
HAL Id: hal-02147847
https://hal.science/hal-02147847

Submitted on 5 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Artificial Intelligence helps making Quality Assurance
processes leaner

Alexander Poth, Quirin Beck, Andreas Riel

To cite this version:
Alexander Poth, Quirin Beck, Andreas Riel. Artificial Intelligence helps making Quality Assurance
processes leaner. Walker A., O’Connor R., Messnarz R. (eds) Systems, Software and Services Process
Improvement. EuroSPI 2019. Communications in Computer and Information Science, vol 1060.
Springer, Cham, pp.722-730, 2019, �10.1007/978-3-030-28005-5_56�. �hal-02147847�

https://hal.science/hal-02147847
https://hal.archives-ouvertes.fr

Artificial Intelligence helps making

Quality Assurance processes leaner
Alexander Poth1, Quirin Beck2, Andreas Riel3

1/2 Volkswagen AG, Berliner Ring 2, D-38436 Wolfsburg, Germany

{quirin.beck|alexander.poth}@volkswagen.de
3 Grenoble Alps University, F-38031 Grenoble, France

andreas.riel@grenoble-inp.fr

Abstract. Lean processes focus on doing only necessery things in an efficient

way. Artificial intelligence and Machine Learning offer new opportunities to

optimizing processes. The presented approach demonstrates an improvement of

the test process by using Machine Learning as a support tool for test management.

The scope is the semi-automation of the selection of regression tests. The

proposed lean testing process uses Machine Learning as a supporting machine,

while keeping the human test manager in charge of the adequate test case

selection.

Keywords: Artificial Intelligence (AI), Machine Learning (ML), Agile Soft-

ware Development, Quality Assurance (QA), Testing

1 Introduction

Many established long running projects and programs are execute regression tests

during the release tests. The regression tests are the part of the release test to ensure that

functionality from past releases still works fine in the new release. In many projects, a

significant part of these regression tests are not automated and therefore executed man-

ually. Manual tests are expensive and time intensive [1], which is why often only a

relevant subset of all possible regression tests are executed in order to safe time and

money. Depending on the software process, different approaches can be used to identify

the right set of regression tests. The source code file level is a frequent entry point for

this identification [2]. Advanced approaches combine different file level methods [3].

To handle black-box tests, methods like [4] or [5] can be used for test case prioritiza-

tion. To decide which tests can be skipped, a relevance ranking of the tests in a regres-

sion test suite is needed. Based on the relevance a test is in or out of the regression test

set for a specific release. This decision is a task of the test manager supported by ex-

perts. The task can be time-consuming in case of big (often a 4- to 5-digit number)

regression test suites because the selection is specific to each release. Trends are going

to continuous prioritization [6], which this work wants to support with the presented

ML based approach for black box regression test case prioritization.

Any regression test selection is made upon release specific changes. Changes can be

new or deleted code based on refactoring or implementation of new features. But also

changes on externals systems which are connected by interfaces have to be considered

mailto:%7bquirin.beck%7Calexander.poth%7d@volkswagen

during the tests case selection. This work does not address the methods for how to

choose the right indicators for a good selection, as this is considered the job of the test

manager. The focus of this work is rather to assist the test manager with a ML based

tools which will be trained with the test managers’ example selections. Consequently,

the tools implicitly applies the test manager’s selection criteria in order to come up with

a suggestion. After the training, the trained model is applied to the rest of the regression

test suite, helping test managers to safe time. The approach is based on the ML based

system level test case prioritization [7]

Based on the lean concept principles: value, value stream, flow, pull, perfection [8]

the following aspects for the lean regression test case selection can be derived:

- Value: value is generated if the required functionality is validated by only exe-

cuting necessary tests, which leads to faster time to market and revenue.

- Value stream: the stream of safeguarding a product or service is significantly

driven by the selection of the right tests and their right execution order to find

failures as early as possible to fix them to optimize the time to market.

- Flow: the selected tests are directly “flying” into the test preparation or execu-

tion, the next steps in the testing workflow [9].

