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ABSTRACT
Double compression of images occurs when one compresses twice, possibly with different quality factors,
a digital image. Estimation of the first compression parameter of such a double compression is of a crucial
interest for image forensics since it may help revealing, for instance, the software or the source camera.
This paper proposes an accurate method for estimating the primary quantization steps in double-compressed
JPEG images. This original methodology is based on an accurate statistical model of Discrete Cosine
Transform (DCT) coefficients that has been proposed in our previous works. We also present a thorough
analysis of the double compression properties, carefully taking into account carefully the effect of round-off
noise. This analysis is used to derive an accurate range of possible value for quantization of primary DCT
coefficients with respect to the secondary quantization step.
Using both the statistical model of quantized DCT coefficients and the range of possible values of first
quantization step, a model of the twice quantized DCT coefficients is established. Eventually, it is proposed
to estimate the primary quantization value by finding, among a set of possible candidates, the one that best
match the proposed statistical model in terms of minimal symmetrized Kullback-Leibler (KL) divergence.
Numerical experiments on large databases of real images and comparisons with state-of-the-art approaches
emphasize the relevance of the proposed method.

INDEX TERMS
Digital image forensics, Double JPEG compression, Quantization step estimation, Statistical image model,
DCT coefficient analysis.

I. INTRODUCTION

THE evolution of digital imaging and information tech-
nologies in the past decades has raised a number of

information security challenges. Digital images can be easily
edited, altered or falsified due to a large availability of low-
cost image editing tools and then transmitted via communi-
cation network. The credibility and trustworthiness of digital
images have been eroded in consequence. Therefore, the field
of digital image forensics has emerged in response to the
increasing need to verify the authenticity of digital images,
see [1] and references therein for a detailed introduction.

The JPEG standard is by far the most commonly used
image format for image storage due to its rather good tradeoff
between efficiency in data compression, quality and low com-
putational costs. Hence, JPEG images are involved in many
forensics issues, such as authenticity of JPEG compression
history [2], steganalysis [3] or image forgery detection [4].
Recently, some research works have been paid more attention
on forensics issues related to double JPEG compression [4]–
[9]. In fact, double JPEG compression occurs when an image
that has been previously JPEG compressed goes through a
second cycle of JPEG compression. Since JPEG image is

submitted to IEEE Access, May, 2019 1



T.H.Thai & R.Cogranne: Estimation of Primary Quantization Steps in Double-Compressed JPEG Images

commonly the output of most digital cameras, if a forger
carries out some acts of manipulation (e.g. splicing, data
hiding) on the original JPEG image and stores it in JPEG
format, then the resulting image is JPEG double-compressed.
Therefore, the information about double JPEG compression
is of important interest for forensic analysts since it could be
a clue indicating that the image in question might have been
manipulated.

A. STATE OF THE ART
The problem of double JPEG compression typically includes
two tasks: detection of double JPEG compression [4], [6],
[9]–[12] and estimation of primary quantization matrix [4]–
[8], [10]. The estimation of primary quantization matrix
can be considered as a subsequent and complementary task
of the double compression detection. Indeed, detection of
double compressed images being usually much simpler on a
computational point of view, performing detection and then,
only for images classified as double compressed, carry out
an estimation of primary quantization matrix would largely
reduce computational time. In addition, it can be useful for
forensic analysis, once suspecting that an inspected image
has been double-compressed, to estimate the primary quan-
tization matrix as such an estimation can be used to identify
origin of the image [13], to detect hidden message [6] and
to help image forgery detection [4]. However, the estimation
of primary quantization matrix is generally more difficult
and complicated than the double compression detection. The
latter problem only focuses on finding discriminative features
between single and double compression while the former
needs to analyze the effect of double compression on DCT
coefficients and carry out an exhaustive search to provide
an estimate of primary quantization matrix. Moreover the
detection of double JPEG compression can be carried out
using together all DCT coefficient modes ; on the opposite,
estimation of primary quantization step can only rely on DCT
coefficients from the corresponding frequency. Therefore,
compared with the detection of double compression, much
fewer methods have been proposed for estimation of primary
quantization matrix in the literature.

Prior research works dedicated to the estimation of pri-
mary quantization matrix could be divided into three cate-
gories:

1) Pattern-based methods [5], [6] are based on peculiari-
ties in the shape of the histogram of DCT coefficients
(e.g. double peaks, zeros) due to double compression.
In [5], the authors discussed three methods to esti-
mate primary quantization steps for the first three low-
frequencies in zig-zag order. Two of them relied on
matching the original histograms of individual DCT
coefficients with the histograms obtained by calibra-
tion while the third one utilized a collection of neu-
ral networks to detect patterns caused by different
combinations of primary and secondary quantization
steps. Empirical results have shown that the neural
network-based method provided best overall perfor-

mances among those three. Using a very similar ap-
proach also based on the shape of histograms of DCT
coefficients the authors in [6] proposed to employ,
instead of neural networks, a soft-margin Support Vec-
tor Machine (SVM) to train multi-class classifiers in
order to estimate primary quantization steps for the first
nine low-frequencies in zig-zag order. However, these
methods focused only on some small values of primary
and secondary quantization steps. Hence, they could
not work for high frequencies or low quality factors.

2) Quantization-based methods [7], [8] rely on properties
of successive quantizations to detect local minima in
the difference of DCT coefficients before and after
successive quantizations, which is called the error
function. In [7], the author proposed to perform a third
JPEG compression on the double-compressed image
under investigation. By varying the quantization step
of this compression, the error function would lead
to two local minima corresponding to primary and
secondary quantization steps. Partially inspired by this
approach, the authors in [8] proposed a strategy of
filtering to mimic the effect of noise in the histogram of
DCT coefficients and designed another error function
devoted for good localization of primary quantization
steps. However, these approaches only worked when
the secondary quality factor is higher than the primary.

3) Model-based methods [4], [10] employ a statistical
model of DCT coefficients for estimation of primary
quantization steps. In [10], the authors proposed to
model the distribution of the first digits of quantized
DCT coefficients by the generalized Benford’s law
and employ probabilities of the first digits as fea-
tures to train multiclassifiers based on Fisher Linear
Discriminant (FLD) in order to estimate the primary
quality factor. Alternatively, the authors in [4] proposed
a heuristic model of double-quantized coefficients
and estimated primary quantization steps using the
expectation-maximization algorithm. While the statis-
tical modeling of DCT coefficients has been consider-
ably studied in the literature (see for instance [14]–[16]
and references therein), those models have not been
used in the previously mentioned methods for primary
quantization step estimation. As a consequence, those
methods fail to capture coefficients statistics with high
precision which leads to the degradation of ensuing
quantization step estimation accuracy. Moreover, the
method proposed in [4] obtained unsatisfactory perfor-
mance in case of secondary quality factor lower than
the primary.

The method proposed in the present paper falls within the
third category. It is based on the state-of-the-art statistical
model proposed in [16]. This model is used together with
a study of quantization and impact to propose a statistical
model of double JPEG-compressed image DCT coefficients.
Based on this model and on the impact of quantization a
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method is proposed for estimating with high accuracy the
primary quantization step by, roughly speaking, searching for
the quantization step that would result in a distribution of
DCT coefficients that best matches the empirical distribution
of coefficients from the inspected image.

