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ABSTRACT

Modern order and lattice theory provides convenient mathematical tools for pattern
mining, in particular for condensed irredundant representations of pattern spaces
and their efficient generation. Formal Concept Analysis (FCA ) offers a generic frame-
work, called pattern structures, to formalize many types of patterns, such as itemsets,
intervals, graph and sequence sets. Moreover, FCA provides generic algorithms to
generate irredundantly all closed patterns, the only condition being that the pattern
space is a meet-semilattice. This does not always hold, e.g., for sequential and graph
patterns. Here, we discuss pattern setups consisting of descriptions making just a
partial order. Such a framework can be too broad, causing several problems, so we
propose a new model, dubbed pattern multistructure, lying between pattern setups
and pattern structures, which relies on multilattices. Finally, we consider some tech-
niques, namely completions, transforming pattern setups to pattern structures using
sets/antichains of patterns.

1. Introduction

Modern order and lattice theory provide convenient mathematical tools for pattern
mining, in particular for condensed irredundant representations of pattern spaces and
their efficient generation. Different formal tools has been proposed in the literature to
model pattern spaces. Formal Concept Analysis (FCA - |Ganter and Wille| (1999)) has
been proposed by [Wille (1982)) as a well-founded mathematical tool to models hier-
archies of concepts related to some formal context (i.e. binary datasets). While basic
FCA provides a natural way to analyze binary datasets, datasets with more complex
attributes (e.g. numerical or nominal ones) need to be transformed to such before any
manipulation. This kind of transformation has been proposed by |Ganter and Wille
(1989) under the term of conceptual scaling (i.e. binarizing). Yet, even if conceptual
scaling is a quite general tool, binarizing a dataset with regard to some pattern search
spaces is not always obvious (i.e. Baixeries, Kaytoue, and Napoli (2012)), Belfodil
et al.[(2017)). In response to that, some other more natural tools to formalize complex
pattern spaces has been proposed. One could cite Logical Concept Analysis (LCA)
proposed by Ferré and Ridoux (2000) and Pattern Structures proposed by |Ganter and
Kuznetsov| (2001). Pattern Structures allow for instance to model in a quite natural
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object | value || label Description language:
g1 1 - g1 92 93 94

9 3 + value=v |veR
g3 5 + 01 3 5 910 value < v

94 9 - value = v

Figure 1. Dataset with numerical attribute (left), its representation in R with black dots representing positive
objects (center) and the description language (right).

way many pattern search spaces. Indeed, itemsets, intervals (Kaytoue, Kuznetsov, and
Napoli/|2011)), convex polygon (Belfodil et al.|2017)), partition (Baixeries, Kaytoue, and
Napoli 2014)) pattern spaces among others (Ganter and Kuznetsov| 2001} [Kuznetsov
2009) can be modeled within the pattern structure framework. However, since pat-
tern structures rely on meet-semilattices (i.e. conjunction of two patterns belongs to
the pattern search spaces), some pattern spaces that are only partially ordered sets
(posets) cannot be “directly” defined using such a framework.

Consider for instance the example dataset depicted in Fig. [1| containing 4 objects
described by attribute "value" and labeled positive or negative. We are interested by
the task of finding “good” rules d — + in this dataset with d a description given by
attribute value. Rather than considering the usual meet-semilattice of intervals as the
one proposed by Kaytoue, Kuznetsov, and Napoli| (2011); descriptions d are restrained
to open intervals of the form (v] and [v) or singleton {v} < R (see Fig. [1] - right).
Patterns (descriptions) form together a poset (D, 2) where 2 is the subsumption order
(i.e. if d; subsumes ds then if pattern ds holds for an object g then pattern d; hold
to). However, (D, 2) does not form a meet-semilattice. For instance, the set {{3}, {5}}
does not have a meet, since lower bounds of {{3},{5}} have two maximal elements
w.r.t. 2 (i.e. [3) and (5]). Hence, the description space does not induce a pattern
structure (Ganter and Kuznetsov||2001). It does form actually a pattern setup (Lumpe
and Schmidt| (2015)) which rely on a simple poset with no additional properties.

Description spaces like the one depicted in Fig. [1| are numerous. For instance, se-
quence of itemset patterns (Agrawal and Srikant| (1995)) ordered by “is subsequence
of” do not form a meet-semilattice (Zaki [2001; Codocedo et al. 2017)). Sequential
meet-semilattice in FCA (Buzmakov et al.|2016; (Codocedo et al.|[2017) refers usu-
ally to set (i.e. conjunction) of sequences rather than to the poset of sequences itself.
Same holds for the graph meet-semilattice from [Kuznetsov| (1999). In general, the base
pattern setup is transformed to a pattern structure using sets (i.e. conjunctions) of
descriptions thus providing a richer pattern language. Such transformations are nat-
urally called completions, which refers to well-known completions in ordered sets and
lattice theory, like Dedekind-McNeille, Alexandroff or Antichain completions (Davey
and Priestley| 2002} Boldi and Vignal 2016). For instance, in Fig. |1} set of patterns
{value > 3,value < 5} which is equivalent to 3 < value < 5 belongs to the antichain
completion of (D, =) but and not to the base description language (D, E).

