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Abstract: Whatever the data source, or the capture process, the creation of a building
footprint in a geographical dataset is error prone. Building footprints are designed with
square angles, but once in a geographical dataset, the angles may not be exactly square.
The almost-square angles blur the legibility of the footprints when displayed on maps,
but might also be propagated in further applications based on the footprints, e.g., 3D city
model construction. This paper proposes two new methods to square such buildings: a
simple one, and a more complex one based on nonlinear least squares. The latter squares
right and flat angles by iteratively moving vertices, while preserving the initial shape and
position of the buildings. The methods are tested on real datasets and assessed against
existing methods, proving the usefulness of the contribution. Direct applications of the
squaring transformation, such as OpenStreetMap enhancement, or map generalization are
presented.

Keywords: squaring, OpenStreetMap, shape, map generalization, least squares, orienta-
tion

1 Introduction

Geographical information abstracted and captured as vector data is error prone, and source
errors [17] are an important part of these errors. The source errors can originate from the
source itself, e.g., GPS imprecision, or satellite imagery resolution, or they can originate
from the capture process, e.g., manual capture with GIS tools, or automatic image segmen-
tation. When geographic information is voluntarily contributed, the errors can be more
frequent as some sources might be less professional and the contributor skills more hetero-
geneous [9]. Buildings are mostly built to be perfectly square but the source errors may
alter this squareness: for instance, some 90◦ angles may be captured as 87◦ angles on the
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footprint. This is what Savino and Rumor call a shape regularity anomaly [31]. This alter-
ation of squareness does not make the building footprints unusable because the defects are
often nearly imperceptible. However, this adds noise to the cartographic visualization of
such data, and may convey errors in further applications that use the footprint geometries.
Is it possible to automatically correct the squareness alteration while preserving the posi-
tional accuracy and the shape of the building footprints? This paper tries to answer this
question proposing two new algorithms to square building footprint polygons.

The next section presents related work on squareness and polygon squaring algorithms.
Section 3 describes our first proposition to square building footprints, using a naive ap-
proach that squares polygon segments one after another. Section 4 presents our main con-
tribution with a squaring algorithm based on a least squares adjustment. Section 5 details
the experiments carried out to validate and evaluate our propositions, and compare them
to existing methods. Finally, Section 6 proposes direct applications of the algorithm to
enhance OpenStreetMap data or to improve cartographic generalization.

2 Related work

The need for squaring building footprints is not new, and some algorithms have already
been proposed. The first proposition from [1] seeks to enhance footprints that are not to-
tally squared in a topographic dataset, because of capture specifications that do not require
strict square angles. The algorithm squares almost-right angles while preserving wall reg-
ularities such as symmetries and alignments. The algorithm is based on the optimization
of an energy function, by moving all the points of the building footprint. The energy is
computed according to several constraints:

• a squareness constraint to square almost-right angles,
• a movement constraint that prevents points from moving too far from their initial po-

sition,
• a parallelism constraint that forces parallel segments to remain parallel,
• an alignment constraint that preserves wall alignments between too close buildings,

and
• a topology constraint that prevents from topology problems inside a footprint and

with close buildings.

The results are quite compelling, particularly regarding the preservation of initial char-
acteristics of the buildings, although the authors state that the algorithm fails on build-
ings that do not need squaring, because the walls are altered when they should be left
unchanged.

Cartographic generalization is a process that seeks to simplify geographic information
and display it in a legible way at a smaller scale. The aim of cartographic generalization
is more to convey the geography behind the map, i.e., preserve and enhance spatial re-
lations and structures, more than convey the exact positioning of map objects [20]. As a
consequence, most generalization processes require exaggeration operations such as typi-
fication, parallelism enhancement and squaring [21]. Some squaring operations have been
embedded into simplification algorithms dedicated to buildings, e.g., [15, 29]. Such algo-
rithms are effective but are not applicable to buildings that should only be squared and not
simplified. Additionally, specific squaring algorithms have been developed to complete
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the simplification algorithms. The generalization process developed during the European
project AGENT [3, 30] includes a squaring operation partially inspired from [1]. Gaffuri
proposed another algorithm based on a multi-agent generalization process, namely GAEL,
that displaces the vertices of the building so that all nearly right angles become perfectly
right angled [8]. The algorithm uses the main wall orientations [7] as a principle governing
the squaring process.

The squaring of polygons has also been tackled by more global cartographic generaliza-
tion processes that try to solve generalization with an optimization framework: constraints,
including the squareness of buildings are put in equations and an optimization method,
such as the finite elements [16], or a least squares adjustment [13, 32], computes the posi-
tion of the vertices of map features that balances the constraint for shape preservation with
the constraints for map legibility. These methods are interesting because they show how
squareness can be modeled in equations in an optimization framework, even though they
cannot directly be used when simplification is not required.