B. POSITION AND CONTRIBUTIONS OF THE PAPER
The present paper addresses the problem of estimation of
primary quantization steps in double-compressed JPEG im-
ages assuming that secondary quantization table is available
in JPEG header and the double JPEG-compressed image
is available. The main contributions of this paper are the
following:
• In contrast with prior statistical model-based methods,

this paper proposes to exploit the state-of-the-art sta-
tistical model of once-quantized DCT coefficients that
has been established in our previous works [16]–[18].
This model can accurately capture statistics of DCT
coefficients, which leads to improve considerably the
estimation accuracy.

• The effect of quantization in the spatial domain, when
converting a JPEG-compressed image back into the
original spatial domain, has often been omitted from
prior-art methods for simplicity. However the resulting
round-off noise can heavily impact statistics of sec-
ondary DCT coefficients, hence mislead the estimation
algorithm. By contrast, this paper statistically analyze
double JPEG compression properties and takes into
account the effect of round-off noise, then establishes
a proper range of values of primary DCT coefficients
with respect to the secondary quantization step. Based
on this range, the distribution of the secondary DCT
coefficients is derived.

• The paper designs a method for estimation of primary
quantization steps using the proposed model of sec-
ondary DCT coefficients. To do this, we propose a sim-
ple, yet efficient strategy to filter candidates of primary
quantization step. Reducing the set of possible primary
quantization step greatly simplifies the estimation which
relies on minimizing the symmetrized Kullback-Leibler
divergence between the observed empirical distribution
of DCT coefficients and the theoretically established
model. The proposed approach achieves high estimation
accuracy when the primary quantization step is finer
than the secondary, while most of existing methods
failed is such a case. Numerical experiments on large
real image databases with heterogeneous image content
and differently customized compression scheme high-
light the relevance of the proposed approach.

C. ORGANIZATION OF THE PAPER
The rest of the paper is organized as follows. Section II
briefly describes the double JPEG compression operations.
Section III recalls the statistical model of primary DCT
coefficients that was established in our previous works, estab-
lishes the range of values of primary DCT coefficients with

respect to a secondary quantization step and proposes the
corresponding model of secondary DCT coefficients. Using
this model, Section IV proposes the method for estimation
of primary quantization steps. Section V presents numerical
results on large real image databases. Finally, Section VI
provides some discussions and concludes the paper.

Throughout this paper, we will use lower case characters,
such as x to represent real and integer values and upper case
(except for Greek letters) boldface characters X to represent
matrices.

II. DOUBLE JPEG COMPRESSION CHAIN
The JPEG compression pipeline has been already detailed
in several publications and books, such as [19] ; thus,
the present paper only recalls the main parts of the JPEG
compression that are essential to understand the proposed
method. For clarity, the main steps involved in JPEG com-
pression and decompression are recalled in Figure 1 along
with the main notations used in the present paper. Besides,
without loss of generality, we will also assume for simplicity
that the inspected given image is in grayscale, the extension
of color images is straightforward by applying the proposed
method on each color channel independently. Let us denote
X the original uncompressed image; the JPEG compression
algorithm starts by dividing the image X into blocks of fixed
size of 8 × 8 pixels 1 and performing the DCT operation on
each block separately:

U1 = DCT(X). (1)

In the paper U1 denotes primary unquantized DCT coeffi-
cients. The coefficient at location (0, 0) in 8×8 block is called
the DC coefficient (for Direct Current because it represents
the mean value of the block), the remaining 63 coefficients
are called the AC coefficients (for Alternating Current as they
correspond to sine wave oscillations in spatial domain). As
explained above, prior steps such as color space transforma-
tion and chroma subsampling are not presented for the sake
of clarity. The next step is the quantization operation that
simply consists in dividing each primary unquantized DCT
coefficient by the corresponding quantization step extracted
from the primary quantization table Q1 of size 8×8. The final
DCT coefficient is eventually rounded to the nearest integer:

C1 = round

(
U1

Q1

)
, (2)

where the above division represents the element-wise oper-
ation and C1 denotes primary quantized DCT coefficients.
We note that for clarity and readability, the present paper
describes the process for a single block because, as already
explained, all the blocks are processed in exactly the same
manner.
The final step of JPEG standard consists in lossless com-
pression, generally using Huffman and Run Length Encoding

1In this paper, it is assumed that the size of the given image is a multiple
of 8. Otherwise, the JPEG compression standard uses the padding by
duplicating the very last pixels.
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(First) JPEG Compression

JPEG Decompression

(Second) JPEG Compression

DCT(·) round(·)

×Q1IDCT(·)round(·)

DCT(·) round(·)

X

U1 C1

D1X1

U2 C2

FIGURE 1: Illustration of the main steps involved in JPEG
compression and decompression and used in the present work
for modeling and analyzing the effect of double compression.

(RLE) ; this step of lossless compression is not detailed as
it does not affect the decoded value of DCT coefficient and
ensuing image pixels.

The JPEG decompression process is carried out by apply-
ing the inverse of previous operations in the reverse order,
that is: “dequantization” and then inverse DCT (IDCT). De-
quantization involves multiplying a primary quantized DCT
coefficient by the corresponding quantization step:

D1 = C1 ·Q1, (3)

where the above multiplication is an element-wise operation.
The decompressed-JPEG image X1 results from applying
IDCT operation on the primary dequantized DCT coefficients
D1 to return to the spatial domain, and performing the
rounding operation:

X1 = round (IDCT(D1)) . (4)

Though the rounding operation is not fundamentally needed
(and, hence, could theoretically be avoided) it is almost
always applied because most image manipulation software
uses integers for better computational efficiency. Besides, it
is always applied prior to the JPEG compression which is
the main focus of current paper. It is important to note that
quantization is the only source of loss of information during
the JPEG compression. In addition, it is also important to re-
mind that the quantization operation is used at two difference
stages: first for representing quantized DCT coefficients (2)
using integers, for storing purposes, and second when decom-
pressing the image for representing pixels’ value (4).

Double JPEG compression occurs when the image X1

suffers further JPEG compression cycle with second quan-
tization table Q2:

C2 = round

(
U2

Q2

)
, with U2 = DCT(X1), (5)

where U2 and C2 denote secondary unquantized and quan-
tized DCT coefficients, respectively. One can observe that
the rounding of pixels value, after decompression, is essential
in the present analysis. Indeed, without this step one would
have, from Equations (4) and (5): U2 = DCT(X1) =
DCT (IDCT(D1)) = D1. Hence, should this statement
holds true, one could decompress and recompress the same
image several times with the quantization step without mak-
ing any modification. This observation is well-known to
be false. As already explained, rounding of pixel values
before the second JPEG compression is required for two
main reasons: first, because most of the image manipulation
and processing softwares use integers for efficiency and (2)
almost all the JPEG compression library applies the DCT
from integer-value pixel to integer-value DCT because it is
much more efficient computationally.