Understanding properties of pattern setups independently from their completions
is fundamental for answering many practical questions. For instance, consider the
question “What are the best descriptions covering all positive instances?”. If better
stands for more relevant than as in relevance theory (Garriga, Kralj, and Lavrac|2008)),
the answer will be the two best incomparable rules value > 3 — + and value < 5 — +
rather than only one in the completion 3 < value < 5 — +. More generally, we look
for mazimal common patterns (i.e. support-closed patterns as called by Boley et al.
(2010)) of the positive instances which could be multiple.



Outlines and Contributions. In this paper we present the following results:

(1) In Section |3 we start by studying pattern setups that was proposed by Lumpe
and Schmidt| (2015) as a tool to models pattern search spaces relying only on
posets providing hence a better-understanding of this wider-class of framework.
Afterwards, we revisit briefly the notion of pattern structures in Section

(2) In Section [5, we point-out the major problem related to pattern setups. In fact,
since pattern setups rely only on posets without no additional properties, they
are very permissive. Simply put, given some set of objects, they could share some
common descriptions in the pattern space but none of them is maximal w.r.t.
the subsumption order. We show that this problem is directly linked to the fact
that the considered poset is not a multilattice.

(3) In Section [6 we present multilattices and we show that all (doubly) chain-
complete posets are complete multilattices but that the converse does not hold.

(4) In Section [, we propose the framework of pattern multistructures. In a nut-
shell, analogously to pattern structures, pattern multistructures are based on
multilattices. Such a structure provides the fact that covering descriptions of a
set of objects are deducible from the maximal common descriptions using the
subsumption order. This does not necessarily hold in an arbitrary pattern setup.

(5) Next, in Section [§] we revisit completion (i.e. transformation) of pattern setups
to pattern structures and we show that the usual completion using antichain of
patterns, namely antichain completion, induce a pattern structure if and only if
the pattern setup is a pattern multistructure.

(6) Finally, we wrap-up in section 9] and we discuss some open problems related par-
ticularly to the enumeration of extents (i.e. subset of objects that are separable
in the description language) in an arbitrary pattern setup.

Please note that this paper is a thorough extension of a first paper published in
CLA’18 (Belfodil, Kuznetsov, and Kaytoue |2018). The main difference with CLA’18
paper is more mathematical results and much more detailed explanations of the frame-
work of pattern setups, pattern multistructures and their completions. Note that in
this first paper, pattern multistructures were called pattern hyper-structures and were
linked with the notion of hyper-lattices briefly investigated by |Zaki (2001)). Stefan
Schmidt attracted our attention to the work of |[Benado| (1955) on multilattices that
interestingly was directly linked to pattern multistructure making this newly proposed
framework more mathematically founded.

2. On Partially-Ordered Sets

To make this work self-contained, in this section we recall basic definitions and results
from order theory and introduce our notations that are largely inspired by |Ganter and
Wille| (1999); [Davey and Priestley| (2002); |Roman| (2008). In this paper, we will be
using the following base notations:
e For any set P, the set p(P) denotes the powerset of P.
e For any mapping f : E — F and any subset A € F, the set f[A] denotes the
image of A w.r.t. f, that is:

fTAl = {f(a) [a e A}

e The set of all mappings f : E — F is denoted by FF.



2.1. Basic Definitions

Definition 2.1. A partial order on a set P is a binary relation < on P that is
reflexive ((Vx € P) z < x), transitive ((Vz,y,z € P) if z < y and y < z then
z < z.) and antisymmetric ((Vz,y,z € P) if z < y and y < x then = = y). The
pair (P, <) is called a partially ordered set or a poset for short. Two elements z
and y from P are said to be comparable if x < y or y < x; otherwise, they are said
to be incomparable. A subset S € P is said to be a chain (resp. an antichain) if
all elements of S are pairwise comparable (resp. incomparable). The set of all chains
(resp. antichains) of P is denoted by & (P) (resp. </ (P)).

Note 1. (Finite) posets are generally presented using the so called Hasse Diagram.
Where elements of the poset are represented on the plane from the smallest ones to the
largest ones. Only direct neighbors (i.e. two elements are said to be direct neighbors if
there is no elements strictly lying between them in the poset) are linked by a segment
of line. The poset can indeed be deduced from this diagram by adding reflexivity and
transitivity. Fig. [2[ (1) depicts the Hasse Diagram of the powerset of a set E = {a, b, ¢}
ordered by set inclusion (i.e. poset (p(E),<)).
Through some misuse of the notion, we will present in this paper some infinite

posets using the Hasse Diagram. Fig. [2| (2) presents a poset (P, <) where:

e P= {L,T,bo,bl} ) {CLZ‘ | 1 EN},

o | <bp<b <T,and

° (VlGN) Il <a;<aj1 <T.

