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ABSTRACT

This paper presents ins and outs of the ALASKA challenge, a ste-
ganalysis challenge built to reflect the constraints of a forensic
steganalyst. We motivate and explain the main differences w.r.t. the
BOSS challenge (2010), specifically the use of a ranking metric pre-
scribing high false positive rates, the analysis of a large diversity of
different image sources and the use of a collection of steganographic
schemes adapted to handle color JPEGs. The core of the challenge
is also described, this includes the RAW image data-set, the imple-
mentations used to generate cover images and the specificities of
the embedding schemes. The very first outcomes of the challenge
are then presented, and the impacts of different parameters such
as demosaicking, filtering, image size, JPEG quality factors and
cover-source mismatch are analyzed. Eventually, conclusions are
presented, highlighting positive and negative points together with
future directions for the next challenges in practical steganalysis.

CCS CONCEPTS

« General and reference — Evaluation; Empirical studies; « Se-
curity and privacy;

KEYWORDS

steganography; steganalysis; contest; forensics

ACM Reference Format:

Rémi Cogranne, Quentin Giboulot, and Patrick Bas. 2019. The ALASKA
Steganalysis Challenge: A First Step Towards Steganalysis “Into The Wild”.
In ACM Information Hiding and Multimedia Security Workshop (IH&MMSec
’19), July 3-5, 2019, TROYES, France. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3335203.3335726

*This work has been funded in part by the French National Research Agency (ANR-
18-ASTR-0009), ALASKA project: https://alaska.utt.fr, by the French ANR DEFALS
program (ANR-16-DEFA-0003).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

IH&MMSec °19, July 3-5, 2019, TROYES, France

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6821-6/19/06...$15.00
https://doi.org/10.1145/3335203.3335726

Quentin Giboulot
LM2S Lab. - ROSAS Dept., Troyes
University of Technology
Troyes, France
quentin.giboulot@utt.fr

Patrick Bas*
CRIStAL Lab, CNRS, Ecole Centralle
de Lille, Univ. of Lille
Lille, France
patrick.bas@centralelille.fr

1 INTRODUCTION AND MOTIVATIONS

1.1 Previous challenges in IFS

International challenges in the Information Forensics and Security
(IFS) community have started in 2007 with Break Our Watermark-
ing System BOWS [30] and its second edition BOWS-2 [12] in 2008.
For both contests the goal was to remove the watermark on three
images while minimizing the attacking distortion. The images were
gray-level images of size 512 X 512. In addition, for BOWS-2, all
images were Out-of-Camera JPEG which were downscaled. These
two challenges were motivated by the need to evaluate both the
robustness and the security of watermarking techniques, but also to
provide a stimulating framework for developing new attacks based
on denoising [2, 41], oracle attacks [5] or secret key estimation [2].
Those challenges also allows participating to strengthen the virtu-
ous circle of security by increasing the knowledge on attacks and
counterattacks [42].

The first challenge in Steganalysis occurred in 2010 with Break
Our Steganographic System (BOSS) [1] and the goal of this chal-
lenge was to minimize the probability of error (the sum of false
positives and false negatives) on a testing base of 1000 images bal-
anced with Cover and Stego contents. All images came from RAW
images after the same development pipeline, they were downscaled
to 512 X 512 and eventually converted to gray-scale to end-up with
uncompressed PGM files. Steganographic images were generated
using a single embedding scheme, namely HUGO [28], with a fixed
embedding rate of 0.4 Bits per Pixel (bpp). The BOSS contest enabled
to benchmark the security of one of the first scheme using adaptive
costs, and, above all, allow the development of new discrimina-
tive features sets [10, 17] and specific classifiers that can deal very
high dimensional feature sets [27] (up to 34.671 for SRM). Note
that this challenge was designed to benchmark HUGO in a worst
case scenario, since the participants, following the Kerckhoffs’ prin-
ciple, knew everything about the image generation process, the
embedding rate, as well as the steganographic scheme.

The tradition of multimedia security challenges has been pursued
among the images forensics community in 2013 with the IEEE IFS-
TC Image Forensics Challenge. The goal of this competition was
to detect and locate image manipulations such as copy-move or
splicing on images tempered by humans. Different solutions came
out, among them dedicated block matching methods [6], tailored
PRNU detection schemes [7] or steganalytic features [6, 31].

In 2017, another competition was organized on camera model
identification [35] before being run on the popular competition
website Kaggle!. Ten different camera models were used for both

Isee: https://www.kaggle.com/c/sp-society-camera-model-identification


https://doi.org/10.1145/3335203.3335726
https://doi.org/10.1145/3335203.3335726
https://www.kaggle.com/c/sp-society-camera-model-identification

Parameters
inducing 7 scenes # devices # acquisition # processing
diversity parameters (ISO) pipelines

7® Ingrid’s
8. C

Alice’s
Stego
.
# sizes Colour JPEG # embedding £ payload
# chroma # quantisation schemes sizes
subsampling matrices
Embedding

Figure 1: The prisoner’s problem as seen in the ALASKA contest: Eve, the forensics expert, has to face an exponential diversity
since each selected parameter is prone to change the distribution of the cover or stego signal. One possible path is associated
to one cover or stego image and Eve has to detect Alice’s images from images generated from an Innocent user (Ingrid).

training and testing phases, with different devices for each set. In
this competition, the diversity was promoted by using 2 different
JPEG Quality Factors (QF), different rescaling ratios, and 2 possible
Gamma correction factors. The score used to rank participants was
the accuracy (# of correct camera models identification / # of total
images). If the outputs of this contest are at the current time still
not all published, this contest has been the first to witness the use
of deep learning techniques in IFS contests [8].

1.2 A new challenge dedicated to practical
steganalysis

The goal of the ALASKA challenge was to stimulate the develop-
ment of new hidden data detection methods dedicated to perform
practical, “real-life”, steganalysis; i.e. to detect stego contents in
environments which are closer to an operational forensic analyst
context.