Map schematization is a process to simplify maps to a lower graphical complexity com-
pared to topographic maps, by caricature and minimization of non-functional details [19].
When creating schematized maps, squaring the angles is often a means to obtain lower
graphical complexity, and this is the case for instance when generating schematized metro
maps [4, 24, 37]. The methods to force angle squaring in such schematization are inter-
esting sources of inspiration for our building footprint squaring issue. In the subdivision
schematization method from [23], there is a rectilinearization to make all angles flat or right.
Although the method is not directly reproducible in our context, where angles may be dif-
ferent from 90◦ or 180◦, the techniques proposed to simplify the rectilinearized polygons
could be used to make a building squaring algorithm.

Figure 1: Two buildings squared with the GAEL algorithm where the squaring also caused
a displacement.

Given these existing methods, we first attempted to use the GAEL squaring algorithm
since it was available on our research platform, GeOxygene [12,28]. However, experiments
showed some problems with the algorithm: the squared footprints were sometimes dis-
placed (Figure 1), and more rarely, the process diverges, causing large distortions: this al-
gorithm iteratively moves points to a balanced position to optimize geometrical constraints
satisfaction, but sometimes, the iterations only make the constraints balance worse, and
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the algorithm fails. So we decided to propose two new algorithms: a naive and quick one,
inspired from [1], presented in Section 3; and a least squares based algorithms following
some principles of [32], presented in Section 4.

3 A naive polygon squaring algorithm

The approach examines each angle one by one, and makes adjacent line segments straight
or perpendicular by moving one of the edges through a narrow angle band (i.e., 180◦, such
angles are referred to as “flat” in the remainder of the paper), right angled, or 45◦, within a
tolerance range, of 0.5◦. This tolerance range, as well as the angle margin, are parameters
of the algorithm. To achieve these squarings, a two pass process is performed:

• During the first pass, the almost-180◦ angles are flattened by projecting the vertex on
the flat line joining the two points around it (Figure 2).

• Then, in a second step, we rotate one edge of a candidate angle (one that is almost
90◦ or 45◦ angle) in order to square the angle. The chosen edge is the one less aligned,
i.e., the more orthogonal, with a vector co-linear to the overall orientation of the poly-
gon. We could have chosen the orientation of the longest edge or the length of the
smallest surrounding rectangle; we chose to use the main orientation of the polygon
as defined in [7], which is a [0,π] orientation computed by measuring the orientation
of the longest edge of the smallest minimum bounding rectangle.

••
•

•

•

• •

•

Figure 2: Flattening an almost-straight line.

Some minor conditions are evaluated before moving an edge (i.e., the vertex at its end):
if the preceding angle is right angled and the edge to rotate is the one before the angle, or
if the two angles surrounding the candidate angle are 90◦, nothing is done, because squar-
ing the angle would cause distortion of the polygon. The order of angle processing in the
algorithm clearly matters: experiments showed that different orders of angle processing
could lead to different squared shapes, although the number of angles that are squared
remains stable. To avoid this instability, three squared shapes are computed with different
orders (the order of vertices in the geometry, the reverse order, and a random order), and
we keep only the squared solution that minimizes the total vertex displacement. We made
this choice in order to keep the algorithm as quick as possible, and experiments showed
that those three iterations were a good compromise between quality of the result and com-
putation time.

The algorithm is clearly dedicated to simple building polygons having fewer vertices
and only one wall orientation [7], i.e., walls are more or less in the same direction or almost
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perpendicular to this direction. On more complex buildings, the algorithm might fail to
square the building, either because the main orientation is not significant (some buildings
do not have a single orientation), or because moving an edge “un-squares” another angle.
That is why we proposed a second algorithm presented in next section.

4 Least squares based polygon squaring

In order to complete the naive simple algorithm that we knew to be limited to simple poly-
gons, we targeted a more generic framework for squaring, able to model more constraints
such as the ones used in [1], and described in Section 2. Least squares adjustment is a
mathematical technique used to approximate a solution for an overdetermined system, i.e.,
an equation system where there are more equations than unknowns. It is often used as
an optimization technique in geographic information science, and is well adapted to spa-
tial deformation. It has been used for instance for cartographic generalization [13, 32], for
geometric conflation [22, 34], and for line morphing [26].

4.1 Algorithm description

The model is based on five constraints applied to the 2D coordinates of the polygon ver-
tices:

• a constraint C1 to express the fact that we wish to minimize the movement of points
from their initial position (similar constraints are used in [13, 32, 34]),

• a constraint C2 to force perfect squareness upon almost-right angles, i.e., the angles
should be 90◦ with a small tolerance (e.g., 0.5◦),

• a constraint C3 to force perfect squareness upon almost-45◦ or 135◦ angles,
• a constraint C4 to force the straightening of almost-straight lines, and
• a constraint C5 to preserve the parallelism of two parallel wall segments.

As in the simple squaring algorithm, the margin either side of 90◦, 180◦, or 45◦ angles
is a parameter of the algorithm. This parameter should be rather small, but not necessarily
the same for each type of angle (see Section 5.2 for the values used in the experiments).
Thus each angle is only constrained by one of the three C2 to C4 constraints at most. Only
the angles that are outside the tolerance (e.g., smaller than 89.5◦ or bigger than 90.5◦ for
right angles) and inside the margin (e.g., bigger than 80◦ or smaller than 100◦ for right
angles) are considered in the least squares adjustment, the other angles are fixed.