In what follows, (P, <) denotes a poset and S < P denotes an arbitrary subset.

Definition 2.2. The principal ideal (resp. principal filter) of p € P, denoted by
| p (resp. 1) is the set of all elements below (resp. above) it:

p={reP|z<p} Ip={reP|p<uz}
Definition 2.3. A set S € P is said to be a lower ideal or a downset if:
(VxeP) (I3seS) z<s=x€f)

The notion of upper ideal (upset) is defined dually. The set of all lower (resp. upper)
ideals of (P, <) is denoted O(P) (resp. % (P)).

Definition 2.4. The down closure (resp. up closure), denoted by | S (resp. 1 5)
associates to a subset S the smallest lower-ideal (resp. upper-ideal) enclosing it:

={xeP|(3sefS)x s}—Uls ={xeP|(3sef)s :E}—UTS

seS seS

Definition 2.5. An element p € P is said to be a lower bound (resp. upper bound)
of S if it is below (resp. above) all elements of S. The set of lower (resp. upper) bounds
of S in P, denoted by S¢ (resp. S“), is the lower ideal (resp. upper ideal) given by:

={zeP|(VseS)x s}—ﬂls ={zeP|(Vse)s x}—ﬂTs

seS seS

Note 2. Note that 1 @ =| @ = & and g = g¥ =



(1) {a,b,c} (2) T\ (3) (4)
fa, b}/{a, C}\{b, o / “ab”  “ba” {91,92, 93,94}
< < b M ‘><‘ |

{a} {0} {c} b . a‘o g @ {91, 92,93}
o7 N2 A4 7N
& 1 w {91,92} {g1,93}

Figure 2. From left to right: (1) Poset (p({a,b,c}),Z). (2) A poset (P, <) with P = {1, T,bo,b1} U {a; |
1eN}, L <bp<bi <Tand (VieN) L <a; <ajt+1 <T.(3) Poset of common substrings of “ab” and “ba”.
(4) A subposet of (p({g1,92, 93,94}), S)-

2.2. Minimal, Minimum, Infimum, ...

Informally speaking, not all elements in a subset S have the same “position”. Some
elements x are in the “interior” of S, that is Jy, z € S such that y < x < z; while some
others are on its “border”, that is there is no element in S strictly below/above them.
These border elements are formally defined in Definition [2.6

Definition 2.6. An element s € S is said to be a minimal (resp. maximal) element
in S if all its strict lower (resp. upper) bounds are outside S. The set of minimal (resp.
mazimal) elements of S is denoted by min(S) (resp. max(S)) and given by:

min(S)={xeS|| znS={x}} mazx(S)={reS |1 zn S ={z}}

Note that min(S) and mazx(s) are antichains. Moreover, min(f) = mazx () = &
by definition. An intuitive and important relationship between the minimal elements
of a subset and the minimal elements in its up-closure is presented lemma

Lemma 2.7. We have min(1 S) = min(S) and max(| S) = max(S)

Proof. We prove by double inclusion the property min(1 S) = min(S):

(€) Let x € min(1 S) and suppose that = ¢ S. Since z € min(1 S) we have
x el S, that is dJy € § s.t. y < x but y # «x since x ¢ S. Thus, dy €1 S
st.y <z buty # x. Thus y €] zn 1 S with y # 2 which contradicts the
fact that = € min(1 S) (ie. | n 1 S = {x}). We conclude that = € S.
Suppose now that = ¢ min(S), that 3y € S s.t. y < x and y # x. Hence,
y €1 Sn | z which contradicts the fact that x € min(1 S). Thus z € min(S).
We conclude that min(1 S) € min(S).

(2) Let = € min(S), thus x €1 S. Suppose that = ¢ min(1 S) that is 3y €1 S
such that y < x and y # z. Thus 3z € S such that z < y < = with z # =.
Hence, z €| x n S with z # x which contradicts the fact that x € min(S).
We conclude that x € min(1 S) or more generally min(S) < min(1 S).

On can follow the same steps to show maz(] S) = maz(S). O

Definition 2.8. An element m € S is said to be minimum or a smallest element
of S if it is a lower bound of S. Formally: m € S and (Vs € S) m < s. The notion of
maximum or greatest element of S is defined dually.

Note 3. One should notice that not all subsets have a minimum or a maximum (see
Example 2.9). Moreover, the minimum and the maximum are unique if they exist.



Example 2.9. Consider again Fig. [2 (1) and the subset S = {{a}, {a,b},{a,c}}. It
is clear that min(S) = {a} and maz(S) = {{a,b},{a,c}}. Obviously, subset S has a
minimum which is {a}. However, it does not have a maximum since no element in S
is above all the other elements.

Note 4. If a poset has a maximum (resp. minimum) element, we say that the poset
is upper-bounded (resp. lower-bounded) and this element is called the top (resp.
bottom) and is denoted T (resp. L1). A poset is said to be bounded if it is both
lower-bounded and upper-bounded.