ALASKA was built from the observation that the vast of majority
publications on steganalysis are not based on realistic assumptions,
i.e. cannot be used directly by a forensics expert. To support this
statement, we analyzed 33 publications on image steganography
or steganalysis published in the last 3 editions of IH-MMSec, and
from 2016 to 2019 in IEEE-TIFS and IEEE-SPL. From this set we can
derive the following statistics:

e 33% of the papers deal with JPEG steganography/steganalysis,
other papers focus on sole case of uncompressed images in
spatial domain),

o 84% deal with grey-level images (steganalysis in color images
was studied, using recent machine-learning-based methods,
for the first time in 2014 [16, 26]),

e 70% use only BOSSBase with default development settings as
the reference base (CNN-based steganalysis schemes usually
perform data-augmentation and tend to use other databases)
while it has been recently shown [3, 13] how different pro-
cessing tools may change fundamentally the results,

® 79% choose only Pg (the minimum average between false
positive and false negative, assuming number of cover and
stego images is the same) as the metric to compute the clas-
sification performance,

e 94% perform steganalysis on stego images generated using a
fixed embedding rate,

e among the algorithms dedicated to JPEG images, 90% use a
constant JPEG quality factor.

These figures show that the typical academic scenario of steganal-
ysis is very far from realistic setups. This is due to the fact that
the academic world considers steganalysis as a tool to benchmark
a steganographic scheme but not as a tool to detect stego images
in a realistic environment. This observation is not new: the white
paper [23] already mentioned in 2013 the weaknesses of the cur-
rent steganalysis schemes and their lack of generalization to more
practical configurations, and reference [33] also highlights how the
popularity of the BOSSBase database tends to bias the conception
of steganographic or steganalysis methods by selecting parameters
optimized with respect to this particular database.

We now try to list more practical requirements which stem from
more realistic assumptions on the Prisoner’s problem described by
Simmons in 1983 [34].

Because Alice’s main goal is to communicate sensitive informa-
tion in a stealthy fashion, she needs to act casually and consequently
she has to use any random image or set of images, processed using a
random pipeline. Alice’s cover images consequently have high prob-
abilities to be in color, in JPEG format, to come from an arbitrary
device and to be subject to an arbitrary development pipeline.

On the other side, Eve observes transmissions or stored data and
potentially has to face a great diversity among images. She has to
analyze images coming from different devices, therefore subjected
to different acquisition, development and processing pipelines, with
different sizes and compressed using different JPEG quantization
tables. On top of this, Eve also has to face a wide diversity regarding
the steganography, not being aware of the potential embedding
scheme, the possible payload and with largely unbalanced testing
sets with more cover contents than stego (note that training sets
may be balanced easily since Eve can generate stego images).

Additionally, in a vast majority of operational situations, Eve’s
detector needs to generate low false positive rates since false posi-
tives trigger unnecessary investigations which are time and cost
consuming hence undermining the whole detection system. In most
cases it is better for Eve not to detect Alice’s communication than
to have suspicions about a large number of innocent actors. The
prescribed false positive rate one wish to achieve may, in an opera-
tional context, depends on the number of scrutinized images and
on the consequences of making wrong accusations. One can easily
see the terrible impact of having a false positive rate as low as 1% if
thousands of images are inspected, generating consequently dozens
of false alarms.



This scenario, similar to looking for a needle in a haystack from
the Eve’s perspective, is illustrated in Figure 1. Note that this ex-
treme diversity is more important than for content based retrieval
tasks since the diversity in steganalysis does not come only from
the semantic of the image, but also from the invisible components
which play an important role in steganalysis. This extreme diversity
has been the main motivation behind the ALASKA contest that
meant to bring the participant “into the wild”, as for the forensic
expertz.

1.3 Main features of the ALASKA contest

Based on the observations presented in the previous section, the
main motivation of the ALASKA contest is to propose an “anti-
BOSS” contest, which means that this contest must be built to
help the forensic steganalyst to detect stego images and not to
benchmark the embedding scheme of the steganographer w.r.t. a
worst case scenario as it was meant for BOSS. We also wanted to
include more realistic uses of steganography and consequently we
decided about the following setup?, detailed in the Section 2.

Prescribed false positive rates: Contrary to the BOSS contest
which used the average of false alarm and miss detection rates as a
ranking metric, we used the miss detection rate for a false positive
rate of 5% here (abbreviated MDs for Miss Detection at 5% false
alarm rate). We think that this metric, which prescribes a given
false positive rate and rank steganalysis scheme according to the
miss detection rate is more interesting for the forensics expert. This
metric was inspired by other metrics:

e FP50 (False positive rate for a miss detection of 50%) which
offers interesting statistical properties for centered and sym-
metric distributions of cover scores [29].

e “Accuracy at the Top” [24] which gives the accuracy detect-
ing one stego content (or actor) among for example the 1%
most suspicious contents/actors. This score used to bench-
mark search engines is interesting, especially when stego
contents are always present in the set of contents under
investigation.

In order to be able to compute the MDs, we asked the partici-
pants to rank their images starting with the most suspicious ones.
The server computes a threshold allowing 5% of false positives and
returned the miss detection rate. During the contest each submis-
sion is evaluated over a randomly selected subset of 80% of the
testing set. The final results are adjusted with evaluation over the
whole testing set.

Diverse color JPEGs: Because the vast majority of images are
color JPEGs, we decided to generate cover and stego in the same
format, we also consider embedding specific to the JPEG color
domain. In order to ease implementation we used only the 4:4:4
chroma-subsamppling format (no subsampling of chrominance).
The JPEG are compressed using different standard quality factors.

Diverse development pipelines: In order to reflect the great
diversity of the processing pipelines we used different development

2The name of the competition comes from the movie “Into the Wild” that takes place
in Alaska, USA.

3Note that as explained in the section 4, we noticed that our choices were not all
appropriate.

pipelines using RAW images as inputs. Images also are of different
sizes.

Different steganographic schemes: We used a set of different
embedding schemes which are associated with different payload
sizes depending of the image processing pipeline.