We note the three consecutive points of angle i: Pi−1, Pi and Pi+1. We define the two
consecutive vectors, �u and �v from these points (Figure 3).

Then, simply using dot products and cross product (in fact the z component resulting
from the cross product) on the points’ coordinates, we define the functions F and G to
express the constraints on potential angles candidates (angles not far from 45, 90, 135 or
180 degrees).
Let Pi(xi, yi), �u =

−−−−→
Pi−1Pi and �v =

−−−−→
PiPi+1 , we have :

F = �u · �v = (xi − xi−1) · (xi+1 − xi) + (yi − yi−1) · (yi+1 − yi) (1)

G = �u× �v = (xi − xi−1) · (yi+1 − yi)− (yi − yi−1) · (xi+1 − xi) (2)
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Figure 3: Angle constraints are tested with two consecutive vectors around its vertex.

Using equations 1 and 2, the constraints on an angle α can be translated into the follow-
ing equations:

C2 : (xi − xi−1) · (xi+1 − xi) + (yi − yi−1) · (yi+1 − yi) = 0 (3)

C3 : (xi − xi−1) · (xi+1 − xi) + (yi − yi−1) · (yi+1 − yi) = cos(
π

4
) (4)

C4 : (xi − xi−1) · (yi+1 − yi)− (yi − yi−1) · (xi+1 − xi) = 0 (5)

The constraint C5, which seeks to preserve the parallelism of two wall segments [AB]

and [CD] with A(xa, ya), B(xb, yb), C(xc, yc), and D(xd, yd), means that
−−→
AB and

−−→
CD are

co-linear. Using the cross product, it can be translated into Equation 6.

C5 : (xb − xa) · (yd − yc)− (xd − xc) · (yb − ya) = 0 (6)

A least squares adjustment requires linear equations but the functions F and G are
nonlinear because the coordinates of the vertices are unknown. So we approximate the
model with a linear one and the parameters are obtained by successive iterations, as in
[22, 26].

Let us consider a polygon formed by (n+1) points of coordinates (x0, y0), . . . , (xn, yn).
Let us suppose there are i nearly right angles, j nearly flat angles, k nearly 45◦ angles,
and l nearly 135◦ angles. Cases of segment parallelism are ignored for simplicity but their
inclusion in the equation is precisely the same.

Using the identity matrix I2(n+1), and the partial derivatives of (1) and (2) with respect
to x and y for the three consecutive points of candidate angles we can form A the Jacobian
Matrix of the model (Figure 4), which is a matricial representation of the equation system.
In matrix A, the lines are related to the constraints instantiated on a single building, and the
columns are related to the coordinates of each point of the building, which are unknown
in the equation system. The first lines represent the constraint that points should not move
(C1). Then, the derivative equations for (C2), (C3), etc. are added in the matrix.

We note S the parametric model, X the vector of parameters to estimate, and Y the
observations vector, where α90

i is the ith almost-right angle, α180
i is the ith almost-flat angle,

etc.:
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A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . . . . 0

0 1 0 . . .
...

...
...

... 1 0
0 . . . . . . 0 1
0 . . . 0 ∂F

∂xi−1

∂F
∂yi−1

. . . ∂F
∂yi+1

0 . . . 0
...

...
0 . . . ∂G

∂xj−1

∂G
∂yj−1

. . . ∂G
∂yj+1

0 . . . 0

...
...

0 . . . 0 ∂F
∂xk−1

∂F
∂yk−1

. . . ∂F
∂yk+1

0 0

...
...

∂F
∂xl−1

∂F
∂yl−1

. . . ∂F
∂yl+1

0 . . . 0
...

...
0 ∂F

∂xl−1

∂F
∂yl−1

. . . ∂F
∂yl+1

0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

I2(n+1)

}
i lines}
j lines}
k lines⎫⎪⎬

⎪⎭ l lines

︸ ︷︷ ︸
2n + 1

Figure 4: Jacobian matrix of the model.

Y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x0

y0
...
xn

yn
0
...
0
0
...
0

cos(π4 )
...

cos(π4 )
cos(3π4 )

...
cos(3π4 )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

2(n+ 1)

⎫⎪⎬
⎪⎭ i

⎫⎪⎬
⎪⎭ j

⎫⎪⎬
⎪⎭ k

⎫⎪⎬
⎪⎭ l

S(Xm) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xm
0

ym0
...

xm
n

ymn
F (α90

1 )
...

F (α90
i )

G(α180
1 ))
...

G(α180
j ))

F (α45
1 )

...
F (α45

k )
F (α135

1 )
...

F (α135
1 )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

2(n+ 1)

⎫⎪⎬
⎪⎭ i

⎫⎪⎬
⎪⎭ j

⎫⎪⎬
⎪⎭ k

⎫⎪⎬
⎪⎭ l

(7)
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Then, with B = Y − S(X) we can write the normal equations of the system as

(ATPA)−1dX = ATPB (8)

dX being the vector of increments, and P a weight matrix containing weights relative to
the importance of each constraints (e.g., squareness is important with a weight of 10, while
preventing vertex movement is less important with a weight of 1). Weight setting is further
discussed in the next section.