It is very important to distinguish between the minimal elements and the minimum.
In fact, “if a subset has a minimum then it has a unique minimal element”. However,
the converse of this statement is not true, that is even if a subset have a single minimal
element, it can have no minimum. Indeed, the intuition that every element in a subset
S is at least above one minimal element in min(S) does not always hold in infinite
posets. Such a property is presented in Definition [2.10]

Definition 2.10 (Definition 2.4 in Martinez et al. (2005])). We say that:
e S is minimum-handle if S has a minimum (i.e. (Im e S) S <1 m).
¢ S is maximum-handle if S has a maximum (i.e. (Ime S) S <| m).
e S is minimal-handle if S =1 min(S)
¢ S is maximal-handle if S =] maz(S).

Example 2.11. Consider the poset (P, <) depicted in Fig. [2/ and let S = P\{T} =
{L,bg,b1} U {a; | i € N}. It is clear that maz(S) = {b1}. Since | {b1} = {L,bo, b1},
subset S is not a maximal-handle. Hence, even if S has a single maximal element, it
has no maximum. On the other hand, min(S) = L. Since S €1 L = P, we can say
that S is a minimal-handle. Moreover, since the minimal element is unique than S is
minimum-handle which minimum is .

Note 5. If S is minimal-handle, then S has a minimum if and only if S has a unique
minimal element. It is clear that all subsets of a finite posets (i.e. posets with a finite
set) are maximal-handle and minimal-handle. Posets where all subsets are minimum-
handle are said to be well-founded or equivalently have the minimal condition
or the descending chain condition (DCC). Dually, posets where all subsets are
maximal-handle are said to be dually well-founded or equivalently have the maxi-
mal condition or the ascending chain condition (ACC). A poset having at the
same time the ACC and DCC is said to be chain-finite since it has no infinite chain
(but, still, could have infinite antichains). A poset is in fact finite if and only if it is
chain-finite and antichain-finite.

Definition 2.12. The largest lower bound of S (i.e. the maximum of S*) if it exists
is called the infimum or the meet of S and is denoted inf(S) or A S. The join or
the supremum of S is given by the minimum of S* and is denoted sup(S) or \/ S.

Having a minimum is a very strong property, in fact if a subset has a minimum then
the minimum is also the infimum. However, the converse is not true. Indeed a subset
can have an infimum without having a minimum. For instance, consider Fig. 2| (2), it
is clear that the chain S = {a; | i € N} does not have a maximum. However, S still
have a supremum which is T. Indeed, S* = {T} which minimum is T.

One interesting property is stated in the following Lemma.



Lemma 2.13. Let (P, <) be a poset, S < P, we have:
o For any A< S°. If A has a join \/ A€ P then \/ Ae S°.
e For any A< S". If A has a meet )\ A€ P then )\ A€ S".

Proof. Let A < S%, we have by definition: (Vs € S Va € A) a < s, that is S € A%,
Since \/ A is the least upper bound of A and all elements of S are upper bounds
of A then: (Vs € S) \/ A < s. We conclude that \/ A € S*. Same steps can be

followed to show the second part of the Lemma. O

Note 6. One should note that, in case of existence, we have:

As=Vs Vs=As"

Moreover, since for a poset (P, <) we have @' = &% = P, then the empty set has a
meet (resp. join) if and only if the poset is upper-bounded (resp. lower bounded) and

we have A@=\VP=Tand\/VF=AP=_L1.

2.3. Lattices

Definition 2.14. A poset (P, <) is said to be:

¢ A meet-semilattice if for all nonempty finite subsets S € P, S has its meet.
A join-semilattice if for all nonempty finite subsets S € P, S has its join.
A lattice if it is both meet-semilattice and join-semilattice.
A complete lattice if all its subsets including ¢ has their meet and join.

Note 7. For any set E, the poset (p(FE), <) is a complete lattice where the meet is set
intersection () and the join is set union [ J. Such a poset is called a powerset lattice.

Example 2.15. Consider posets depicted in Posets Fig. [2| Poset (1) is a powerset
lattice on {a,b,c}. Hence, it is a complete lattice. Poset (2) is also a complete lattice
where the join of any infinite subset is T. Poset (3) of common substrings of “ab” and
“ba” ordered by is substring of is neither a meet-semilattice nor a join-semilattice.
Indeed, {“ab”, “ba”} has not an infimum since {“ab”, “ba”}* = {“a”, “b”, “’} has two
maximal elements and thus no maximum. Dually, subset {“a”, “b” } has not a join since
{“a”, “b"}* = {“ab”, “ba” } has two minimal elements and thus no minimum.

Note 8. Meet-semilattices have a weaker, yet equivalent, definition characterizing
them. In fact, to check if a poset is a lattice, one should only check if:

(Vz,y € P) {z,y} hasameet and (Vz,ye P) {x,y} has a join

That is if all pair of elements have their meets (resp. join) then all nonempty finite
subsets of the poset have their meet (resp. join). Another important remark that is
related to Note @ is the fact that all complete semilattices are complete lattices.