2 CHALLENGE SETUP

As emphasized in the introduction, the ALASKA competition was
designed to bring steganography and steganalysis practices closer
to real-world situations. Such a goal should be enabled with a
careful design of the material provided to the competitors and,
by extension, to the community. In particular, the pitfalls of the
BOSSbase, with its lack of diversity on several fronts, were dully
taken into account. Therefore, to motivate the community, beyond
the sole ALASKA competition, and to study steganalysis “into the
wild” we have designed all competition material following three
fundamental pillars:

Diversity: In steganography and steganalysis, diversity of an
image base is twofold. First of all, it comes from the diversity of
sources of each image. A source, as defined in [14], is identified as a
device and a set of algorithms that generates cover content [3, 13].
Consequently, the material must take into account the high diversity
not only from the camera devices but also from the processing
pipelines of each image. Secondly, diversity comes from the number
of different steganographic methods employed to hide information in
each image, as well as their settings, mostly the payload of hidden
data.

Tunability: Every parameter of the image base should be easily
changeable so the practitioner can study the effect of the variation
of each parameter independently (e.g : QF, image size, process-
ing algorithms, steganographic schemes, etc...). It should also be
straightforward to add new parameters. The possibility to tune
each and every parameter easily such that one can create a spe-
cific dataset for its study is fundamental for future use but may
also prevent the adoption at large scale of a uniform and standard
dataset.

Future-proofing: The advent of a new paradigm in steganaly-
sis, using neural networks and deep learning for instance, requires
an image database which is big enough to enable the training of
such detectors. Furthermore, all softwares used to generate the
image base should be readily accessible without fees, open-source
to prevent sudden obsolescence and substitutable to allow easy
replacement in case of better alternatives. We deeply believe that
providing a very large dataset as well as tools that one can grasp eas-
ily is of crucial importance to leverage their use in future research
works.

Those three pillars were implemented in practice by providing
three different kinds of material:

(1) On the one hand, a training dataset of (almost) 50 000 RAW
images taken with 21 different cameras (see details in Ta-
bles 1) was made available one month before the kick-off of
the competition

(2) On the other hand, for the competition itself, a testing set
of 5000 color JPEG images. Competitors had to rank this set



of images from the most likely stego to the most cover and,
based on this testing set, we were able to rank the efficiency
of competitors methods.

(3) Two scripts were also provided to allow easy conversion from
RAW images to JPEG. Those scripts take care, respectively,
of the image processing and of the hidden data embedding
of each image in a fully automatic fashion. We would like
to emphasize that those scripts were made as modular and
as tunable as possible. Though the exact processing and
embedding process of individual images were unknown to
the competitor, the parameters used for the generation of
the testing set were also provided allowing the competitor
to generate a training set coming from the same sources as
the testing set.

The rest of this section motivates and describes precisely each
part of the material, namely the RAW image dataset, the processing
pipelines of testing set and the steganographic processes that were
chosen to generate the testing set.

2.1 The Raw Image Dataset

The training set provided on the ALASKA competition webpage
was made of 50 000 images in RAW format (several different specific
format due to the diversity of cameras). Those images were taken
with 21 different cameras as summarized in Table 1. Even though
such a number is still far from real word databases, such as FlickR
photo-sharing website where hundreds of different cameras can be
found, special care was taken to ensure that those cameras spanned
every possible sensor size. Thus, images from small, low quality
sensors such as the one of an iPad (4.80%3.60 mm) can be found,
up to full-frame sensors such as the one found in a Nikon D610
(35.9%24 mm). We also paid attention to include camera models
that cover a wide range of technologies through various camera
model manufacturers (9 different brands) as well as a large span
of production years (from 2003 to 2018). Eventually, we also in-
cluded Leica Monochrome as well as full-colour Sigma Foveon X3
sensors. Regarding ISO sensitivity, which as observed in our prior
works [13, 14], is the main acquisition parameter that affects ste-
ganalysis, we also tried to mimic a realistic dataset with a majority
of daily outdoor picture, hence with low ISO; however we have
included a non-negligible part of very low ISO, with approx. 6.5% of
images with ISO smaller than 100 (that only some camera allows)
as well as an important ratio of 13.8% of night or indoor pictures
with ISO larger than 1000, see details on the histogram from Fig. 2.
Eventually, to include in the RAW image dataset a subset that could
mimic the vast diversity one could find in a real practical steganal-
ysis setup we have used the photo-sharing website wesaturate?,
which allows its users to share photo in various format including
raw files and uses a compliant license that allows redistribution.
We have downloaded approximately 3 500 images from wesaturate
website.

2.2 Image Processing Pipeline

The processing pipeline used in the ALASKA competition was
chosen to be as diverse as possible while still producing believable
images. To that end, the parameters of each tool in the processing

4see: https://www.wesaturate.com

40 | —

w
[}
l

Number of user
[\*]
(=}
|

10

20
50
100
200
400
800
1,600
3,200
6,400
12,800 —
25,600

ISO
Figure 2: Histogram of ISO from raw images.
Camera model

#lmage year Sensor Size (Mpixels)

Canon EOS100D 6979 2013 APS-C (18Mp)
Canon EOS20D 2254 2004 APS-C (8.25Mp)
Canon EOS500D 1773 2009 APS-C (15.1Mp)
Canon EOS60D 3487 2010 APS-C (18.1Mp)
Canon EOS700D 593 2013 APS-C (18Mp)
iPad pro-13” 1899 2015 1/3" (12Mp)
Leica M9 1722 2009 FullFrame (18.5Mp)
Leica Monochrom 217 2014 FullFrame (18Mp)
Nikon 1-AW 859 2013 1" (14.2Mp)
Nikon D5200 4921 2013 APS-C (24.1Mp)
Nikon D610 2495 2013 FullFrame (24Mp)
Nikon D7100 849 2013 APS-C (24.1Mp)
Nikon D90 387 2008 APS-C (12.3Mp)

Panasonic DMC-FZ28 1528 2008
Panasonic DMC-GM1 2840 2013

1/2.3" (10.1Mp)
4/3" (16Mp)

Pentax-K-50 2913 2013 APS-C (16.3Mp)
Samsung GalaxyS8 1847 2017 1/2.5" (12Mp)
Sigma SD10 2224 2003 Foveon X3 (3x3.5Mp)
Sigma SD1Merrill 3320 2011 APS-C, X3 (3x14.8Mp)
Sony a 6000 2667 2014 APS-C (14.3Mp)
WorldWideWeb 3525 various various
Total 49299 — .