X is then calculated iteratively, with X0 being the vector of initial positions of the build-
ing vertices:

Xm = dXm +Xm−1 (9)

with
dXm = (ATPA)−1ATPB (10)

The approximate least squares solution for the linear system, obtained from equations 9
and 10, minimizes the sum of weighted squared residuals (the difference from the exact
solution for each equation). In order to ensure the convergence of the iterating algorithm,
we set a maximum number of iterations, and a minimum value for the residuals that means
that the process stops when the last iteration causes negligible distortions.

4.2 Weight setting and stopping condition

The weight matrix P gives a relative weight to each of the equations encapsulated in the
lines of matrix A. The five constraints that are translated into equations are not of equal
importance, i.e., some constraints may be less satisfied than others, and the weight matrix
allows for this. Squaring a building with angles not totally square requires the displace-
ment of some vertices so we accept C1 violation provided the other constraints are fully
satisfied. We want C1 matrix lines to have a smaller weight than the other constraints. Har-
rie [14] proposes four methods to set weights in a similar least squares based generalization
system. We followed an empirical approach—exploring different weights. From this we
determined the relative importance among the constraints (Table 1). Some experiments on
the sensitivity of weights are presented in the following section.

C1 C2 C3 C4 C5

vertex
displacement

90◦ angles
squaring

180◦ angles
squaring

45◦ angles
squaring

wall alignment
preservation

5 100 15 10 10

Table 1: Weights used for the five constraints.

The proposed nonlinear least squares method is iterative so the condition that stops the
iterations is crucial. After several tries based on the number of iterations or on the residual
values, we used a twofold condition:

• a maximum number of iterations is reached, or
• the norm of dX vector is sufficiently small (the vertices displacement is negligible).
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In at least 99% of cases, the iteration stops because of the dX condition, generally within
4 to 6 iterations but the maximum number of iterations is used to stop the rare cases where
the algorithm diverges. We set this maximum number of iterations to 50 but we did not try
to optimize it given the rarity of diverging cases. In order to set the dX vector condition,
we tried several norms, including the L1-norm, Frobenius norm (equal to L2-norm for vec-
tors), and the L∞ norm. The L∞ norm that takes the largest absolute values in the vector,
appeared theoretically to be the best solution, and it proved right in our experiments. We
empirically set the threshold to 0.001, which is one millimeter, and it gave a good balance
between the number of iterations and the quality of the output. Some experiments with
varying thresholds are presented in the next section.

We did not use the residuals for the stopping condition, but used it to detect cases where
the algorithm under-performs. Cases where the maximum number of iterations is reached
or where the L2-norm of the residual vector is very large (threshold empirically set) can be
marked as errors of the algorithm, i.e., the algorithm did not find an optimal solution.

The most complex operations of the algorithm are matrix products and matrix inver-
sion, which gives a complexity of O(n3) where n is the size of a row of the square matrix
A, i.e., n is a little more than two times the number of vertices in the polygon (it depends
on the number of almost-square angles, see Figure 4). The complexity of O(n3) is valid for
standard matrices, which is the case in our implementation, but if we use a sparse matrix
model for A, as A really is a sparse matrix, the complexity decreases to O(n2).

5 Experiments

In order to test both proposed algorithms, experiments were carried out on our open source
Java platform GeOxygene [12] on standard desktop computers. The next subsection de-
scribes the experimental datasets. Results are presented, evaluated and compared with
algorithms from the literature.

5.1 Experimental datasets

Three datasets were selected for the experiments. The first two are extracts from Open-
StreetMap. One covers the small French town Orthez with a variety of building types
(residential, apartment blocks, industrial, agricultural). In this area, most OSM buildings
are semi-automatically imported from the image segmentation of scanned cadastral maps,
which causes some imperfections in the building outline (Figure 5). The width of the build-
ing outline, the hatching, and the numbers that might cross the outline cause inaccurate
generated outlines, with particularly unsquare angles. The dataset contains 7650 buildings.

The second OSM dataset is an extract of the city of Würzburg in Germany. Germany is
interesting because most of buildings have been manually captured from satellite imagery,
which also causes some imperfections that can be corrected by squaring operations. This
dataset contains 10485 buildings.

The last experimental dataset is an extract of French reference dataset BD TOPO R©, pro-
duced by the French national mapping agency, IGN. The extract is located on the Reunion
Island and contains around 600,000 buildings with a 1 m precision. Buildings have been
captured from high resolution aerial photographs and field survey. All these buildings are
stored in a PostGIS database.

JOSIS, Number 13 (2016), pp. 33–60



42 LOKHAT, TOUYA

Figure 5: (a) French scanned cadaster imported by image segmentation in OSM. (b) the
result building in OSM (red) squared by the proposed least squares algorithm.