One should notice that since in complete lattices, the empty set have also their meet
and joins then all complete lattices are bounded. It is also important to note that all
finite lattices are complete lattice. However, not all finite meet-semilattices are lattices
since they may lack of a top element (i.e. the meet of the empty set is not guaranteed
to exist). In fact, a finite meet-semilattice (resp. join-semilattice) is a lattice if and
only if it is upper-bounded (resp. lower-bounded).




2.4. Morphisms on Posets

We will often use morphismes (i.e. mappings) between posets in this paper. Defini-
tion below formulate some properties of morphismes between two posets.

Definition 2.16. Let (P, <) and (Q, <) be the two posets. A mapping f: P — @ is:

e order-preserving or monotone: (Vz,y € P) x <y = f(z) < f(y).

e order-reversing: (Vz,ye P) z <y = f(y) < f(x)

e an order-embedding: (Vx,y € P) z <y < f(x) < f(y)

If an order-embedding exist from (P, <) and (Q, <) then poset (@, <) is said to be
a completion of (P, <) or embeds (P, <). If this order-embedding is surjective (i.e.
an order-isomorphism) we say that (P, <) and (Q, <) are order-isomorphic.

Definition 2.17. A closure operator on (P, <) is a mapping ¢ : P — P that is:
e monotone: (Vz,ye P) z <y = ¢(z) < ¢(y),
e extensive: (Vz € P) = < ¢(z), and
e idempotent: (Vz € P) ¢(é(z)) = ¢(x)

Note 9. The fixpoints of a given mapping f : P — P is the set of elements s.t. {p €
P | f(p) = p}. For idempotent operator, the set of fixpoints is f[P] = {f(p) | p € P}.

Lemma 2.18. Let (P, <) be a poset, we have 1 and | are closures on (p(P),<).

Proof. Let us show that 1: p(P) — p(P) is a closure operator on (p(P),<).
It is clear that S <1 S (i.e. 1 is extensive) by definition. For S < T in p(P),
we have if z €1 S, then dy € S € T such that y < x. That is, x €1 T. Thus,
(VS, Tep(P)1ScT = 1S<TT (ie. 1 is order-preserving). Let us show
that 1 is idempotent. It is clear that 1 S €11 S since 1 is extensive. It remains
to show that 11 S =1 S. Let « €11 5, that is Jy €1 S such that y < z. That is
Jz € S such that z < y < . We conclude that z € S. One can follow the same
steps to show that |: p(P) — @(P) is a closure operator on (p(P),<). O

Note 10. Fr any poset (P, <) and since 1 and | are closure operators, we have:
e Forall Se % (P), if S is minimal-handle then S =1 min(5).
e For all Se O(P), if S is maximal-handle then S =] maz(5).

Before finishing the section, we draw the reader attention to the tight link existing
between closure operators and closure systems on a complete lattice defined below.

Definition 2.19. Let (P, <) be a complete lattice whose meet is /. Given a subset
S c P, (5,<) is said to be a closure system or a meet-structure on (P, <) iff:

(VAcS) \Aes

Clearly, (5, <) forms a complete lattice which infimum is A.

In fact (see Theorem 1 in Ganter and Wille (1999)), if (P, <) is a complete lattice
and ¢ is a closure operator on (P, <) then the poset (¢[P], <) of fixpoints of ¢ is a
closure system. Conversely, if (S, <) is a closure system on a complete lattice (P, <)
then the mapping ¢g: P — S,p— /A{s€ S | p < s} that takes each element p € P to
the smallest element (fixpoint) in S enclosing it is a closure operator with ¢g[P] = S.



3. Pattern Setups

Formal Concept Analysis (FCA) were introduced in [Wille (1982) as a mathematical
framework to analyze and manipulate concepts in databases. FCA starts by a formal
context K = (G, M,T) where G is a set of objects (i.e. Gegenstinde), M is a set of
attributes (i.e. Merkmale) and Z is a binary relation on G x M (i.e. Incidence relation).
For (g,m) € G x M, gZm holds iff g has attribute m. Fig. [3| presents an example of
a formal context. The basic theorem behinds FCA rely on the observation that any
formal context can be transformed to a complete lattice called concept lattice. We
invite the reader to read |Ganter and Wille| (1999)) book for more details.

While (basic) FCA gives a tool to analyze datasets in a form of formal context,
datasets with more complex attributes (eg. numerical or nominal attributes) needs to
be transformed to such a form before any manipulation. Such a transformation is called
conceptual scaling (i.e. binarizing) (Ganter and Wille| (1989))). Yet, even if conceptual
scaling is a quite general tool, binarizing a dataset with regard to the patterns we want
to look for is not always straightforward (Baixeries, Kaytoue, and Napoli (2012)).