Table 1: Diversity of Images sources in ALASKA raw images
dataset.

pipeline are randomized: the distributions from which they are
drawn is fixed and chosen to avoid aberrant looking images while
providing extremely diverse image sources.

This image development and processing pipeline is depicted in
Figure 3 and details in what follows:

Demosaicking: The first step in the processing pipeline is to
apply demosaicking on the image. This was done using Rawthera-
pee® v5.4 by selecting randomly and for each image individually,
one among the four following algorithms (the probability for choos-
ing a given algorithm is given between the brackets): AmAZE (40%),
DCB (30%), IGV (15%), Nearest-neighbor or Fast interpolation (15%).

Savailable at: http://rawtherapee.com/
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Figure 3: Processing pipeline followed for each image from the RAW database up to JPEG compression. The second figure
details the different Rawtherapee processes. The p value gives the probability that a given process is applied, when it is absent,

the process is always applied.

AmAZE and DCB were chosen and associated with highest proba-
bilities because they are currently the most popular options with
Rawtherapee users due to their extremely good results with few
artifacts. IGV was the algorithm that, during our benchmarks, con-
sistently gave images that were hard to steganalyze and the nearest
neighbor interpolation was chosen as a alternative for users aiming
at speed up processing time. Images were then saved as 16-bit TIFF
using python’s Pillow library®.

Resizing: Following demosaicking, resizing is applied to the
image with 20% probability using a 8x8 Lanczos filter. The resize
factor is comprised between 60 and 130 and chosen from a gamma

distribution with pdf P(x,a = 10) = {100- {0.08- %H
rectified on [60, 130].

Smart Crop: As a third step, the image is cropped following the
so-called “smart crop” process defined in [37]. Let us briefly recall
that one of the main issue when cropping randomly an image is to
avoid extracting a subpart with dummy content, typically a portion
with all pixels overexposed for instance. The idea proposed in [37] is
to extract a portion in which residuals has approximately the same
distribution as the overall image. For ALASKA challenge, we used
this “smart cropping” technique to reduce each dimension, width
and height, to a random size, drawn from uniform distribution,
among the four following sizes: {512, 640, 720, 1024}.

Denoising, sharpening, micro-contrast: Once cropped, the
image is subjected to various images processes using RawTherapee,
as summarized in Figure 3: Each image can be sharpened, using the
well-known Unsharp Mask (USM) algorithm, and/or denoised, us-
ing Pyramid Denoising based on wavelet decomposition; eventually
we may apply a micro-contrast local edge enhancement tool, that
prevents introducing halo artifacts often present when using USM.
Every step is selected or skipped with a fixed probability indicated
in Figure 3 and, if selected, the specific parameters of each tool are
drawn randomly from distributions which were chosen empirically

Savailable at: https://pillow.readthedocs.io/en/5.1.x/

to get a good balance between image difficulty, diversity and be-
lievability. Those specific distributions as well as their parameters
are reported in Appendix A.

JPEG compression: Eventually, each image is compressed fol-
lowing the JPEG standard using the Pillow library. To set the pa-
rameters of the JPEG compression we used a dataset of 2691 980
JPEG images downloaded from FlickR [40] that were compressed
using one of the standard quantization tables. We noted that those
images were, in more than 85% of cases, not subject to Chroma
subsampling. Therefore, we have chosen not to use Chroma sub-
sampling. However the JPEG quality factor was drawn in such a
way as to match closely the empirical distribution of QF observed
on the dataset downloaded from FlickR. The probabilities of using
each and every JPEG QF are presented in Appendix A.

2.3 Steganographic Embeddings

We detail now the different components related to the stegano-
graphic part: selection of the embedding methods, the choice of
the payload size w.r.t. the image size, the allocation of the payload
between the different color channels and the benchmark used to
tune the different parameters.

Stego schemes: Bringing steganalysis closer to operational con-
text means that the embedding methods must be very diverse, draw-
ing as much from state-of-the-art adaptive embedding schemes as
from older, weaker schemes such as naive LSB replacement. Con-
sequently we selected four embedding schemes from the old non-
adaptive nsF5 [11] to recent adaptive schemes such as UED [18] and
EBS [39] including the current state-of-the-art J-UNIWARD [20].

Payload size w.r.t. image processing pipeline: In a realistic
operational context, Alice and Bob want to share a given size of
data; this could be transformed for the ALASKA competition to a
fixed embedded size. However, this may lead to a situation in which
a non-negligible fraction of the steganographic contents will be
hardly detectable (for instance, strongly sharpened images using
state-of-the-art embedding schemes) while, on the opposite, for
other images the detection will turn out to be obvious (e.g. denoised
images with non-adaptive scheme).

Therefore we adopted a strategy in which all images have more
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or less the same difficulty when it comes to detecting their stego
content. While the principle is quite simple, this turns out to be very
difficult in practice since it requires finding for each image source a
relevant payload to achieve the targeted “steganalysis difficulty”.
While models may allow to do so for spatial domain [32, 38], prior
works in JPEG domain are far less developed.

To determine such a payload for all possible image sources we
adopted the following methodology:

e First of all, from a subset of 10,000 images, including the
raw images from testing set, we generated several variations
of the same dataset, each developed in a different fashion.
More specifically, we have generated all sets of different
sources using a specific developpement pipeline combining:
(i) 4 demosaicking algorithms (ii) 3 possible resizing factors
(iii) 3 edge enhancement strengths (iv) 3 image denoising
strengths and (v) 4 different JPEG quality factors, those were
100, 97, 90 and 80. See also the processing pipeline in Figure 3.

e Second, we have developed a tool that, using an improved
version of secant lines, allows finding for a given set of im-
ages from the same source the average payload that achieves
the desired difficulty ; this payload that on a given dataset
matches with a prescribed steganalysis error rate is refered
to as the “secure payload” in [32, 38]. Because the ALASKA
competition focuses on the MDs criterion of detection per-
formance, we targeted a MDs of 65%.

However the main shortcoming of this methodology is that the
combination of all the possible developments leads to a combinato-
rial explosion with 4 X3 X3 X3 x4 = 432 different images sources to
generate and, with 4 embedding schemes, a total of 1728 payloads to
determine. Because such a number is completely out-of-reach, we
simplified the estimation by assuming that the demosaicking step
has only a negligible influence. Consequently it was not considered.
For further simplification we computed the payload only for a few
of those cases and made a linear regression for each parameter
individually.