5.2 Results

All three datasets are squared using both methods and the results are presented in Figures 6
to 12. In each experiment, we used a threshold of 15◦ for squaring right and flat angles, and
8◦ for 45◦ angles, which means, for instance, that angles from 76◦ to 104◦ are squared to 90◦.
The 15◦ threshold derives from cartographic knowledge and is often used in cartographic
generalization [33].

In the Orthez area in France, where buildings are mostly captured by an automatic im-
port from an image segmentation process, many buildings need to be squared. On simple
shapes, both methods effectively square the buildings, but the least squares method tends
to distort the footprints less (Figure 6). On complex building shapes, the least squares
performs better according to our visual inspection (Figure 7).

In the Würzburg area, in Germany, where buildings have been mostly captured manu-
ally using aerial imagery, most of the buildings are already square. In this area, most of the
remaining unsquared buildings are correctly squared by the algorithms (Figure 8) with a
better visual result for least squares applied to complex shapes (Figure 9).

For the French NMA reference dataset, nearly 70% of the buildings are squared, with
significant distortions (Figure 10), which was expected because the level of detail is sup-
posed to be lower compared to the cadastral data used in OSM. The effectiveness of the
least squares method on complex buildings is confirmed with this third dataset (Figure 11).

As predicted, the simple squaring algorithm fails for some complex buildings with a
large number of vertices, but the least squares squaring does square these buildings prop-
erly (Figure 12).

Experiments with the C5 constraint were also carried out with the least squares algo-
rithm. The C5 constraint aligns the almost-parallel walls of close buildings while squaring
the building, and the results show a significant improvement compared to an individual
squaring of the building (Figure 13). Two pre-processing steps are necessary to use this con-
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Figure 6: Extract of squared buildings with simple shapes from Orthez area, initial shapes
in green, simple in purple, and least squares in orange.

straint in the least squares algorithm: first identify the buildings that should be processed
together; then, identify the walls (i.e., the polygon segments) that should be aligned. In
this experiment, the first step was done by manually picking aligned buildings, but many
methods exist to automatically identify such alignments [6, 27, 38]. The second step is car-
ried out automatically by considering the consecutive building pairs in the alignment: we
search for the closest pair of almost-parallel segments, proximity being computed between
the centers of the segments.

We also carried out experiments to measure processing time for the least squares based
algorithm, on a standard desktop computer with a i7 core processor. The median process-
ing time for a building that requires squaring, i.e., a building with almost-square angles,
is 5 ms, and the mean for all datasets is 400 buildings per second. Considering that this a
Java implementation where sparse matrix operations are not optimized, we consider this
as a good result, meaning it could be used for online rendering with some optimization of
the implementation.

5.3 Parameterization experiments

We only focus on least squares in this section, and there are several types of parameters
that can alter the results: weights, stopping thresholds, and thresholds defining what is
“unsquare.”

With regards to weights, past experiments with least squares show that their setting
might be a problem because of sensitivity to the weights. In our case, the configuration of
the constraints and their relative importance lead to a very low sensitivity to the weights.
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Figure 7: Extract of squared buildings with more complex shapes from Orthez area, initial
shapes in green.

We tried different distributions of weights, but the results were very similar in 99% of the
cases (only 6 buildings are squared differently in the French OSM dataset when weights
vary) (Figure 14): test one (T1) was carried out with small variations over the optimum
weights, test two (T2) has equal weights for all constraints, and test three (T3) has a greater
weight on the constraint that prevents vertex displacement rather than on constraints forc-
ing squareness.

There are two stopping criteria: the iteration number and the norm of the previous
displacement. Tests were first carried out on the optimal number of iterations. On one of
the datasets, iteration limits were raised from 5 to 500. The results were always the same
as all buildings were squared in 5 or less iterations. This shows that our chosen value of
50 iterations was too conservative, so further testing on different types of buildings and
different areas should be carried out to estimate an optimal value. We tested different
values for the norm of displacements, ranging from 0.0001 m to 0.5 m, for a default value
of 1 mm. Results show that from 0.0001 m to 0.1 m, the squaring is the same, and some
squaring results start to deteriorate when the threshold is bigger than 0.1 m (Figure 15),
because the algorithm is sometimes stopped before the optimal solution is reached. These
tests indicate that keeping a 1 mm parameter value is a good solution to obtaining optimal
results in the shortest time.
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Figure 8: Extract of squared buildings with simple shapes from Würzburg area, initial
shapes in green.

The main parameter of the algorithm is the angle tolerance threshold around 90◦ (re-
spectively 180◦, 45◦, and 135◦) to identify angles that need to be squared. The default
empirical values are 15◦ for right and flat angles, and 8◦ for 45◦ angles, and derive from
knowledge in cartographic generalization [33]. When these threshold vary, the squaring
results clearly vary with more or less angles of the polygon being squared (Figure 16). So
this parameter needs to be carefully set in relation to the aim of the squaring operation.

5.4 Evaluation

There are two ways to evaluate the proposed algorithms: first, assess how well polygons
are squared and how much the initial shape is preserved (5.4.1); then compare the proposed
algorithms to the existing algorithms, by applying them on the same buildings with the
same parameters, in order to assess which algorithm performs better (5.4.2).