It must be noted that the present paper only focuses on
the problem of aligned double JPEG compression, i.e. the
second JPEG compression adopts a DCT grid aligned with
the one used by the first compression [4]. The problem of
non-aligned double JPEG compression is beyond the scope
of the paper. From the secondary quantized DCT coefficients
C2, one can apply the decompression process to obtain the
decompressed image X2.

III. STATISTICAL ANALYSIS AND MODELING OF
DOUBLE JPEG COMPRESSION
Images in spatial domain are usually modeled statistically
using the well-known additive white Gaussian (AWG) model.
However, it is well-known, especially in the field of digital
image forensics, that the noise variance is slightly different
for each pixel. Such differences in pixels noise variance
has been successfully used for instance in source camera
identification [20], [21].
The methods presented in the present paper found its root
in the heteroscedastic pixel noise model [22], [23] that,
taking into account photon counting shot noise, related the
expectation of pixels value with their variance.

The extension of the heteroscedastic noise model of DCT
coefficient of JPEG image has been studied, see for in-
stance [24]–[26], and is briefly recalled because the present
paper is based on this model. Then, this model is extended to
study and model double JPEG-compressions.

A. STATISTICAL MODEL OF PRIMARY DCT
COEFFICIENTS

Let u1 and c1 be random variables representing respectively
primary unquantized and quantized DCT coefficients at a
frequency. In this paper, DCT coefficients at each frequency
are processed separately. For simplicity, the index of fre-
quency is omitted. Based on the heteroscedastic model of
uncompressed images X1, the statistical model of primary
unquantized and quantized DCT coefficients has been al-
ready proposed in our previous works. The reader is thus
referred to [16]–[18] for details and for more justifications.

4 submitted to IEEE Access, May, 2019



T.H.Thai & R.Cogranne: Estimation of Primary Quantization Steps in Double-Compressed JPEG Images

In order to account for the non-stationarity and hetero-
geneity in a natural image, the primary unquantized DCT
coefficient u1 can be characterized by the doubly stochastic
model as [16], [17]:

u1 ∼ N
(
0, σ2

)
, with σ2 ∼ G(α, β), (6)

where N
(
µ, σ2) represents the normal distribution, with µ

the expected value and σ2 the variance of the block of
8×8 pixels, G(α, β) denotes Gamma distribution with shape
parameter α and scale parameter β. As originally proposed
in the well-known paper [15], the above doubly stochastic
model allows the characterizing of probability density func-
tion (pdf) fu1

of the primary unquantized DCT coefficient u1

using the theorem of total probability:

fu1
(z) =

√
2

π

(
|z|
√

β
2

)α− 1
2

βαΓ(α)
Kα− 1

2

(
|z|
√

2

β

)
, (7)

where Γ(·) denotes the gamma function and Kν denotes the
modified Bessel function of second kind of order ν [27]. This
model includes Laplacian model as special case (as α = 1)
and Gaussian model as limiting case (as α→∞).

The statistical model of the primary quantized DCT coef-
ficient c1 is established by taking into account the impact of
quantization operation with quantization step q1 [16], [18].
The probability mass function (pmf) Pc1 of the quantized
DCT coefficient c1 is given by

Pc1(k) = P
[
c1 = k

]
=

{
F
(
|k|
)
− F

(
|k| − 1

)
∀k ∈ Z∗

2F (0) k = 0,
(8)

where P
[
A
]

denotes the probability of occurrence of the
event A, and

F (k) =
1

2
g(k)

[
Kα− 1

2
(g(k))Lα− 3

2
(g(k))

+Kα− 3
2
(g(k))Lα− 1

2
(g(k))

]
, (9)

with g(k) = q1(k + 1
2 )
√

2
β and Lν(·) is the modified Struve

function [27].
Maximum Likelihood (ML) estimation of the model pa-

rameters (α, β) from unquantized and quantized DCT coef-
ficients has been also proposed in [16], [28]. As noted above,
the proposed model of DCT coefficients is complicated,
establishing analytically ML estimates of the parameters is
hardly possible. We have proposed to resolve the problem by
using numerical optimization method [29].

B. RANGE OF PRIMARY DCT COEFFICIENTS WITH
RESPECT TO SECONDARY QUANTIZATION STEP
As noted in Equations (3)- (4), due to the rounding operation
in spatial domain the decompression process adds round-off
noise in the image X1 :

X1 = round (IDCT(C1Q1)) = IDCT(C1Q1) + ξ, (10)

where ξ represents the random variables (matrix) that repre-
sent the quantization noise: ξ = round(IDCT(C1Q1)) −
IDCT(C1Q1). One can easily observe that those random
variable are independent because the quantization is an
element-wise operation, hence, applied on each and every
value independently.

Hence, when performing the DCT operation on the de-
compressed image X1 the resulting DCT coefficient u2 is
only an approximated version of the “unrounded” primary
dequantized DCT coefficient d1:

U2 = round
(
DCT[X1]

)
,

= round

(
DCT

[
IDCT(C1Q1) + ξ

])
,

= C1Q1 + round (DCT(ξ)) ,

= C1Q1 + ε, (11)

where ε represents the round-off error in DCT domain. To
be comprehensive, we should also remind that the impact of
“clipping”, which occurs when values exceed the quantizer
bounds, is assumed to be negligible in this paper. Indeed,
in a vast majority of the case, pixels with values over 255
are saturated, or over-exposed, and hence belong to blocks in
which pixels value is constant. In such cases all the AC (Al-
ternative Current) DCT coefficients will be zero. As already
noted in prior works, see for instance [2], [30], excluding
blocks, in the image, with saturated pixels allows removing
the difficulties related to clipping.

In what follows, for clarity of presentation and easy of
understanding, we will present the method element-wise, and
not block-wise. Hence we will use the same variable in lower
case and not-boldface font to represent values of elements
from previous matrices.
Due to the round-off error ε, the secondary unquantized DCT
coefficient u2 would cluster around integer multiples of the
quantization step q1. It is widely admitted that, when the
quantization step is rather small, that the rounding noise ξ
can be modeled as a uniformly distributed random variables
in the interval [− 1

2 ,
1
2 ). As a consequence, the rounding error

ε in the DCT domain can be modeled as a linear combina-
tion of spatial-domain round-off errors. In virtue of Central
Limit Theorem (CLT), it is proposed in the present paper to
model the error ε as random variable following a Gaussian
distribution with zero-mean and variance of 1

12 [2], [30]:

ε ∼ N
(

0,
1

12

)
. (12)

Consequently, it follows from Eq. (5) and (11), that the
secondary quantized DCT coefficient c2 can be rewritten as:

c2 = round

(
c1q1 + ε

q2

)
. (13)

By using properties of the rounding, ceiling and floor func-
tion, we can define the range of values of the primary
dequantized DCT coefficient d1 = c1q1 as in the following
Proposition:
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FIGURE 2: Illustration of the proposed model of secondary quantized DCT coefficients on the image Lena with different pairs
of quality factors (QF1,QF2) = (85, 75), (75, 60), (65, 80). The example presented in those figures is the distribution of DCT
coefficient at location (2, 2) for which the quantization steps for both the quality factors QF1 and QF2) respectively are given
as q1 and q2.