However, because even without taking into account the demo-
saicing, considering all possible combinaisons of processings lead
to 432 sources. We have not been able to determine numerically all
possible payload, that matches the required MDs of 65%, and there-
fore used the available results through a simple linear regression
(for each parameter individually, regardless the other parameters).
Only for the JPEG quality factor we have noted that this parameter
seems to be hardly modelled using a linear model and, hence, shift
to a model in which this parameters has an exponential impact on
the “secure payload”.

Payload size w.r.t. image size: Eventually, regarding image
sizes, we have deliberately chosen to adopt a simple square root
law (SRL [9, 21, 25]) which, accounts neither for the coding strategy
nor for the cost associated with each pixel. Indeed, a more accurate
(not-so-square-root) law, that adapts the payload as a function of
images size, for adaptive embedding schemes and using advanced
coding scheme [22] does seem hardly applicable in practice [15].
Obviously, see section 3.2 and more precisely Figure 11, a “naively”
use of the Square Root Law leads to the result that one may expect:

the payload is underscaled for larger image sizes.

Payload repartition among color channels: Although the
vast majority of digital images are color images compressed in JPEG,
using three channels (Y, C, and C,), recent works in steganalysis
focus almost exclusively on grayscale and uncompressed images
(see Section 1.2). It was therefore fundamental for us to find a trade-
off between moving towards a practical scenario and running a
competition in line with recent developments in steganalysis.

We consequently decided to modify the classical embedding
scheme by spreading the payload size between the different com-
ponents. The question related to the best way to spread a payload
of P bits among the channels Y, Cp, and C, for 4:4:4 sampling ra-
tios is investigated in [36] from a practical perspective. The au-
thors propose to tune a parameter f € [0;1] that balances the
payload allocated to the luminance and chrominance channels
w.r.t. the practical security. For example, § = 1 implies that all
the payload is conveyed by the two chrominance components and
B = 0 implies that the payload is embedded in the luminance
component only. More specifically, given Py, Pc, and Pc, the pay-
load sizes for each channel, the authors of [36] propose to use
the following relations: Py = y(1 — )Ny, Pc, = yBNc,/2 and
Pc, = yBNc, /2, where Ny, Nc, and Nc, are respectively the
number of non-zero AC coefficients for the Y, Cj, and C, channels
and y is a proportionality factor to ensure that Py + Py, + P,
equals the desired overall payload. However, we made an implemen-
tation mistake (as it has been confirmed by independent works from
participants [43]) by computing Py = y(1 - B)(Ny + N¢, + Nc¢,)
and Pc, = Pc, = yB(Ny + N¢, + Nc,)/2.

Note that this change tends to allocate a larger payload into
chrominance channels and consequently decreases the practical
security. For example, for a typical image at QF75 where Ny =
10000, N¢, = 1000, N¢, = 1000, if we set P = 1000 bits, f = 0.4
we obtain Py = 882 bits and Pc, = Pc, = 59 bits using spreading
presented in [36] vs Py = 600 bits and Pc, = Pc, = 200 bits for
our implementation.

Practical security assessment: The payload size was evalu-
ated empirically based on basic and fast steganalytic tests. The
experiments were conducted using the DCTR (Discrete Cosine
Transform Residual) [19] features set concatenated from each color
channels [36] together with the low-complexity linear classifier
from [4] (LCLC). This choice was based on the need to get as many
payload evaluation as possible in the least amount of time.

With this approach, we were able to provide a “lower” and “up-
per” bounds on the detection accuracy one may get under our
experimental framework. The “lower bound” corresponds to the
performance one gets when naively training and testing DCTR and
the LCLC directly on the material provided for the competition. We
get a results of MDs ~ 0.795, that is, approximately 80% of missed
detection for a false alarm rate of 5%.

The “upper bound”, on the other hand, corresponds to the best
achievable results when using DCTR and the LCLC. Our hypothesis
was that the best achievable results would be those obtained in the
absence of any cover-source mismatch. This would amount to train
one detector per source in the testing set which would have been
impossible to do in the time frame leading to the competition. We



Date ‘Aug ‘Sept Oct ‘Nov ‘Dec ‘ Jan. ‘ Feb. ‘Mar H Total
Visits H 688 ‘4046 4205‘4650 5452 4533‘4115‘2379‘ 30068

TX (TB) 182213 6 |19 1 | 208
Table 2: Usage of the website of alaska.utt.fr per month, in
terms of the number of unique daily visits and transmitted
data volume (TX).
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Figure 4: Evolution of the number of registered users (blue)
and number of submissions (green).

thus went under the assumption that our regression and evaluation
method has a reasonable accuracy meaning that the best achievable
MDs should be close to the targeted one set to 0.65.

3 CHALLENGE RESULTS AND ANALYSIS

After having described in details the goals, the setup and the orga-
nization of the ALASKA challenge, we present in this section what
happened during the contest and how the competitors performed.

3.1 Timeline and website usage

First of all, we would like to present the usage of the website
alaska.utt.fr.

Table 2 presents the volume of data sent by the server (TX, in Tera
Bytes) as well as the number of unique daily connections that have
been recorded on the website server. Note that, for this counter, we
do not only count the individuals that visits the website, but instead
each and every connection to the website server. While the former
case includes only visits through a website, the latter case accounts
for downloads of image datasets, and also for attackers who attempt
to grant access to the server (usually from a few attacks up to a few
dozens a day).

Similarly, Figure 4 presents the number of registered users (in
blue) as well as the number of submissions (in green). Quite unsur-
prisingly, this figure shows different trends between the number of
users and number of submissions that perfectly matches with the
observations from Table 2.