In response to that, a more natural way to handle complex datasets was introduced
in |Ganter and Kuznetsov| (2001) under the name of pattern structures. Objects in a
pattern structure have descriptions (e.g. the equivalent notion to set of attributes in M
in a formal context) with a meet-semilattice operation on them (e.g. equivalent to set
intersection in (p(M), <€) in a formal context). This framework proved its usefulness in
many data analysis tasks (see Kuznetsov| (2009) ). However, pattern structures demands
that the description space to be a (upper-bounded) meet-semilattice which is not the
case for all description spaces such as sequence of itemsets patterns (Codocedo et al.
(2017). Pattern setups were introduced in Lumpe and Schmidt| (2015) to generalize
pattern structures by demanding only a partial order on descriptions. We details in
this sections the different notions related to pattern setups.

Definition 3.1. A description space; called also description language, pattern
space or pattern language; is any poset D := (D,C=). Elements of D are called
descriptions or patterns. For any c¢,d € D, ¢ & d should be read as “c is less
restrictive than d” or “c subsumes d”.

Definition 3.2. A pattern setup is a triple P = (G,D,0) where G is a set (of
objects), D is a description space and ¢ : G — D defines a mapping that takes each
object g € G to its description §(g) € D. Let g € G and d € D be an object and a
description, respectively. We say that object g realizes description d or description d
hold for or cover object g iff d = §(g).

Example 3.3. Consider the pattern setup P = (G,D,d) in Fig. 4. We have G =
{9i}1<i<a. The description space is the set of nonempty words on the alphabet {a, b, c}
(i.e. {a,b,c}T) ordered by the relationship “is substring of” =. The mapping ¢ asso-

G a b ¢
g X X
g2 X
gz X
94 X X

Figure 3. Formal Context (G, M,Z) with G = {g;}1<i<4 and M = {a,b,c}.



cbba {91,92,93} {91, 92,94}

G () / N\ \
g1 “cab” bbc cbb bba cab >( {g2, 94}
g2 “cbba” / \ / / / \ PN

g3 “a’ {g1} {92} {94}
g “bbe’ % / S~

Figure 4. The table (left) represents the mapping function § of the pattern setup considered in running
example The diagram (center) represents the set of non empty substrings in {a, b, c}* holding for at least
one object in G. The diagram (right) represents the poset of definable sets (Pext, S).

ciates to each objects in G its word in the description space. For instance §(g;) = “cab”.
The diagram in the center of Fig. |4 depicts the Hasse Diagram of the poset (| §[G], E)
with §[G] = {“cab”, “cbba”, “a”, “bbc”}. In other words, it depicts the set of de-
scriptions d € D holding for at least one object in G. It is clear that the description

ca” holds for g; since “ca” = “cab”. However, description “cb” does not hold for ¢;
since “cb” is not a substring of “cab”. More generally, descriptions holding for g; is the
principal filter of §(g;) (i.e. | §(g;)). For instance, the set of descriptions holding for
g1 is given by | 0(g1) = {“a”, “ca”, “ab”, “cab”}.

Example 3.4. Consider the pattern setup P = (G, D, §) presented in Fig. [5| (left). The
set of objects is G = {g;}1<i<4 and the description space D is the powerset ordered by
set inclusion (p(M), <) (i.e. itemsets) with M = {a, b, c}. Again descriptions holding
for g4 are all itemsets included in 6(g4) = {b,c} (i.e. | 0(g4) = {F, {b},{c}, {b,c}}).

3.1. On Extent and Cover Operators

We have seen that the relation “realizes” build a binary relation between objects
and descriptions. Based on this binary relation, two key operators, namely extent
and cover are derived (see Definition and |3.6)).

Definition 3.5. The extent operator, denoted by ext, is the operator that takes
each description d € D to the subset of objects in G realizing it:

ext : D — p(G),d—{ge G |dci(g)}
The size of ext(d) is called the support of d, i.e. support : d — |ext(d)|.

Note 11. Please note that for any S € D, we denote ext[S] = {ext(d) | d € S}.

Definition 3.6. The cover operator, denoted by cov, takes each subset of objects
A < G to the set of common descriptions in D covering all of them:

cov: p(G) — (D), A §[A]" ={deD|(Vge A)dc= d(g)}

Example 3.7. Consider the pattern setup presented in Example We have:
ext(“bb”) = {go2, g4} and cov({g2,94}) =| 0(g2)n | 6(ga) = {“b”, “bb”, “c” }.

Definition 3.8. A subset A € G is said to be:
e Definable, Separable or an Extent if (3d € A) A = ext(d).
e Coverable if cov(A) # .
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The set of definable sets is then given by:
Peyt = ext[D] = {ext(d) | d € D}

Note 12. One should note that poset (Peyt, &) does form a subposet of (p(G), <),
that is definable sets are naturally ordered by <. The set of coverable sets is naturally
given by | Py In other words, any subset of a coverable set is coverable. Conversely,

any superset of a non coverable set is a non coverable set.