Proposition 1. For a given secondary quantization step q2

and secondary quantized DCT coefficient c2, the value of the
corresponding primary dequantized DCT coefficient d1 falls
into the rangeRq2(c2), defined as:

Rq2(c2) =

[
c2q2−

⌊q2

2
+ ε
⌋
, c2q2 +

⌈q2

2
− ε
⌉
−1

]
, (14)

where dxe and bxc denote the ceiling and floor function,
respectively.

Proof: The proof of Proposition 1 is given in Appendix.

Depending on the parity of q2, let us study the range
Rq2(c2) in two following cases:
• Case 1: q2 = 2m,m ∈ Z
From (14), the rangeRq2(c2) can be rewritten as:

Rq2(c2) =

[
c2q2 −m− bεc , c2q2 +m+ d−εe − 1

]
=
[
c2q2 −m− bεc , c2q2 +m− bεc − 1

]
. (15)

It follows from (12) that the probability that the error ε
lies outside the interval [− 3

2 ,
3
2 ] is negligible2. Therefore,

depending on the value of ε, the range Rq2(c2) is reduced
to:
R(1)
q2 (c2) =

[
c2q2 −m+ 2 , c2q2 +m+ 1

]
if ε ∈ I(1)

R(2)
q2 (c2) =

[
c2q2 −m+ 1 , c2q2 +m

]
if ε ∈ I(2)

R(3)
q2 (c2) =

[
c2q2 −m, c2q2 +m− 1

]
if ε ∈ I(3)

R(4)
q2 (c2) =

[
c2q2 −m− 1 , c2q2 +m− 2

]
if ε ∈ I(4)

(16)
where I(1) = [− 3

2 ,−1[, I(2) = [−1, 0[, I(3) = [0, 1[, I(4) =
[1, 3

2 ].
• Case 2: q2 = 2m+ 1,m ∈ Z
In this case, the rangeRq2(c2) is rewritten as:

Rq2(c2) =

[
c2q2−m−

⌊
ε+

1

2

⌋
, c2q2+m−

⌊
ε− 1

2

⌋
−1

]
.

(17)

2The exact probably that ε ∈ [− 3
2
, 3
2

] is 2× Φ(3
√

3) ≈ 2.107.

Similarly, the rangeRq2(c2) can be reduced to:
R(1)
q2 (c2) =

[
c2q2 −m+ 1 , c2q2 +m+ 1

]
if ε ∈ I(1)

R(2)
q2 (c2) =

[
c2q2 −m, c2q2 +m

]
if ε ∈ I(2)

R(3)
q2 (c2) =

[
c2q2 −m− 1 , c2q2 +m− 1

]
if ε ∈ I(3)

(18)
where I(1) = [− 3

2 ,−
1
2 [, I(2) = [− 1

2 ,
1
2 [, I(3) = [ 1

2 ,
3
2 ].

In the literature, the round-off error ε is often omitted
to simplify the range Rq2(c2). However, as noted in above
analysis, due to its variability, the error ε impact considerably
the rangeRq2(c2). Moreover, the probability that a value falls
in the sub-rangeR(j)

q2 (c2) equals to the one that the error ε is
in the corresponding interval I(j). Therefore, the values in
the range Rq2(c2) do not occur equally but with a different
probability due to the variability of ε.

Corollary 1. Combining all the sub-ranges R(j)
q2 (c2), 1 ≤

j ≤ n, the rangeRq2(c2) can be given as:

Rq2(c2) =

[
c2q2 −

⌊q2

2

⌋
− 1 , c2q2 +

⌊q2

2

⌋
+ 1

]
. (19)

Proof: From above analysis, by taking the minimum of
left bounds and the maximum of right bounds of all the sub-
ranges, the proof of Corollary 1 is straightforward.

Corollary 2. Let pj , 1 ≤ j ≤ n, be the probability that
the error ε is in the interval I(j), and p̄(k) represents the
probability that the value k occurs in the range Rq2(c2).
Then, the probability p̄(k) can be expressed as:

p̄(k) =

n∑
j=1

1
[
k ∈ R(j)

q2 (c2)
]
· pj , (20)

where 1[A] denotes the indicator function of an event A.

Proof: Since the probability that the value k occurs in the
rangeRq2(c2) equals to a sum of probabilities of occurrence
of the value k in each sub-range, the proof of Corollary 2
follows immediately.
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C. STATISTICAL MODEL OF SECONDARY DCT
COEFFICIENTS
The analysis of round-off effect on the range of primary
DCT coefficients allows us to establish an accurate model of
secondary DCT coefficients. Let PC2

denote the pmf of the
random variable C2 representing secondary quantized DCT
coefficient. Based on the law of total probability, the pmf PC2

can be given as:

PC2(c2) = P
[
C2 = c2

]
=

∑
k∈Rq2 (c2) , k=q1l

P
[
k
∣∣∣C2 = c2

]
· P
[
D1 = k

]
=

∑
k∈Rq2

(c2) , k=q1l

P
[
k
∣∣∣C2 = c2

]
· P
[
C1 = l

]
.

(21)

In other words, only multiples of q1 in the range Rq2(c2)
are taken into account in order to calculate the probability
PC2(c2). Finally, we derive that

PC2
(c2) =

∑
k∈Rq2 (c2) , k=q1l

p̄(k) · PC1
(l). (22)

Therefore, from the model of primary quantized DCT coeffi-
cient C1 given in (8), the model of secondary quantized DCT
coefficient C2 can be established straightforwardly.

In order to show the efficiency of the proposed model
of secondary quantized DCT coefficients, an experiment is
conducted on the image Lena3 with different pairs of quality
factors (QF1,QF2) = (85, 75), (75, 60), (65, 80). Figure 2
shows the histogram of secondary quantized DCT coeffi-
cients at frequency (1,0) with corresponding quantization
steps compared with the proposed model. It is noted that
the proposed model can capture accurately the statistics of
secondary quantized DCT coefficients, even capture specific
artifacts in the histogram such as double peaks or zeros
(see [5], [6] for details about those artifacts).

IV. ESTIMATION OF PRIMARY QUANTIZATION STEP
A. FILTERING OF CANDIDATES OF PRIMARY
QUANTIZATION STEP
Since q1 is a discrete integer parameter, a common philoso-
phy is to carry out an estimation algorithm over a set of inte-
gers to provide the best candidate following certain criteria.
However, in order to avoid conducting an exhaustive search,
we propose a simple technique to filter possible candidates of
primary quantization step q1.

Proposition 2. For every c2 ∈ C2, where C2 denotes the set of
values of secondary quantized DCT coefficients, there always
exists a corresponding c1 whose dequantized value c1q1 is in
the rangeRq2(c2).

3The reference image Lena can be downloaded, for instance, from https:
//www.ece.rice.edu/~wakin/images/.

Proof: Since Rq2(c2) is the range containing possible
values c1q1 with respect to the given value c2, the Proposi-
tion 2 is straightforward.