Though the final number of submissions, over 400, is quite impor-
tant, we wanted to look at the number of submissions per individual.
The histogram of the number of submissions per individual users
is presented in Table 3. First of all, the main conclusion one may
draw out of this table is that a vast majority of users (242 out of 285)
did not make submission. Note that we only count here the “active”

Nb of Submissions || Nb of Users

0 244
1-5 25
6-10 6
11-15 4
16-20 2
21-25 0
26-30 3
31-35 2
36-40 0
41-45 0
46-50 2

Total 285

Table 3: Number of number submission per users.
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Figure 5: Number submissions as a function of performance
w.r.t the three criteria used (MDs, P and FP50).

users whose account was validated using an email confirmation
system. Two explanations may be found for this very high number
of non-participating users. First of all, it is likely that many users
registered only to get access to the material provided (the image
datasets as well as the development scripts provided, see Section 2
for details). Another possible explanation that may be found is that
some users downloaded the dataset, quickly tried to evaluate offline
the performance of their detection system and, not being able to
compete with the top competitors, gave up without submission any
answers.

3.2 Comparison between competitors

Let us now present describe how the competitors performed. Fig-
ure 5 provides a general overview of the distribution of perfor-
mances over all the submissions. Here, as reported during the com-
petition on the website, we report the results using three distinct
criteria, the usual Pr as well as the FP50 and the MDs, both pre-
sented in Section 2, the letter being the only one used to rank
competitors.

The first comment one may have when observing the Figure 5
is that P as well as PF50 are not very discriminative. This can be
explained, in part, because such performance metric lie in the range
(0, 0.5); on the opposite the MDs lies in the range (0, 0.95). Note also


https://alaska.utt.fr
https://alaska.utt.fr

Competitor H MDs ‘ Pr ‘FPSO

yyousfi / Binghamton Univ. || 25.2% (24.37%) | 14.49% | 0.71%

2016130231 / Shenzhen Univ. || 51.6% (50.00%) | 25.50% | 5.67%

3188960009 / PRC 53.8% (54.93%) | 26.33% | 7.66%

375790798 / PRC 54.2% (53.35%) | 25.78% | 7.56%

Table 4: The Hall of Fame (as of March 14th): top 5 com-
petitors by the end of ALASKA competition. Note that those
scores correspond to the best results for each criterion indi-
vidually and were computed over all images while, on the
opposite, the results published online through alaska.utt.fr
were computed on a random subset and are reported in
brackets for MDs.
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Figure 6: Evolution of the scores of the eight best competi-
tors.

that the FP50 has been designed for “very reliable” detection with
extremely low false alarm rate; such a criterion is therefore more
relevant to distinguish detectors with false alarm rate of 107¢ and
10~4, which does not fit quite well with the context of a competition
such as ALASKA where it would require to train and test on dozens
of millions of images.

Figure 5 also emphasizes the challenging aspect of moving ste-
ganalysis “into the wild” with an important fraction of detection
results below the “upper” bound of 65% when using off the shelf
fast features-based machine learning tools. Eventually, one can
observe clearly a group of submission substantially ahead, they
all come from the winning team from Binghamton University. All
other competitors that went seriously into the competition has seen
their performance, in terms of MDs plateauing between 52% and
58%. This can actually be observed for any of the three performance
criteria.

We also wanted to present the evolution of the score for the top
competitors in Figure 6. We picked the eight top scorers because
we observed that including more users would not bring any more
information while bringing more confusion by putting too many
values into same graphs. From this figure, the first thing we can
note is the strategy of the team from Binghamton University that
starts entering the competition “seriously” once they have detec-
tion methods that largely outperform the other competitors by a
margin of 15%. We can also observe a group of three competitors
(from which two at least are from ShenZhen University) who were

quickly able to reach approx. a MDs of 55% while hardly being
able to improve this score over the four remaining month of the
competition. A notable exception is ShenZhen team #1, who un-
der username “2016130231”, managed to improve its performance
slowly to eventually end up at the second place. Eventually, we can
also note a third group of users who started to reach the “lower”
bound of 65% by November but constantly managed to improve the
performance to end up with the same results as the second group
of users.

3.3 Results analysis

As introduced in the previous section, it is interesting to look at
the results obtained by the best competitors for different types of
images. In particular, we want to uncover if some users specifically
target a specific kind of covers. To this end we propose to show
the results obtained by the competitors with respect to six individ-
ual features; those are (ordered as in the processing pipeline, see
Figure 3), the demosaicking algorithm, the resizing factor (if used),
the image processing tools (denoising and edge enhancement), the
image size and the JPEG quality factor.

Impact of demosaicking: The results from the competitors
for various demosaicking algorithms are reported in Fig 7 which, as
the next figures 7-13, put together the results obtained by different
users for the same subset of images. In Figure 7 the five set of
results gathered are for each and every demosaicking algorithm.
We observe that the accuracy of the detection loosely depends on
the demosaicking. A notable exception to this is the IGV algorithm
for which the MDs drops by a factor of approximately a third for all
users. We also note that the “DCraw” demosaicking had been added
due the presence of images shot with a Sigma full-color Feveon X3
sensor which is not supported by rawTherapee. Interestingly, the
results of the competitors in this dataset are more heterogeneous,
possibly because the image processed using DCraw represents a
rather small fraction of the training and testing sets.

Impact of resampling: Figure 8 show the results obtained by

the competitors depending on the presence or absence of resam-
pling. For a vast majority of the competitors, one can observe that
resizing has almost no impact on steganalysis performance. A no-
table exception, however, can be observed from the leading team
whose MDs increases by more than 25% on resampled images.
It is worth noting that resizing has been used for only one fifth
of the image, see Figure 3, therefore, it is likely that the learning
methods focus somehow on the vast majority of non-resampled
images.

Impact of filtering: The next step of the raw file development
pipeline is the image processing, namely denoising and edge en-
hancement, or sharpening; the results of steganalysis performance
from top submissions, as a function of the “strength” of those pro-
cessing tools, are given in the Figures 9 and 10.

Regarding the impact of edge enhancement, one can observe
that the inserted payload is slightly too small when this processing
is not used hence the higher MDs for all competitors. However
it is striking that all competitors have performance that loosely
depends on the strength of edge enhancement. A notable exception
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Figure 8: Users detection accuracy as a function of resizing.

to this behavior comes, once again, from the leading team from
Binghamton University. Indeed their MDs is doubled when shifting
from light to strong edge enhancement, while, on the opposite, it
remains almost constant for all other competitors.