JOSIS, Number 13 (2016), pp. 33–60



46 LOKHAT, TOUYA

Figure 9: Extract of squared buildings with more complex shapes from Würzburg area,
initial shapes in green.

5.4.1 Assessment of squared shapes

In order to assess how well polygons are squared by both proposed algorithms, the number
of almost-right, almost-flat and almost-45◦ angles is counted before and after squaring, for
every building footprints in the three experimental datasets. A good squaring method
would set these three numbers to zero after squaring. Added to the count of almost-right
angles, we sum the differences to the perfect angle: a building that has two almost-right
angles with angle values of 87◦ and 86◦ will have a sum of almost-right angles equal to 7.

Only footprints that required squaring are kept in the assessment, the other footprints
are exactly the same before and after. The ratio of buildings not exactly square varies from
one dataset to another: 90% for the French OSM dataset, 80% for the French reference
dataset, and 20% for the German OSM dataset. A summary of this assessment is presented
in Table 2. Both methods clearly reduce the amount of angles almost-right (ARA) and
almost-flat (AFA): the initial mean number of ARA (5.92 per building) and AFA (0.79 per
building) falls to 0.51 and 0.16 respectively for least squares, and 1.59 and 0.22 respectively
for the simple method. The least squares method outperforms the simple method as the
median number shows that for most of buildings, there are no buildings in need of squar-
ing. Even with the least squares method, some angles remain almost-square or almost-flat
after squaring in some cases, but the angle differences sum show that the remaining ARA
and AFA are close to π/2 and 0. The sum of ARA is only 0.51◦ in total which is very low,
given that we previously used a tolerance of 0.5◦ to consider angles as perfectly square.
Regarding the least squares method, the remaining ARA and AFA are due to too few it-
erations (see Section 4.2, or particular geometrical configurations). A closer inspection of
the buildings with remaining ARA and AFA shows that they are mostly large and com-
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Figure 10: Extract of squared buildings with simple shapes from IGN reference dataset,
initial shapes in green.

plex buildings, with unusual (e.g., round) shapes, such as the ones in Figure 11. On the
other hand, the particular geometrical configurations can contain very long or very short
segments in a building, which might be badly handled in the adjustment [34]: very small
segments might lead to unacceptably large angle distortions, while very long segments
might prevent angle distortions because they cause too long vertex displacement. Further
testing is required to better handle very short and very long segments.

Regarding the preservation of the initial shape, we first measure how much the out-
line of the footprint has been distorted by the squaring operation. We are not interested
here in measuring vertex movement, which changes the shape of the initial polygon, but
instead are interested in the preservation of the general shape of the polygon and its main
characteristics. Several polygon similarity measures were used to assess this shape preser-
vation. Changing the representation space of the outline can help describe the exterior line
work of the polygons, as proposed by the turning function [2] and the polygon signature
function [36].

The turning function gives the orientation of the line with respect to the x and y axes,
at a given curvilinear abscissa, i.e., it gives the orientation of each segment of the polygon.
The turning function distance computes the area between the turning functions of two
lines (Figure 17). To illustrate, if the orientation of a segment changes from 87◦ to 90◦,
which happens frequently with the squaring methods, the second turning function will be
a little above the first one at the curvilinear abscissa of the segment. The distance value
is normalized by the minimum value of both perimeters, in order to avoid penalizing the
largest buildings. This measure seems particularly appropriate as squaring mainly changes
angles and segment orientations.
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Figure 11: Extract of squared buildings with more complex shapes from IGN reference
dataset, initial shapes in green.

Figure 12: two buildings from Würzburg area where simple squaring fails.

The polygon signature is a function from [0,1] to R which represents the radial distance
from the centroid of the polygon to each of its vertices [36]. The distance is computed the
same way as the turning function distance (Figure 17). It has been successfully used for
assessing polygon similarity in feature matching problems [36]. To illustrate, this distance
is zero if there is only a translation between the compared polygons.
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Figure 13: Aligned buildings squared together using the C5 constraint.

Figure 14: One of the buildings where weight-setting alters the squaring results.

In order to measure how polygons are the same at the same location, the surfacic dis-
tance [36] is complementary to the previous measurements: it is simply computed by com-
paring areas of the intersection and union of the two polygons (Equation 11).

surfacicDistance(A,B) = 1− Area(A ∩B)

Area(A ∪B)
(11)

The results of the assessment are summarized in Table 3. All three measures indicate
that the least squares squaring method is effective in preserving the initial shape of the
building; the simple squaring method often does not. Regarding the surfacic distance, a
mean of 0.013 is very low, as most of the matched lake footprints from OpenStreetMap and
IGN reference data had a surfacic distance of between 0.05 and 0.4, according to [9].

5.4.2 Comparison with existing methods

It is useful to compare these two methods with other implementations. Comparisons were
carried out with two other methods: first, the GAEL-based squaring method from [8], and
then the squaring algorithm implemented in 1Spatial software Radius Clarity TM during
the AGENT European project [3], inspired from [1]. The comparison is carried out visually
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Figure 15: The stopping value starts altering the results when it is bigger than 0.1 m.