Let κc2(q) be the function of q with respect to a coefficient
c2 defined as follows:

κc2(q) = 1
[
∃k ∈ Z | kq ∈ Rq2(c2)

]
=

{
1 if∃k ∈ Z such as kq ∈ Rq2(c2)

0 if not.
(23)

Then, we define the function κ̄(q) as the normalized sum of
all functions κc2(q) for all coefficients c2 ∈ C2:

κ̄(q) =

∑
c2∈C2 κc2(q)

N
, (24)

where N is the cardinality of the set C2, i.e. the number of
secondary quantized DCT coefficients at a frequency of the
image in question. Let S denote the set of candidates of q1.
Perfectly, the set S could be given as

S =
{
q ∈ Z∗

∣∣ κ̄(q) = 1
}
. (25)

The proposed filtering technique is illustrated in Figure 3
for two scenarios q1 < q2 and q1 > q2. The DCT coefficients
at the frequency (0,1) of the image Lena are used in this
experiment. It could be noted that in case of q1 < q2, the true
primary quantization step q1 is included in the values smaller
than q2. Generally, the proposed technique can narrow down
the search on the primary quantization step q1, which allows
to reduce considerably execution time.

In practice, the function κ̄(q) at the true primary quantiza-
tion step can have value slightly lower than 1 due to the small
effect of truncation errors and modeling error of ε [2], [28].
Therefore, the set of candidates S is proposed as follows:

S =
{
q ∈ Z∗

∣∣ κ̄(q) ≥ 0.9
}
. (26)

B. PROPOSED ESTIMATION ALGORITHM
After establishing the candidate set S , this paper provides
the optimal candidate based on the criteria of symmetrized
KL distance. In probability and information theories, the
KL divergence [31], which is an asymmetric discrepancy
measure between two probability distributions P1 and P2, is
defined as follows:

DKL

(
P1‖P2

)
=

∫
log

dP1

dP2
dP1. (27)

In case of discrete probability distributions, the KL diver-
gence DKL

(
P1‖P2

)
can be given by:

DKL

(
P1‖P2

)
=
∑
i

P1(i) log
P1(i)

P2(i)
. (28)

However, it is noted that DKL

(
P1‖P2

)
is not a strict concept

of distance since it does not obey the triangle inequality
and it is not symmetric in general, i.e. DKL

(
P1‖P2

)
6=

DKL

(
P2‖P1

)
. Therefore, in order to quantify the similarity
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FIGURE 3: Illustration of the proposed technique for filtering of candidates of primary quantization step using the DCT
coefficient at location (2, 2) and with two examples for quality factors (QF1,QF2) = (85, 75), (55, 80). As in Figure 2, the
quantization steps are given by q1 and q2 for quality factors QF1 and QF2) respectively.

between two probability distributions P1 and P2, we rely on
the symmetrized KL distance given as:

DKL = DKL

(
P1‖P2

)
+DKL

(
P2‖P1

)
. (29)

To provide the optimal candidate of q1, we calculate the
symmetrized KL distance between the normalized observed
histogram H of secondary quantized DCT coefficients and
the theoretical model PC2

under a candidate q ∈ S

DKL(q) =
∑
|i|≥2

H(i) log
H(i)

PC2
(i | θ)

+
∑
|i|≥2

PC2(i | θ) log
PC2

(i | θ)

H(i)
, (30)

where i denotes the histogram bin index and θ = (α, β, q, q2)
is the parameter vector specifying the probability distribution
PC2

. It is noted that in the calculation of DKL(q), the
bin index at 0 and ±1 are excluded. The main difficulty
in (30) is that the nuisance parameters (α, β) are unknown in
practice, hence the distance DKL(q) could not be computed.
To overcome this difficulty, it is proposed to transform the
decompressed image X2 to the DCT domain, then estimate
the parameters (α, β) from unquantized DCT coefficients
by the ML method (see Section III-A). The ML estimates
are then replaced in (30). Finally, the optimal candidate of
primary quantization step q1 is given as the value minimizing
the symmetrized KL distance:

q∗ = arg min
q∈S

DKL(q). (31)

It should be noted that one can, in fact, estimate the quantiza-
tion step by find the value that minimizes a different “metric”
than the proposed asymmetric Kullback-Leibler divergence.
Indeed by simply using in Eq. (31) a quantitive comparison
between the theoretical distribution PC2

(i | θ) with the

empirical observation H(i). We focus in the present paper
on the asymmetric Kullback-Leibler divergence because, as
shown in Table 1 it has been empirically observed that it
provide the best results.

It is important to keep in mind that the present paper
focuses on estimating an individual primary quantization
step rather than a primary quality factor. This is of great
interest in practice because most quantization tables used in
digital cameras are often customized by camera manufactur-
ers using their own compression scheme, despite standard
quantization tables have been provided by the Independent
JPEG Group [19]. Therefore, the proposed approach could
partially recover the employed primary quantization table,
which helps to identify the source camera model [13].

V. EXPERIMENTS
For estimation of primary quantization step, the proposed
approach excludes the secondary coefficients whose absolute
value is smaller than 1, see (30). When an image is highly
compressed, i.e. the secondary quantization step is very
coarse, all secondary coefficients could be quantized into
the interval [−1, 1]. In this case, the estimation is declared
undetermined. To the best of our knowledge, no method
(including the present one) can deal with this case.

Moreover, the proposed approach could not provide reli-
able estimation of primary quantization steps when q1 is a
divisor of q2 (including 1 and q2) because the histogram in
these cases is very close to the one generated from single
compression, i.e. the DCT coefficients are not technically
double-compressed [5], [6]. These cases would be our focus
in future research.

In this paper, the performance of the method is evaluated
using the accuracy metric, which is calculated as a percentage
of the number of correctly estimated quantization steps.
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TABLE 1: Estimation accuracy of the proposed approach for different metrics when the second quantization step is q2 =
8 and for various primary quantization step q1 ∈ [1, 20]. The various metrics used in the comparison with the proposed
method (31) are respectively the symmetrized Kullback-Leibler divergence (Sym. KL), the Pearson’s chi-sqaured, χ2, the
Maximum Likelihood (ML) the (asymmetric) Kullback-Leibler divergence denoted Asym. KL, the L1-norm and the L2-norm
respectively.