Impact of the image size: The ultimate step of the develop-
ment pipeline is the choice of image size. As explained in the Sec-
tion 2.3, we adopt a simple SRL (Square Root Law) under which the
square root of the message length is set proportional to the number
of DCT coefficients. The results presented in Figure 11 go exactly
along the same direction as the previous analysis: all users achieved
significantly higher missed detection rates MDs, for larger image
sizes.

Impact of JPEG QF:. Eventually, the very last step of all pro-
cessing pipelines is the compression. Figure 12 show the results
obtained by the competitors as a function of the JPEG Quality Factor
(QF). Our evaluation of the relevant payload to ensure a constant
difficulty for steganalysis did not work really well for this parame-
ter. This is probably due to the fact that, as opposed to the other
parameters of the processing pipeline, it seemed hardly possible
to map the QF to the “secure” payload [32] using a linear relation,
given the few results we had for this evaluation. Therefore we have
picked an exponential relation from the QF to the secure payload
which appears, retrospectively, rather inaccurate.

Beside the fact that the difficulty of steganalysis greatly increases
with the QF, another very interesting phenomenon one can observe
from Figure 12 is the notable exception to this rule from Binghamton
Team. Indeed while difficulty for all user is maximal for images with
the highest QF, for those images the team from Binghamton have
achieved almost perfect detection, highlighted on this figure with a
very low MDs, that is a missed detection rate of about 3% for 5%
of false-alarm. In fact, over the 782 images with QF 100, this team
made only 2 errors. Obviously, a novel attack has been discovered,
see more detail in their paper [43].

Impact of the embedding scheme: As explained in Section
2.3, the embedding was designed to make each scheme equally

difficult. This is reflected in Figure 14 where the performance of
the competitors is stable across all steganographic schemes with
the notable exception of nsF5. Indeed every competitors performs
the worst on nsF5 which is actually the weakest scheme used in
ALASKA. While the exact reasons of this phenomenon still elude
the authors, several facts about the way nsF5 was used during the
competition might explain it. First of all, nsF5 embeds only in non-
zero AC coefficients (nzAC). If every image of the ALASKA test set
(5000 images) was embedded with nsF5, approximately 150 would
not have enough nzAC for embedding with approximately 30 of
them resulting in no changes in at least one the three color channels.
Since the test only contained 500 stego images with only 15% of
them being nsF5, such an event is still quite rare and cannot explain
the huge loss in MDs for all competitors. More interesting, however,
is the fact that nsF5 simulates embedding with optimal coding.
Given that the base payload of nsf5 for the competition is already
quite low at 0.04 bpp, the embedding efficiency is excellent (8.5 on
average) meaning that the number of changes in the chrominance
channels will always be small (in the order of hundreds). While
this might not have been a problem for the rich models used for
benchmarking the competition, the neural networks used by the
competitors all needed curriculum training to account for small
payloads. Since the payload of nsF5 was far smaller than the other
schemes, its is possible that it was not taken into account as well
as the others schemes during the training phase by the networks.

The return of the Cover-Source Mismatch: Apart from the

processing pipeline itself, two interesting splits of competitor results
according to image sources can be presented. Indeed, we included a
small subset of 400 images that were directs output by cameras as
JPEG images. The goal of this subset of images, which were absent
from the training set, was to be able for us to measure easily how
much each competitor methodology has the ability to be general-
ized to images coming from slightly different sources. However to
avoid putting images that come from sources that largely differs
from the ALASKA training set, those 400 images were jpeg decom-
pressed and subject to same pipeline, depicted in Figure 3, with the
exception of the demosaicking.
The results presented in Figure 13 show that a vast majority of
competitors can hardly adapt to this CSM, with missed detection
MD:s of over 90%, and even reaching 100% for half of the competi-
tors.Binghamton’s team also suffers from the CSM of this subset of
images but to a much lesser extend.



o = | E [ Bingt B [4 Shenzhen #1 1 J [ 375790798 (PRC) El [] 3188960009 (PRC) [110 1185205583 (PRC) |:| [ Shenzhen #2 [l F] hoopabe (PRC)
<l T . 2
S8 et 3 |
A &3
; Cid t
Y A = .
; ; & tt
7 A ey tL
20 (—F2 5 ey s tE —
Y | e / e
10 |- 7 05 EE s L -
; 267 e ; e
o A 7 | 7% LR 2 S5
No Edge Sharpening light Edge Sharpening Medium Edge Sharpening strong Edge Sharpening
Figure 9: Detection performance, using MDs, as a function of Unsharp mask strength on images.
60 I ] | E 1 Bingt D [ shenzhen #1 jist 11 [4 375790798 (PRC) El [ 3188960009 (PRC) || [] 1185205583 (PRC) |:| [] Shenzhen #2 [] E] hoopabe (PRC)
o - N
a)
s N
30 |- e
20 |- e
10 |- e
0 :: :
No Denoising Light Denoising Strong Denoising
Figure 10: Detection performance, using MDs, as a function of images denoising.
70 - :
" | B [ Bingt BD henzhen #1 © | jist 5 [H 375790798 (PRC) El RE ero) [0 1 (PRC) |:| [] Shenzhen #2 ﬂ [] hoopabe (PRC) M7 —
- 4
| M= Z ]
g — 5 7] 5
= - o2 Z .
/ 7 z
30 [— 771 27 x| -
7 | A
Py E— Al AV .
A AV Al
7| I | 2117
LN A% | 77 It A 211> -
| 7 IR == 200 2% | 7% IR
0 74t 7 7] N | 58 e s71|177 . e .« ] 224 jeedlas .o
Small images (< 400k pix.) Med. size images (400k << 550k pix.) Large images (> 650k pix.)
Figure 11: Detection performance, using MDs, as a function of images size.
80 1= Binghamton  [] [ Shenzhen#1 || [ jishenzeng 4 [3 575790798 (PRC) ~;— 7] Il N
A
70 |- [ F1 3188960000 Ry [ [1 1185205583 (Pre) [ [ Shenzhen #2 [1 [ hoopabe (RO Z m
A
60 1~ Bl .
g L2482 ]
7
s 7|7 |
> 7
; 2|4
30 |- 5 2z —
7 ; #|4
20 |- 7 7 2% =
; ; 21b
ol B / Al .
. Zia 5 211

80 < QF < 90

90 < QF < 98 98 < QF < 100

Figure 12: Detection performance, using MDs, as a function of jpeg QF .