- Pull: selected tests are pulled for execution rather than a fixed test suite pushed

into the execution pipeline.

- Perfection: the selection process provides iterative and incremental improve-

ment.

Aligned with Toyota Production System (TPS) [10] based plants, implementing

these lean principles also implies reducing waste of experts’ time for doing things

which a machine can do. In this lean context, our investigation topic is therefore to

transfer the mechanical automation of the TPS to an ML-based cognitive automation

for test expert support during the testing process. Human experts are still required pro-

cess understanding, execution, improvement and innovation. This is in-line with re-

searchers’ expectations that real creativity and innovation we will not see in the next

years from ML algorithms [11].

This paper is structured as follows: After a brief investigation of related works in

section 2, section 3 proposes an approach to integrating ML algorithms into the existing

regression testing process. Section 4 elaborates on the design of a regression test pro-

cess that is supported by a ML tool learning from and supervised by a human testing

expert according to the concept presented in section 3. Section 5 summarizes results of

the new process’ application in a series of productive projects at the Volkswagen

Group. Finally, section 6 concludes with a summary and an outlook.

2 Related work

Artificial Neural Networks have been successfully used as white-box test suggestion

engines as demonstrated by the survey-articles [12], [13] and [14]. Our approach aims

at being independent of the particular ML approach used.

3 An approach to integrating ML into regression testing

The objective to support the regression test selection activity with an ML based tool

demands a process which is driven by a human as process owner. The responsibility for

the decisions is held by the human test manager for the product or service under test.

Typically, this other relevant stakeholders having deep knowledge about the release

support this expert. The training of the ML model becomes a part of the selection pro-

cess driven by the test manager, in three major aspects: the test manager

a) defines the training data set,

b) defines the verification data set, and

c) decides about the adequateness of the ML tool suggestion.

The training data is a sub-set of the entire regression test suite (oval in figure 1) and

contains examples from the tests which are in (T+ in figure 1) and which are out (T- in

figure 1) of the regression test set of the release. Depending on the data quality, less

than 100 test cases for each of T+ and T- can be enough for a good training data set.

Fig. 1. The different data sets to train a regression test set

During the training phase, which can take a few minutes for a big regression test

suite, the test manager defines the test data set and selects randomized additional tests

(Tv in figure 2) from the regression test suite. The selected tests are be defined as in

(green dots in figure 2) or out (red dots in figure 2) for the release regression test.

Fig. 2. Selection of verification samples for a regression test set

The result of the ML tool is a monotone sequence of tests (blue curve in figure 3).

Highly ranked tests in the sequence are in (left of Te in figure 3) and low rank tests are

out of the release regression test. The ranking of the tests is compared with the decision

of the test manager for the randomized test data set. The dots should be on an adequate

position on the curve. Figure 3 shows a good result, because all red and green dots are

separated by the decision interval (D). Depending on the result matching of the ML-

model and the human test manager, the test manager gets “trust” into the ML based

suggestion of the ranking or not. In case of trust or a more formal adequateness check

of the ranking, the test manager can define (decide) which test in D is the last test (Te)

in the release regression test. The result is inadequate if the green and red dots are mixed

(not separated by D). Depending on how much the different colored dots are mixed up,

the test manger has to define the ML-suggested ranking as inadequate. In the case of

inadequateness, the test manager can improve the result with more trainings data in case

of high data quality. However, depending on the data quality, the ML tool may never

generate an adequate outcome. The test manager would realize this, and exclude the

tool from the selection process until the data quality has changed. The test manager

would manually select the test cases. By the process design, all decisions about in/out

can still be reused without losing time.

Fig. 3. Definition of a regression test set based on ranked tests by the ML based tool

4 Regression test process design integrating ML tool support

The process have to be designed to be robust in case of low quality outcomes of the

ML-model. The robustness is needed because only a few projects have specialized data

scientist capable of evaluating their data, and optimizing tuning their algorithms with

hyper-parameters. Integrating ML specialists who can modify an ML algorithm or write

a new one for perfect fit is economically infeasible at the current stage. Setting up an

environment in which even ML unskilled persons can appropriately work with ML-

based tools, implies establishing a process that ensures that low quality result are de-

tected fast and filtered out.