Example 3.9. The poset of definable sets (Pe,t, &) associated to the pattern setup
presented in Example is depicted in Fig. |4] (right). For example, it is clear that
{92, g4} is definable since ext(“bb”) = {g2, g4}. However, there is no description which
extent is exactly {g1, g2}, hence {g1, g2} will be said non-definable. Still, {g1, g2} is
coverable since g; and g share at least one common descritpion (i.e. cov({g1, g2} =
{“a”,“b”, “c”} # &). One should note also that {g3, ¢4} is non-coverable since they
share no common symbol and the empty string is excluded from the pattern space.

An important property arising directly from the definition of both ext and cov is
given in Proposition It tells that: on the one hand, the more restrictive is a
description, the less it covers objects in the database. On the other hand, the bigger
is a set of objects the less they share descriptions in common.

Proposition 3.10. Operators ext and cov are order-reversing:

(Ve,d € D) cE d = ext(d) < ext(c) (VA,B< G) A< B = cov(B) < cov(A)

Proof. We have:
(1) Let A< B < G, let d € cov(B), thus (Vg € B) d = §(g). Since A € B, we
conclude that (Vg e A)d = §(g) that is d € cov(A). Thus cov(B) < cov(A).
(2) Let ¢,d € D such that ¢ E d. Let g € ext(d), that is d £ (g) thus ¢ E §(g);
that is g € ext(c). We conclude that ext(d) < ext(c).
This concludes the proof. ]

Note 13. We have seen in Proposition [3.10] that mappings ext and cov are order
reversing. Hence, one could think that (ext, cov) may form some Galois connectiorﬂ
However, it is not the case since ext associate an extent to one description while cov
outputs a set of descriptions rather than one. In other words, these two mappings are
not compatibles. Yet, we will see in next section that ext will be involved into a Galois
connection when the considered pattern setup verifies additional properties (i.e. the
pattern setup is a pattern structure Ganter and Kuznetsov (2001)). Mapping cov will
also be involved in another Galois connection in Section [8l

Definition 3.11. For ¢,d € D, the pattern implication ¢ — d holds if ext(c) <
ext(d). That is, every object realizing c realizes d. Dually, for A, B < G, the object
implication A — B holds if cov(A) < cov(B). That is, every description covering all
object in A covers also all objects in B.

We say that descriptions ¢,d € D are equivalent if ¢ — d and d — ¢ and we have
ext(c) = ext(d). Dual definition can be given for the equivalence between object sets.

LA Galois connection between two posets (P, <) and (Q,C) is a pair (f,g) with f: P - Qand g: Q — P
are order-reversing and both operators f o g and g o f are extensive.
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Note 14. Please note that if d = ¢ and since ext is an order-reversing mapping, we
have ¢ — d. Regarding this observation, there is two types of implications between
descriptions: (i) implications deduced directly from £ and (ii) implications that are
dependent on the pattern setup. While the former implications are intrinsic to the
description space, the latter are more important since they are those who enclose the
knowledge hidden in the pattern setup.

Example 3.12. In the pattern setup presented in Example [3.3] and Fig. @ we have
ext(“bb”) = {g2,94} and ext(“c”) = {g1, g2, ga}. Hence, we have “bb” — “¢” or in other
words in every string containing “bb” in the pattern setup contains also “c”.

Proposition gives characterizations of the set ext[cov(A)] and cov(ext(d)) for
A < G and d € D. This proposition will be useful later in this paper.

Proposition 3.13. For A< G and d € D:

ext[cov(A)] {E€Peyi | AS E} =1 AN Peyy
cov(ext(d)) = {ceD|ext(d) S ext(c)} ={ceD|d—c}

Proof. We show the two equations separately:
(1) Let E < G, we have:

E € ext[cov(A)] < (3d € cov(A)) E = ext(d) < (3de DVge A)d = d(g)
< (3deD)Acext(d)=E < EecPyunt A

We conclude that ext[cov(A)] = {E € Peyy | AS E} =1 AN Peyy
(2) Let c € D, we have:

c € cov(ext(d)) < (Vg € ext(d)) c E §(g) « (Vg € ext(d)) g € ext(c)
< ext(d) < ext(c)

Thus cov(ext(d)) = {ce D | ext(d) < ext(c)} = {ce D | c— d}. O

Example 3.14. Consider the pattern setup presented in Example [3.3] and its as-
sociated (Peys, S) depicted in Fig. [] (right). We have: ext(“bb”) = {g2,94} and
CO’U({gg,g4}) — {“b”, “bb”, “C”}. HGHCGI

o ext[cov({g2,94})] = {ext(“b"), ext(“0b”), ext(“c”)} = {{g1, 92, 9a}, {92, 9a}}-
° Cov(ext(ubbn)] —_ COU({QQ,Q4}) _ {“b”, “bb”, “C”}.