(a) Simulated data

q1 Sym. KL χ2 ML Asym. KL L1 L2

1 - - - - - -
2 - - - - - -
3 98.05 77.90 5.25 5.25 58.42 41.31
4 - - - - - -
5 98.75 89.83 10.23 10.23 82.17 80.34
6 99.58 90.80 62.64 62.64 92.21 90.30
7 99.89 93.34 93.01 93.01 93.12 90.89
8 - - - - - -
9 99.90 94.95 11.83 11.83 94.10 90.62

10 100.00 93.31 12.22 12.22 97.87 97.25
11 100.00 98.50 95.05 95.05 90.62 89.11
12 100.00 94.77 93.82 93.82 93.01 92.72
13 100.00 100.00 97.52 97.52 97.11 96.98
14 100.00 100.00 98.27 98.27 97.88 97.12
15 100.00 100.00 97.15 97.15 95.43 94.98
16 100.00 100.00 99.19 99.19 98.41 97.75
17 99.93 98.91 88.72 88.72 89.93 88.56
18 100.00 100.00 100.00 100.00 98.24 98.11
19 100.00 100.00 100.00 100.00 97.69 97.03
20 100.00 100.00 100.00 100.00 97.22 97.25

(b) Real data

q1 Sym. KL χ2 ML Asym. KL L1 L2

1 - - - - - -
2 - - - - - -
3 95.53 65.69 2.05 2.05 59.58 40.95
4 - - - - - -
5 98.36 82.39 7.45 7.45 79.11 71.66
6 99.44 87.46 59.32 59.32 89.01 88.18
7 99.85 86.60 83.79 83.79 80.57 76.93
8 - - - - - -
9 99.82 88.51 4.23 4.23 93.59 89.39
10 99.48 90.99 4.23 4.23 97.17 95.15
11 99.75 96.78 94.33 94.33 88.63 88.59
12 99.82 93.19 93.81 93.81 90.78 90.12
13 99.85 99.07 96.50 96.50 95.16 95.29
14 99.81 99.06 97.22 97.22 96.09 95.36
15 99.84 99.25 96.99 96.99 94.82 94.84
16 99.89 99.62 97.17 97.17 95.42 95.13
17 99.73 96.24 87.65 87.65 88.67 85.92
18 99.97 99.03 98.11 98.11 95.25 94.71
19 99.95 99.08 98.39 98.39 94.68 92.32
20 100.00 99.39 98.23 98.23 93.40 93.88

A. VALIDATION OF THE PROPOSED STATISTICAL
FRAMEWORK
The proposed statistical framework has shown a possibility
of employing a different model of DCT coefficients (e.g.
Laplacian, Generalized Gaussian or Generalized Gamma dis-
tribution) or a different metric for similarity measure. In our
previous works [16], the proposed model of DCT coefficients
has been already shown to outperform other models. There-
fore, in this paper, we conduct experiments to validate the
choice of symmetrized KL distance over different metrics.

Firstly, we conduct an experiment on simulated data.
The simulated data is generated using 10000 uncompressed
grayscale images of size 512 × 512 in the BOSSBase [32]
(version 1.01). The simulation process is given as follows:

1) The experiment starts from transforming each uncom-
pressed image in the BOSSBase into DCT domain,
then estimate the parameters (α, β) from unquantized
DCT coefficients at frequency (1,0).

2) From a given couple (α, β), a vector of 4096 coeffi-
cients u1 is randomly generated following the model
as in (7).

3) The coefficients u1 are then quantized and dequantized
with primary step q1, obtained d1.

4) The primary dequantized coefficients d1 are added by
noise ε following the Gaussian distribution as in (12)
to create u2.

5) The coefficients u2 are finally quantized with sec-
ondary step q2, obtained c2.

By doing so, we obtain the coefficients c2 that fit the
theoretical model perfectly. Moreover, the fact of using the
parameters (α, β) by estimating from a real image for simu-
lation process could provide DCT coefficients close to reality.
In this simulation, the step q2 is fixed to q2 = 8 and the
step q1 varies in the interval [1, 20]. The above simulation
process is applied for 10000 uncompressed images in the
BOSSBase. Therefore, the simulated data involves 10000
vectors of coefficients c2 for each primary quantization step
q1. The experiment is conducted for different metrics, includ-
ing the Symmetrized KL distance χ2-distance, ML method,
asymmetric KL divergence, L1-norm and L2-norm.

Next, we conduct a second experiment on real data, which
also relies on the BOSSBase. The uncompressed images are
double-JPEG compressed with constant quantization tables,
where all steps in the quantization table take the same
value. The primary steps vary in the interval [1, 20] and the
secondary ones are fixed to 8. Then DCT coefficients at
frequency (1,0) are extracted for estimation. By doing so, this
experiment is carried out in a similar scenario as the first one
on simulated data.

The estimation accuracy of the proposed approach for
different metrics on the simulated data and real data is
shown in Table 1. It should be noted that the performance
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FIGURE 4: Estimation accuracy of the proposed method using one of the first 15 frequencies (in zig-zag order) of images with
different sizes from the BOSSBase. The values are obtained by averaging over all (QF1,QF2).
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FIGURE 5: Estimation accuracy of the proposed method on
the Dresden database.

for all values q1 divisors of q2 is not presented in this
table. The proposed approach using the symmetrized KL dis-
tance achieves mostly perfect performance, which validates
this choice over other metrics. The performance for other
metrics is unsatisfactory when q1 < q2. Surprisingly, the
proposed approach based on ML method and asymmetric
KL divergence obtains the poorest performance in that case.
The high performance of the proposed approach in those
experiments shows that the above statistical framework is
relevant to model statistics of secondary DCT coefficients.
Furthermore, the proposed method can estimate accurately
individual primary quantization steps in the case when the
primary quantization step is finer than the secondary one.

B. NUMERICAL RESULTS ON LARGE REAL IMAGE
DATABASE
In order to emphasize the effectiveness of the proposed
approach, we carry out experiments on large real image
databases and comparisons with existing methods. Firstly,

an experiment is carried out on the BOSSBase. All 10000
grayscale uncompressed images in this database are JPEG-
compressed twice using the Matlab JPEG Toolbox [33] with
quality factors QF1 ∈ {60, 65, 70, 75, 80, 85, 90, 95} and
QF2 ∈ {60, 65, 70, 75, 80, 85, 90, 95, 100}. It should be
noted that images from the BOSSBase have an important
variability in their content. Conducting the experiment on
such a large image database can allow us to assess the
robustness of the estimation method. Moreover, to assess the
performance for different image sizes, those 512× 512 orig-
inal images are center-cropped into images of size 256× 256
and 128× 128 before conducting double compression. Thus,
the final dataset contains 720000 double-compressed images
for each image size.

It is noted that the proposed approach is based on statistics
of secondary DCT coefficients at each separate frequency.
Due to insufficient statistics at high frequencies, the paper
only focuses on studying the performance at low and medium
frequencies. Table 2 shows the estimation accuracy of the
proposed method at the first 10 frequencies in zig-zag order
of double-compressed images of size 512 × 512 in the
BOSSBase dataset. The column and row of Table 2 represent
respectively primary and secondary quality factor. Similarly,
the case in which primary step is a divisor of secondary one
is not presented in this Table. These results emphasize the
high performance of the proposed method when applying on
real large image database. When QF1 < QF2 (i.e. q1 > q2),
the estimation accuracy at low frequencies is nearly perfect
despite high compression. For higher frequencies, it can be
observed that the estimation accuracy decreases with the
decline of the quality factor. Especially, when QF1 > QF2

(i.e. q1 < q2), the estimation accuracy tends to increase as
the primary quality factor decreases. This is due to the fact
that when the primary quality factor is very high, the effect
of double compression is minor (i.e. the image is close to the
one generated from the single compression of QF2), hence
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FIGURE 6: Comparison in terms of estimation accuracy between the proposed methods and prior work. The comparison has
been carried out on all images from the BOSSBase with the original size of 512× 512 pixels.

the proposed estimator can be mistaken.