4.1 ML tool design for optimal process support

To ensure robustness, the process involves the human test manager on different touch-

points with the ML-tool. The interaction on the touch-points have to be clearly defined

in terms of what is needed from the human and which ML outputs the latter has to

verify. To reach this goal, the ML-tool has been designed in a way as to load the data

and give the user the option to de-select some attributes – called features in the ML

domain – of these data. This working copy of the selected data contains the require-

ments, tests, defects and their relations as basis for the training, testing (verification

dots in figure 2) and inferencing of the ML algorithm and the for the specific context

generated ranking model. The ranking prediction is the outcome of the trained model.

The suggested test ranking has to be verified by the human expert.

The issue is how to verify the tool suggestion? This is realized by splitting the data

into two data sets [15]. One for training (figure 1 left part with T+ and T-) and another

for inferencing (figure 1 right part). The training data can be picked in a randomized

way from the entire regression test suite. For an ML algorithm more training data is

better than less, however on the saturation point more data will not improve the result

significantly. In our evaluation, the saturation point was reached with less than 100

trainings data objects for T+ and T- with a well-structured regression test suite. For

optimizing the cycle time, the process is designed to parallelize actions of the human

and the machine. During inferencing; the human expert builds the test data set and clas-

sifies the tests. The test manager makes some randomized selections of tests from the

inferencing data set (figure 2 colored dots) and decides about in/out of the regression

test set. To hide complexity from the human expert, the display of the test ranking was

considered as not required, leaving only the binary classification results to show. The

amount of verification data can be smaller than the training data set, however not too

small to avoid accidental results. This verification samples are checked against the sug-

gestion of ML-model (figure 3). D could be smaller than as shown on this simplified

example figure in case of T+ and T- “dots” are right or left from the green or red veri-

fication dots. This is the crucial point where the test manager has to decide to start an

additional iteration with more training data or accept a more or less overlapping. This

will necessarily be a case-by-case decision depending mainly on how sure the test man-

ager is about the tolerability of the sample’s (mis-)ranking. Based on the answer, a

further iteration may start. The iterations can be stopped if more training data do not

result in significantly better results/suggestions. If the results do not improve anymore

and a significant overlap persists, the test manager will have to stop using the tool (fig-

ure 4 show the entire process).

After the definition of this workflow and the responsibilities of the human experts, a

data scientist started to analyze different projects from different domains. We selected

projects from three different business domains to ensure a wide range of content and

different content treatment approaches in order to come up with a generic approach.

The different approaches lead to different content structures which the data have to be

extracted from for generic processing and feature extraction. The data scientist selected

an adequate ML algorithm for processing the data in order to derive the specific trained

model. To identify adequate ML algorithms, the state-of-the-art ML frameworks and

libraries have been evaluated against the ranking requirements, and the best fitting al-

gorithm selected. Finally, the workflow has been implemented in an easy to use tool

with an interface to the enterprise tool suite (API) containing requirements, tests and

defects.

Fig. 4. Workflow of the regression test selection for a release.

4.2 Rollout kit of the process

To support the lean approach, a rollout strategy was designed to assist agile autono-

mous teams by mastering the regression test selection. This was realized based on a

self-service kit for the projects. To meet this demand, the basic process and its actions

(figure 4) have been documented in practical work instruction. The latter is like a rec-

ommendation for starting with the tool, integrating be the iterative design the continu-

ous improvement of lean approaches. The process is shown in figure 4. Its first step is

to identify the projects data and make them available for the ML-tool. In the second

step, the features are scoped for the training. In the third step, a set of trainings data is

selected and classified. In the fourth step, the ML model is trained and the test/verifi-

cation data set defined by the randomized picked tests which are classified by the hu-

man. The fifth step checks the adequateness of the outcome of the ML-model. Based

on the quality of the outcome the human can decide to accept the suggestion of the ML-

model or decide to start another try with more training data (go back to step three). In

case of totally inacceptable suggestions the human will realize that the database is not

adequate for the ML algorithm and stop working with the tool (step six) and initiate an

initiative to identify data improvement (step nine). In a post-test phase step, the human

expert shall reflect on the applied regression test set (step eight) and derive points to

improve the data base (step nine) which offers more valuable features in the future to

be more effective.

