B.2. Eab ∪ Eba ⊂
⋂
t≥2{X

x+h
τx+h∧t −X

x
τx∧t = b− a}.

Proof. Let us prove that Eab ⊂ {Xx+h
τx+h∧t −X

x
τx∧t = b− a}, the other inclu-

sion can be obtained in a similar way.On the event Eab we obviously observe
that Xx

τx∧t = a. By construction, we have Xx+h
τx−

> Y −0 , and using the conti-

nuity of the paths with respect to the initial condition, we obtain Xx+h
τx−+s >

Y −s , ∀s ≥ 0. the property Y −T (Y −)
= b, implies Xx+h

τx−+T (Y −)
> Y −T (Y −)

= b.

Consequently τx+h ≤ T (Y −) + τx− ≤ 2 and therefore, under the hypothesis
t > 2 we have Eab ⊂ {Xx+h

τx+h∧t −X
x
τx∧t = b− a}.
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