Furthermore, the performance of the proposed method
for the images with different sizes from the BOSSBase is
shown in Figure 4. The estimation accuracy for various DCT
coefficients (scanned using the zig-zag pattern order) in the
case of QF1 < QF2 and QF1 > QF2 is reported respec-
tively. The values in this Figure are averaged estimation ac-
curacy considering all combinations of (QF1,QF2) studied
in Table 2. It can be clearly observed that the estimation
accuracy of the proposed method is strictly correlated with
the image size. Moreover, the decline of the performance in
case QF1 > QF2 tends to be faster than the one in case
QF1 < QF2.

To further confirm the effectiveness of the proposed ap-
proach, an experiment is conducted on the real JPEG image
from the Dresden database [34] that is publicly available for
download. This database includes 16958 color JPEG images
acquired from 73 different camera devices of different mod-
els/brands with the highest available resolution and JPEG
quality setting, see more details in [34]. The color JPEG
compression introduces some additional steps such as color
space transformation (e.g. RGB to YCbCr and inverse) and
chrominance component downsampling. These steps gener-
ate noise into the color components. By conducting experi-
ments on real color JPEG images, we do not only verify the
robustness of the proposed method to color noise although
it is not yet incorporated in the proposed model, but also
show its effectiveness in the real JPEG compression scheme
designed by different manufacturers. In this experiment, the
color JPEG images are converted into grayscale and then
gone through a second JPEG compression using the Matlab
JPEG Toolbox [33] with quality factors QF2 ∈ {90, 80, 70}.
The estimation accuracy of the proposed method on those
double-compressed JPEG images is shown in Figure 5. It is
noted that there is a drop in performance at frequency (0,0).
This is due to the fact that the DC coefficient represents the

average of pixel values in a block, which causes a difficulty
to provide an accurate model due to high heterogeneity in
a natural image. Nevertheless, the proposed method can
estimate accurately the primary quantization steps at low
frequencies. This highlights its practicability at recovering a
part of employed quantization matrix in natural JPEG images
taken by a digital camera, which could help to identify the
image origin.

Considering the scenario of estimating individual primary
quantization steps, the paper proposes to carry out a com-
parison with two recent methods, including the quantization-
based method proposed by Galvan et al. [8] and the model-
based method proposed by Bianchi et al. [4]4. The compar-
ison is conducted on the double-compressed JPEG images
with size of 512 × 512 in the BOSSBase. The performance
of all the methods is shown in Figure 6. Because Galvan’s
method cannot be performed in the case QF1 > QF2, its
performance is not reported in Figure 6b. As noted, the pro-
posed method outperforms the others in terms of estimation
accuracy, especially when the primary quantization step is
finer than the secondary.

VI. CONCLUSION, DISCUSSION AND FUTURE WORKS
This paper proposes an accurate method for estimation of
primary quantization step in a double-compressed JPEG
image. The approach is based on the statistical model of
DCT coefficients that has been given in our previous works.
By analyzing the double quantization effect and taking into
account the round-off noise, the paper establishes an ap-
propriate model of the secondary DCT coefficients. More-
over, by using a simple and efficient filtering technique, a
set of possible candidates of primary quantization step is
provided. From this set of candidates, the optimal candidate
is given following the criteria of symmetrized KL distance.

4The Matlab code of this method has been provided at
https://iapp.dinfo.unifi.it/.
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Numerical experiments on large image databases highlight
the relevance of the proposed approach.

The strength of the proposed method is the high estimation
accuracy for a wide variety of images with different image
contents, image sizes, and quality factors. Moreover, the
proposed method can provide reliable estimation of primary
quantization steps in the case that the primary quantization
step is finer than the secondary while all the prior methods
have failed. The accuracy of the proposed method is em-
phasized when applying on real color JPEG images acquired
from different camera models/brands, which shows the ro-
bustness of the proposed method to color noise introduced
during JPEG compression pipeline. However, the proposed
method is more time-consuming than prior-art ones. This
drawback is due to the fact that the ML estimation of DCT
model parameters is accomplished using a numerical opti-
mization method.

The approach proposed in this paper explore several di-
rections in future researches. Firstly, based on the study of
double compression effect in this paper, we could design a
statistical test following hypothesis testing theory in order to
detect the presence of double-JPEG compression. This test
can allow the guaranteeing of a prescribed false-alarm rate,
which is crucial in an operational context. It should be noted
that such statistical test has not yet studied in the literature.
The second research is the estimation of primary quantization
steps from non-aligned double-compressed JPEG images.
Last but not least, it is of crucial interest to detect and
localize copy-paste forgery using inconsistencies in JPEG
compression history among different parts in the image under
investigation.

APPENDIX. PROOF OF PROPOSITION 1
The goal of this appendix is to provide a proof for the
Proposition 1 and, more precisely, to prove Equation (14).

Let us recall that using that the image compressed only
once is decompressed in spatial domain, via multiplication of
coefficients c1 with quantization step q1, inverse DCT trans-
formation and rounding of pixels’ value. This decompressed
image is then compressed a second time with a different
quantization step q2. Modeling the rounding error of pixels’
value with a uniformly distributed random variable allows the
writing of Equation (13):

c2 = round

(
c1q1 + ε

q2

)
.

Based on the definition of the rounding function and on the
previous relation, it immediately follows from that:

c2 −
1

2
≤ c1q1 + ε

q2
< c2 +

1

2
, (32)

which is equivalent to:

c2q2 −
q2

2
− ε ≤ c1q1 < c2q2 +

q2

2
− ε, (33)

Taking into account that c1 and q1 are both integers, one has:⌈
c2q2 −

q2

2
− ε
⌉
≤ c1q1 ≤

⌈
c2q2 +

q2

2
− ε
⌉
− 1. (34)

Therefore, we derive

c2q2 +
⌈
−
(q2

2
+ ε
)⌉
≤ c1q1 ≤ c2q2 +

⌈q2

2
− ε
⌉
−1. (35)

Since d−xe = −bxc, we obtain:

c2q2 −
⌊q2

2
+ ε
⌋
≤ c1q1 ≤ c2q2 +

⌈q2

2
− ε
⌉
− 1, (36)

Finally, observing that the product c1q1 is the same quantity
as the corresponding primary dequantized DCT coefficient
d1, it is obvious that the previous Equation (36) corresponds
to Equation (14) which concludes the proof of Proposition 1.
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TABLE 2: Estimation accuracy of the proposed method using each and every first ten DCT coefficients (according to the zig-zag
pattern order) and over all the images in the BOSSBase with the original size of 512× 512 pixels.