Figure 16: Different squaring results when the angle tolerance thresholds change.

but also with the same measures as the shape preservation analysis: the number of almost-
right and -flat angles, the turning function distance, the polygon signature distance, and
the surfacic distance.

We first compare the least squares to GAEL squaring. Table 4 shows how differently
they reduce the ARA and the AFA: least squares clearly reduces the number of ARA and
AFA, while similarly preserving the initial shape (turning and surfacic distance indicate
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Measure Mean Median Maximum

initial nb of ARA 5.92 4 146

initial nb of AFA 0.79 0 43

initial sum of ARA (◦) 13.13 7.0 497.0

initial sum of AFA (◦) 2.66 0.0 197.0

nb of ARA for least squares 0.51 0 63

nb of AFA for least squares 0.16 0 29

sum of ARA for least squares 0.51 0.0 87.0

sum of AFA for least squares 0.65 0.0 69.0

nb of ARA for simple squaring 1.59 1 51

nb of AFA for simple squaring 0.22 0 8

sum of ARA for simple squaring 10.55 7.0 363.0

sum of AFA for simple squaring 1.54 0.0 82.0

Table 2: Reduction of almost-right angles (ARA) and almost-flat angles (AFA) per building
for the proposed squaring methods.

Figure 17: Illustration of the principles of the turning function distance between two poly-
gons.

that shapes are better preserved by least squares but the signature distance indicates that
they are better preserved by GAEL squaring). The three measures confirm that polygons
are squared slightly differently (e.g., a mean turning distance of 0.1).

Regarding the comparison with the squaring method from the AGENT project, Table 4
shows that they reduce squareness in a similar manner, with a slight advantage for the least
squares. But the shape comparisons show that the least squares better preserves the initial
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Measure Mean Me-
dian

Standard
deviation

Maxi-
mum

Mini-
mum

Turning distance initial to simple 1.51 0.99 1.10 9.64 0.11

Turning distance initial to least
squares

0.13 0.11 0.15 7.03 0.0

Signature distance initial to simple 5.88 2.31 24.42 476.03 0.06

Signature distance initial to least
squares

0.10 0.02 0.85 35.2 0.0

Surfacic distance initial to simple 0.82 0.84 0.13 1.0 0.17

Surfacic distance initial to least
squares

0.013 0.008 0.022 0.735 0.0

Table 3: Shape preservation measures between initial and squared buildings.

ARA
mean

AFA
mean

ARA sum
mean

AFA sum
mean

Turning
distance

Signature
distance

Surfacic
distance

Least
squares

0.51 0.16 0.507 0.651 0.125 0.097 0.013

GAEL 1.16 0.35 1.997 0.789 0.128 0.071 0.044

AGENT 0.51 0.17 3.25 4.53 0.264 4.706 0.247

Table 4: Comparison of least squares, GAEL and AGENT squaring.

shape: with a 0.26 mean value for turning distance, a 4.7 mean value for signature distance
and a 0.25 value for surfacic distance, the AGENT squared buildings are quite different
from the initial buildings.

A visual analysis confirms that GAEL-based and least squares based methods are the
best ones to square even complex buildings, with slightly better results for the least squares
based method, even when the GAEL-based method does not cause any translation error
(Figure 18).

Figure 18: Comparison of all squaring method for a given complex building footprint, LSA
stands for Least Squares Adjustment.
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To conclude this comparison, none of the existing methods assessed outperforms our
proposed least squares squaring method regarding squareness problems reduction and
shape preservation.

6 Possible applications

This section reviews three types of possible applications for the squaring algorithms: en-
hancing OSM features to ease their use in numerous applications, improving image-based
change detection, and agent-based cartographic generalization.

6.1 Enhancing OpenStreetMap building layer

The first obvious application of enhancing OpenStreetMap building layers is to improve the
quality of the multiple maps derived from OSM. But OSM is not only used for visualization
purposes, and many applications are now based on OSM, taking advantage of the freely
available data covering the globe. For instance, some projects try to create 3D city models
from OSM building footprint by extrusion [10,25]. Such projects would benefit from square
buildings thus producing more realistic 3D buildings.

Other OSM-based applications include indoor mapping projects [11], or cadastral map-
ping [18].

The proposed squaring methods are dedicated to buildings but the diversity of OSM ob-
jects also includes other square geographical features, such as sports fields, tennis courts,
and pools. Sports fields were extracted in a large region of France to test the squaring
methods on such features. Results show that most sports fields in this area were already
squared and the few (nearly 5%) features that are transformed are only slightly distorted.
The simple squaring proves to be sufficient in this case, and should be preferred because of
its speed (50 to 100 times quicker than the least squares and GAEL methods in the experi-
ments).

6.2 Enhancing remotely sensed building footprints

Change detection from satellite imagery may require the generation of remotely sensed
footprints [5]. In order to compare the generated footprints to an existing vector dataset
that needs to be updated, the footprints first need to enhanced to be closer to the existing
footprints in terms of shape, particularly regarding squareness. For instance, the change
detection process from [35] generates sketchy building footprints by calculating digital el-
evation difference (Figure 19a).