In addition to the detailed work instruction, the rollout kit is linked to the tool’s code

as well as its technical documentation in order to give everybody in the Volkswagen

Group IT the chance to analyse any issues in detail. Furthermore, everybody is able to

improve the code for better results, in particular data scientists. This openness offers an

individual pull of the users because nothing limits their ideas and supports their contri-

butions to the continuous improvement of both the tool and its integration into the pro-

cess.

5 Results and Evaluation

The developed process was evaluated on projects of three different business domains

on the basis of APFD [16]. Furthermore, the feature test case description was used for

the ranking. Our best result was a 0.9336 in the open interval (0,1) prediction of the ML

model. The worst prediction was 0.5322. These bad results say that ML based sugges-

tion is only 3.22% better as random picking of tests for the definition of the regression

test set, under the assumption that a random prioritization is approximately 0.5. In ad-

dition to the test case description, further features were used for the measurement.

These could certainly improve the results. The validation was made on past releases of

the projects for an easy validation of the outcomes of the ML model with the real world

facts of the past release. This high variance is typical for the heterogeneous data and

their quality of the different projects. Furthermore, the ML-tool detected a corrupt data

set in one of the evaluation projects. This was a positive side-effect observed during the

preparation of the feature selection. Depending on the projects, data and the selected

training data, the result is more or less satisfying. However, the selection process works

fine, taking into account that its quality performance strongly depends on the training

know-how of the human experts who selects the training data set. This result fulfills the

requirement for ML supporting the human expert. This approach has been made avail-

able to all projects and programs in the Volkswagen Group IT to show if the data quality

fits with the requirements for training demands of the ML algorithm to have a benefit

from the ML-based supporting tool.

6 Conclusion and Outlook

This work demonstrates that it is possible to develop a lean process and its tooling

which integrates an ML-based support of the daily business of test- and quality manag-

ers within a few months only. The current issue is that the hundreds of real life projects

of an enterprise have many different approaches to document their requirements, tests

and defects, and it is not clear how well the ML algorithm can work – especially learn

– from all these data that have not been tuned specifically for ML algorithms. Tuning

the data by data scientists is currently not an option for all projects (because of availa-

bility and cost of data scientists and efforts for changing established structures of the

data and the processes) and the process have to be robust enough to filter out bad rec-

ommendations of the ML-model. To handle his unknown data quality the process is

designed to give a clear feedback about the outcome quality thanks to mapping of the

test samples by the human expert. Therefore, at every time the human can decide about

the adequateness of the ML outcomes.

The presented process improvement approach also follows the values and principles

that are described in the Software Process Improvement (SPI) Manifesto [17][18][19].

The implementation tries to motivate all the people involved, for example the test man-

ager and other stakeholders who can support the test case selection. It is a dynamic and

adaptable way to satisfy customer needs with an agile and lean mindset.

References

[1] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold. Test case prioritization: An empirical

study. In International Conference on Software Maintenance and Evolution, pages 179–189,

1999

[2] M. Gligoric, L. Eloussi, and D. Marinov. Practical regression test selection with dynamic file

dependencies. In International Symposium on Software Testing and Analysis, pages 211–222,

2015

[3] Lingming Zhang. 2018. Hybrid regression test selection. In Proceedings of the 40th Interna-

tional Conference on Software Engineering (ICSE '18). ACM, New York, NY, USA, 199-209.