(a) Frequency (0,0)

95 90 85 80 75 70 65 60
100 100.00 100.00 100.00 100.00 99.99 99.99 99.99 99.97
95 - 100.00 100.00 100.00 99.99 99.98 99.98 99.97
90 99.98 - 99.99 99.98 99.98 99.98 99.98 99.97
85 99.95 99.95 - 99.99 99.98 99.98 99.95 99.95
80 - - 99.88 - 99.98 99.95 99.95 99.92
75 - 97.77 98.72 99.69 - 99.92 99.89 99.89
70 - 96.75 - 99.40 99.68 - 99.89 99.89
65 94.26 96.19 96.22 98.07 99.65 99.65 - 99.86
60 92.30 92.31 98.23 92.33 99.21 99.28 99.30 -

(b) Frequency (0,1)

95 90 85 80 75 70 65 60
100 - 100.00 100.00 100.00 99.99 99.99 99.99 99.97
95 - 100.00 100.00 100.00 99.99 99.98 99.98 99.97
90 - - 99.99 99.98 99.98 99.98 99.98 99.97
85 - 99.85 - 99.99 99.98 99.98 99.95 99.95
80 - - 99.23 - 99.98 99.95 99.95 99.92
75 - - - 99.65 - 99.92 99.89 99.89
70 - 93.42 94.52 95.74 93.58 - 99.89 99.89
65 - - 91.12 - 95.16 95.68 - 98.85
60 - 90.71 - 92.21 99.50 97.52 97.17 -

(c) Frequency (1,0)

95 90 85 80 75 70 65 60
100 - 100.00 100.00 100.00 99.99 99.99 99.99 99.97
95 - 100.00 100.00 100.00 99.99 99.98 99.98 99.97
90 - - 99.99 99.98 99.98 99.98 99.98 99.97
85 - - - 99.99 99.98 99.98 99.95 99.95
80 - 97.57 99.20 - 99.98 99.95 99.95 99.92
75 - - 99.62 96.30 - 99.92 99.89 99.89
70 - 93.33 94.52 99.58 99.05 - 99.89 99.89
65 - - - 95.83 96.93 95.06 - 98.86
60 - - 92.43 - 96.84 96.77 97.73 -

(d) Frequency (2,0)

95 90 85 80 75 70 65 60
100 - 100.00 99.99 99.97 99.97 99.95 99.95 99.93
95 - 99.99 99.93 99.90 99.90 99.90 99.84 99.84
90 - - 99.82 99.80 99.81 99.75 99.76 99.77
85 - 99.37 - 99.79 99.75 99.75 99.70 99.70
80 - - 99.34 - 99.69 99.62 99.62 99.60
75 - 96.77 99.25 98.20 - 99.60 99.42 99.40
70 - 91.12 - 96.99 95.31 - 99.42 99.40
65 - 87.13 89.72 92.81 95.85 93.17 - 97.69
60 - 85.22 85.89 90.33 90.21 96.23 95.22 -

(e) Frequency (1,1)

95 90 85 80 75 70 65 60
100 - 100.00 99.99 99.97 99.97 99.95 99.95 99.95
95 - 99.99 99.93 99.90 99.90 99.90 99.89 99.89
90 - - 99.85 99.84 99.84 99.82 99.80 99.77
85 - - - 99.84 99.84 99.82 99.80 99.77
80 - 99.77 99.75 - 99.83 99.82 99.80 99.78
75 - - 99.32 98.11 - 99.79 99.69 99.63
70 - 91.56 91.77 98.99 94.15 - 99.70 99.56
65 - - - 92.62 95.91 95.43 - 97.99
60 - - 87.28 - 91.79 95.48 95.03 -

(f) Frequency (0,2)

95 90 85 80 75 70 65 60
100 - 100.00 99.99 99.97 99.97 99.95 99.95 99.95
95 - 99.99 99.93 99.90 99.90 99.90 99.86 99.86
90 - - 99.82 99.81 99.81 99.77 99.76 99.77
85 - 99.59 - 99.79 99.79 99.75 99.72 99.72
80 - - 98.94 - 99.75 99.70 99.55 99.58
75 - 96.66 98.60 98.87 - 99.70 99.43 99.45
70 - - - 98.76 97.42 - 99.42 99.40
65 - 86.65 90.33 93.21 98.54 93.83 - 98.98
60 - - 85.57 - 91.16 95.64 94.39 -

(g) Frequency (0,3)

95 90 85 80 75 70 65 60
100 99.99 99.96 99.95 99.90 99.88 99.82 99.80 99.65
95 - 99.63 99.60 99.51 99.41 99.45 99.32 99.40
90 98.68 - 99.38 99.31 99.25 99.29 99.30 99.29
85 97.57 98.06 - 99.11 99.04 98.72 98.17 98.23
80 - - 94.53 - 98.37 96.92 97.44 96.31
75 - 89.37 93.12 95.22 - 97.08 97.13 96.26
70 - 85.32 - 89.18 90.29 - 94.62 92.38
65 79.83 84.19 83.54 86.74 88.35 90.03 - 92.10
60 77.87 79.99 82.61 83.13 83.48 84.76 87.72 -

(h) Frequency (1,2)

95 90 85 80 75 70 65 60
100 - 100.00 99.97 99.95 99.90 99.88 99.83 99.78
95 - 99.94 99.86 99.85 99.74 99.67 99.62 99.45
90 - - 99.86 99.85 99.70 99.58 99.49 99.40
85 - 98.23 - 99.12 99.03 98.98 98.82 98.63
80 - - 97.78 - 98.42 98.11 97.90 97.21
75 - 90.39 94.47 96.12 - 97.99 97.85 96.84
70 - 86.89 - 90.41 92.05 - 96.79 96.66
65 - 83.18 84.24 88.55 90.02 90.84 - 94.83
60 - 80.67 82.46 83.86 85.18 88.51 88.92 -

(i) Frequency (2,1)

95 90 85 80 75 70 65 60
100 - 100.00 99.97 99.95 99.92 99.90 99.87 99.82
95 - 99.97 99.90 99.90 99.73 99.73 99.68 99.61
90 - - 99.72 99.70 99.58 99.41 99.23 99.17
85 - 97.95 - 99.20 99.03 99.01 98.72 98.65
80 - 95.34 97.52 - 98.92 98.40 97.77 97.75
75 - 90.35 92.39 97.22 - 98.59 97.70 97.53
70 - 87.46 - 92.40 93.73 - 96.41 95.82
65 - - 84.28 87.28 90.82 91.38 - 94.47
60 - 80.89 83.33 - 88.57 90.89 92.32 -

(j) Frequency (3,0)

95 90 85 80 75 70 65 60
100 - 100.00 99.97 99.95 99.92 99.90 99.87 99.82
95 - 99.98 99.90 99.86 99.80 99.73 99.68 99.61
90 - - 99.72 99.70 99.63 99.66 99.37 99.33
85 - 98.54 - 99.24 99.18 99.15 98.88 98.65
80 - - 98.07 - 98.79 98.46 98.45 98.31
75 - 90.04 91.96 95.54 - 96.75 95.64 95.30
70 - 86.23 - 90.25 91.65 - 95.59 95.19
65 - 83.46 84.28 86.88 91.59 92.06 - 93.43
60 - 80.32 81.72 83.77 86.83 90.94 90.99 -
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