4 MAIN LESSONS AND CONCLUSIONS

During this whole adventure, we had the satisfaction to notice that
there were no major problems with the design of the contest, that
it was neither too difficult, nor too easy. Still if we could use a
time-machine, we would change at least two things:

(1) We would fix the error we made on payload allocation in
the Chroma channels (see section 2.3) in order to reduce the
detectability of the whole system. The positive outcome of
this mistake is to show how carefully the embedding must
to be done on color images.

(2) We would also generate cover and stego images that are more
realistic. As it is illustrated on Figure 15, since we cropped
images, potentially exotic developments, and because our

“smart-crop” scheme was not efficient enough, a large pro-
portion of our dataset was not representative of a typical
set of images found on a social network or on a hard-drive.
We could fix this problem by using important downscaling
operations and minor cropping instead.

Organizing the ALASKA has been also very time consuming and
put a lot of stress upon all our shoulders’. For instance when we

realized on August 29th at 1:30 am that one of the image processes

was skipped (merely because some silly guy, the second author,

commented it in the script) or when after having strive to get all
the materials ready for September 1st, Andreas Westfeld burnt

7especially on the shoulders of the first author.
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Figure 13: Detection performance, using MDs, for jpeg de-
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jected to same image processing pipeline, see Figure 3, ex-
cept for the demosaicking.

instantly all our efforts to the ground by finding that stego and
cover images had different timestamps® ...

However, organizing ALASKA was also a lot of fun during which
we have many times ask ourselves many open questions. While
some very interesting research outcomes have already pop up from
ALASKA competition, we are deeply convinced that the contest
brought the focus on many open questions and may pave the way
to even more interesting research works.

It is hard to stop such an exciting adventure, therefore we will
propose soon a follow-up competition with the same idea of bring-
ing steganalysis closer to the “real life” operational context. This
follow-up competition will certainly be hosted on Kaggle in order
to allow as many user as possible from different fields, with hope-
fully a decent cash price as well as a larger dataset of more than
75.000 raw images from more than 30 camera models that should
be available for ACM IH&MMSec’19 conference. This follow-up
competition should also go wild in the sense that we will try to
design a more realistic yet more diverse image processing pipelines
to provide the community with datasets that resemble those one
can find on the Internet.
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A RAWTHERAPEE PROCESSING DETAILS

In this appendix we detail the different processes used in the sharp-
ening and denoising set as described in Section 2.2. In particular
we explain how the parameters of each tool was chosen randomly
by sampling from some fixed distribution as well as the rationale
behind our choices. More information about each tool can be found
in the Rawtherapee document at http://rawpedia.rawtherapee.com.

Three tools from Rawtherapee v5.4 were chosen as processing
that tended to introduce cover-source mismatch when not taken
into account :

Unsharp Mask: A well-known sharpening tool used to increase
the edge contrast in images. It informally works by substracting a
blurred version of the original image from the original image.

Directionnal Pyramid Denoising: A denoising tool which
uses a multi-resolution representation of the image.

Microcontrast tool: An ad-hoc algorithm in the Rawtherapee
sharpening suite used to sharpen edges while not introducing any
halo artifact.

Each tool is controlled by a set of parameters. During the dataset
generation and for each image processed, we sample the values
of each one of those parameters from distributions designed to
give a good trade-off between diversity and believability of the
resulting image. This means that distributions were chosen such
as the extreme values of the parameters are usually avoided (but
possible) while still keeping the variance of those parameters as
high as possible.

A.1 Unsharp Mask

The Unsharp Mask tool (USM) is controlled by three parameters :

Radius: The Radius determines the size of the details being
amplified and consequently, relates to the width of the sharpening
halo. It is the radius of the Gaussian blur. The radius follows a
normal distribution N(1.5, 1) rectified on [0.3, 3]

Amount: The Amount (percentage) parameter controls the strength

of the sharpening. It follows a normal distribution | (500, 200) |
rectified on [0, oo

Threshold: The Threshold values are left at default (20, 80, 2000, 1200),

threshold is a parameter to confine the sharpening to a desired space
(the stronger edges), in RawTherapee, the threshold is a function of
luminance, the default values specify little sharpening in the black-
est tones, high sharpening at lighter tones and then less sharpening
at the lightest tones.

A.2 Directionnal Pyramid Denoising

The denoising tool is controlled by two parameters (chroma denois-
ing is set as automatic) :
Luminance: Luminance follows a gamma distribution P(x,a =
a-1 _
4) = 100-0.1 - xre(—);p)(x) rectified on [0, 100] and controls the
strength of the noise reduction
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Figure 15: Montage of 50 images having very poor semantic contents picked from the first thousands images (5%).

0.175

0.150

0.125

o
o
o
o

Probability

0.075

0.050

0.025

0.000 | == =
60 65 70 75 80

JPEG Quality Factor

Figure 16: Repartition of the images w.r.t. JPEG QF on the FlickR website [40] and for the Alaska testing base.

Detail: Detail follows a uniform distribution 2/({0..60}) and Strenght: Strength follows a gamma distribution P(x,a = 1) =
contr_olhs the restoration of the textures in the image due to excessive llOO 0.5 - x“_lre();I;(—X)J rectified on [0, 100], it tunes strength of
denoising. the sharpness applied (how many adjacent pixels will be searched

for an edge)
A.3 Microcontrast tool Uniformity: Uniformity follows | N(30, 5)] rectified on [0, cof,

The microcontrast is controlled by two parameters : it tunes the level of the microcontrast enhancement.



A4 JPEG QF

As described in Section 2, we have drawn the JPEG QF from a
distribution that mimics the one observed empirically on the large
FlickR [40] dataset as it should reveal what one shall find in a
practical operational context.

We report in Table 16 the number of images downloaded that match
each and every standard QF from 50 to 100. For comparison we
present the probability we have used for all QF from 60 which,
for simplification purpose, has been rounded to 0 whenever it was
smaller than 0.1%.

Note that we only report the numbers for downloaded images that
match the JPEG standard quantization tables, which represents
approximately 2.7 million images but only less than 15% of total
number of downloaded images.
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