In this case, the building is already squared because the polygon is generated from a
set of pixels, so it only contains square angles. So, the first step is to simplify the building
shape with the building simplification algorithm from [3, 30] (Figure 19b). After simplifi-
cation, the sketchy outline is removed but the building is still unsquare and we applied
the least squares squaring algorithm to obtain a fully enhanced footprint (Figure 19c) that
can be compared to the buildings of geographical dataset to complete the change detection
process.
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Figure 19: (a) a building detected by the change detection process of [35] (b) the building
after simplification (c) the squared building.

6.3 Agent-based cartographic generalization

Squaring is a useful operation for the cartographic generalization of buildings, because
almost-right angles blur the legibility of the buildings in the map [30]. Multi-agents based
generalization processes such as AGENT [3, 30] already use squaring operations to cari-
cature the almost-square buildings. For instance, the AGENT implementation in 1Spatial
software Radius Clarity TM makes use of an algorithm derived from [1], and the AGENT
implementation in the open source software CartAGen [28] makes use of the squaring al-
gorithm from [8]. But such agent-based systems can benefit from several complementary
algorithms for the same operation thanks to a trial-error mechanism (Figure 20).

Figure 20: The simplified workflow of a building agent.
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In an agent-based generalization process, squaring algorithms are governed by a
squareness constraint that analyzes the building shape to identify angles that should be
squared. We used both presented algorithms to improve the AGENT implementation in
CartAGen [28], where the squareness constraint previously proposed only the GAEL squar-
ing algorithm. We used the results of the evaluation to derive some heuristics of which
algorithms should be applied when:

• when buildings are simple (e.g., less than ten vertices), try the naive polygon squar-
ing first;

• when buildings are complex and contain almost-flat and/or almost-45◦ angles, try
the least squares squaring first; else

• try the GAEL squaring first.

Of course, when one algorithm under-performs or crashes, another one can be used,
which ensures all buildings are squared by the end of the process. This improvement was
tested on the French OSM dataset that was generalized to the 1:25000 scale with the initial
heuristic, and with the improved heuristic. The final results are very similar (Figure 21) and
often identical. It is due to the simplification and enlargement operations used in the build-
ing generalization prior to the squaring operation. But the computation time is reduced by
20% with the new heuristic. However, it appears that the GAEL squaring algorithm di-
verges for 1–2% of the buildings, and in this case, having backup algorithms is very useful:
these buildings are squared with one of the two proposed algorithms instead of remaining
unsquared, as they did before.

Figure 21: a building generalized to the 1:25000 scale with old and new heuristics.
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7 Conclusion and further work

To conclude, this paper proposed two new methods to square building footprints: a quick
and naive method that proved effective for quite simple polygons, and a more robust and
flexible method based on nonlinear least squares. The methods have been successfully
tested on large building datasets coming from reference data and OSM. The methods have
also been compared to two existing methods proving their usefulness. The contribution
of this research is also highlighted in three applications of the squaring methods: the en-
hancement of OSM features, the enhancement of automatic footprint extractions for change
detection, and agent-based cartographic generalization. Both proposed methods are avail-
able in the open source platform GeOxygene [12].

Figure 22: A complex building composed of connected buildings.

To go further, there are several ways to improve the least squares squaring methods.
First, many OSM buildings are captured in a “cadaster” way, i.e., with several adjacent
features for buildings with different owners or functions, instead of a single footprint (Fig-
ure 22). The method currently processes buildings one by one, potentially damaging the
adjacency relation. This issue is quite easy to overcome by identifying the vertices shared
by several buildings, and processing them only once in a single adjustment. That is how
connected roads are processed for instance in [13]. The automatic identification of cases
where the constraint C5 should be used, also has to be investigated, as in the proposed
experiments, we identified these cases manually. For OSM data, the enhancement has not
been used to modify the world dataset, but we believe that creating an automated tool
to correct OSM building would improve the quality of OSM. The proposed applications
of the algorithm are offline, but would it be possible to use it online, in an application
that renders the vectors from OSM, rather than the usual tiled raster maps? We tried the
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least squares algorithm on twenty random buildings of the reference dataset, and squar-
ing takes less than half a second, on a standard desktop computer, with a non-optimized
implementation. This shows that there is a potential for online rendering; further testing
is clearly required, particularly regarding the management of complex buildings. But the
squaring enhancement has to be used carefully: this is mostly a rendering enhancement,
and not necessarily a quality enhancement. On remotely sensed buildings, or on French
OSM buildings, we believe that the squared shapes are closer to ground truth than the
initial shapes, but that is not guaranteed by our algorithm; our ambition is more guided
by visualization caricature, than by preserving ground truth. So the algorithm should not
be used to massively “correct” the building footprints in OpenStreetMap. Finally, it would
be interesting to measure the impact of squaring on the quality of all these applications
making use of OSM building, with a fitness for use perspective. It could help adapting the
required level of squareness for a given application.
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