DOI: https://doi.org/10.1145/3180155.3180198[4] Christopher Henard, Mike Papadakis, Mark

Harman, Yue Jia, and Yves Le Traon. 2016. Comparing White-box and Black-box Test Prioriti-

zation. In Proceedings of the 38th International Conference on Software Engineering (ICSE ’16).

ACM, New York, NY, USA, 523–534. DOI:http://dx.doi.org/10.1145/2884781.2884791

[5] Breno Miranda, Emilio Cruciani, Roberto Verdecchia, and Antonia Bertolino. 2018. FAST

approaches to scalable similarity-based test case prioritization. In Proceedings of the 40th Inter-

national Conference on Software Engineering (ICSE '18). ACM, New York, NY, USA, 222-232.

DOI: https://doi.org/10.1145/3180155.3180210

[6] Jingjing Liang, Sebastian Elbaum, Gregg Rothermel (2018). Redefining prioritization: con-

tinuous prioritization for continuous integration. 688-698. 10.1145/3180155.3180213.

[7] Lachmann, Remo & Schulze, Sandro & Nieke, Manuel & Seidl, Christoph & Schaefer, Ina.

(2016). System-Level Test Case Prioritization Using Machine Learning. 361-368.

10.1109/ICMLA.2016.0065.

[8] https://www.asme.org/engineering-topics/articles/manufacturing-design/5-lean-principles-

every-should-know

[9] https://www.istqb.org/downloads/syllabi/foundation-level-syllabus.html

[10] Taiichi Ohno: Toyota Production System – Beyond Large-Scale Production. Productivity

Press, Cambridge Massachusetts 1988

[11] Margaret A.Boden: Creativity and artificial intelligence, 1999, DOI: 10.1016/S0004-

3702(98)00055-1

[12] Wang F., Yang SC., Yang YL. (2011) Regression Testing Based on Neural Networks and

Program Slicing Techniques. In: Wang Y., Li T. (eds) Practical Applications of Intelligent Sys-

tems. Advances in Intelligent and Soft Computing, vol 124. Springer, Berlin, Heidelberg

[13] D. Agarwal, D. Tamir, M. Last, A. Kandel, A comparative study of artificial neural networks

and info-fuzzy networks as automated oracles in software testing, vol. 42, no. 5, pp. 1183-1193,

2012.

[14] E. Engstrom, P. Runeson, M. Skoglund, "A systematic review on regression test selection

techniques", vol. 52, pp. 14-30, 2010.

[15] Stuart Russell and Peter Norvig: Artificial Intelligence: A Modern Approach (3rd Edition),

Pearson, ISBN-13: 978-0136042594.

[16] G. Rothermel, R. H. Untch, C. Chu, M. J. Harrold, "Prioritizing test cases for regression

testing", IEEE Trans. Soft. Eng., vol. 27, no. 10, pp. 929-948, 2001.

[17] Korsaa, M., Biro, M., Messnarz, R., Johansen, J., Vohwinkel, D., Nevalainen, R., & Schwei-

gert, T. (2012). The SPI Manifesto and the ECQA SPI manager certification scheme. Journal of

Software: Evolution and Process, 24(5), 525-540.

[18] Messnarz, R., Sicilia, M. A., Biro, M., Garcia Barriocanal, E., G. Rubio, M., Siakas, K., &

Clarke, A. (2014). Social responsibility aspects supporting the success of SPI. Journal of Soft-

ware: Evolution and Process, 26(3), 284-294.

https://doi.org/10.1145/3180155.3180210
https://www.asme.org/engineering-topics/articles/manufacturing-design/5-lean-principles-every-should-know
https://www.asme.org/engineering-topics/articles/manufacturing-design/5-lean-principles-every-should-know
https://www.istqb.org/downloads/syllabi/foundation-level-syllabus.html

[19] Sanchez-Gordon, M. L., Colomo-Palacios, R., & Amescua, A. (2013). Towards measuring

the impact of the spi manifesto: a systematic review. In Proceedings of European System and

Software Process Improvement and Innovation Conference (pp. 100-110).