3.2. A Minimal Representation of a Pattern Setup

An important notion analogous to what is called representation context in pattern
structures (see |Ganter and Kuznetsov| (2001); Buzmakov, Kuznetsov, and Napoli
(2015)) is introduced in Theorem Technically, such a representation does not
provide a practical way to explore definable sets of an arbitrary pattern setups, but
helps to simulate definable sets search space of a pattern setup independently from
the description space. Before introducing the Theorem, we present Proposition [3.15

12



Proposition 3.15. Let G be a non empty finite set and let S < p(G), we have

JP a pattern setup such that S = Pepy < (Vg€ G) ﬂ (tgnS)es

Proof. Before showing the equivalence let us prove the following property:

(VgeG) MN(1gnPet) = ext(9(g)) € Pear (1)

Recall that ext[cov({g})] =1 g N Pey (See proposition [3.13)). Let g € G, we
have §(g) € cov({g}), thus ext(6(g)) € ext[cov({g})]. Let us show that ext(d(g))
is a lower bound of ext[cov({g})]. We have: cov({g}) = {d € D | d = §(g)}. Thus,
Vd € cov({g}) : d E §(g). Since ext is an order reversing operator, we obtain:
VA € ext[cov({g})] : ext(6(g)) < A. Thus, ext(d(g)) is the smallest element of
ext[cov({g})]. That is () (T g N Pext) = ext(4(g)).

We show now the two implications independently:

(=) Let S = Pey for some pattern setup P. Using eq. (1)), () (1 gn S) € S.
(<) Let S < p(G) for which Vg € G we have [ (1 g 0 S) € S. Let us now define
the following pattern setup:

P=(0.(82).0:9~[)(1gnS))

Let A € S be a description, we have: ext(A) = {ge G |[(1 gn S) < A}. Let
us show that ext(A) = A by showing double inclusion: (1) Let g € A, thus
Ae (1 gnS). It follows that ()(1 gnS) = A. We conclude that g € ext(A).
Therefor A < ext(A). (2) Let g € ext(A), thus [)(T ¢ nS) < A. Since
VB €1 gnS we have g € B, we have g € ()(1 gnS), that is g € A. We conclude
that ext(A) < A. Both inclusion leads us to have (VA € S) ext(A) = A. We
conclude that ext[S] = S. In other words, Pe,y = S.

This concludes the proof. ]

Example 3.16. Proposition tells that not all families of subsets of G could be
seen as a set of extents of some pattern setup. Consider the poset depicted in Fig.

(4) where G = {g1, 92,93, 94} and S = {{g1, g2}, {91, 93}, {91, 92, 93}, {91, 92, g3, 9a}} can
never be seen as a P, for some pattern setup P. Indeed, 1 g1 n.S = {{91, 92}, {91, 93}}

whose intersection is not in S.

Theorem 3.17. For any pattern setup P, the pattern setup R(P) given by

R(P) = (6. (Peat 2),9 = [ (1 9.0 Pexi) )

is called the minimal representation of P and we have R(P)cyt = Peyt-

Proof. Theorem is a corollary of Proposition Indeed, the pattern setup
R(P) is the same as the one built in the proof of Proposition (<) since Peyy is
a set system verifying the property (Vg € G) ()(1 g N Peyt) € Peyt (i-e. implication
(=)). We have R(P)cyt = Peyt. Moreover, this representation is said to be minimal
since any proper subposet of (Pe,t, 2) will drop at least one definable set. O
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4. Pattern Structures

Pattern structures were introduced in |Ganter and Kuznetsov| (2001)). They require that
every set of objects has a greatest common description (least general generalization). A
formal definition is given in Definition[4.1] Pattern structures provide a very strong tool
to formalize a large class of pattern languages (Kuznetsov|2009). For instance, pattern
setups over the language of itemsets (Ganter and Wille [1999), intervals (Kaytoue,
Kuznetsov, and Napoli |2011)), convex polygons (Belfodil et al.[2017), sequence sets
(Buzmakov et al. 2016)E], and graph sets? (Kuznetsov||1999) are all pattern structures.

Definition 4.1. A pattern setup P = (G, D, d) is said to be a pattern structure iff
every subset of objects has a greatest common description. Formally:

(VS < 4[G]) S does have a meet |_| S

Example 4.2. The pattern setup presented in Example and Fig. [p| is a pattern
structure. Indeed, since the description space is the powerset lattice (p({a,b,c}),<)
(i.e a complete lattice) then every subsets S < 0[G] € D does have a meet which is
the set intersection [ S.

However, the pattern setup P presented in Example and Fig. [4]is not a pattern
structure. Indeed, the set of common descriptions cov({g2, g4}) = {“b”, “bb”, “c”} does
not have a maximum (i.e. {§(g2),d(g4)} does not have a meet) since {“b”, “bb”, “c”}
has two maximal elements.

One can define a new operator, namely the intent, in a pattern structure thanks
to the existence of the meet.

Definition 4.3. The intent operator, denoted by int, is the operator that takes
each subset of objects A € G to the greatest common description in D covering them
(i.e. the maximum of cov(A)). Formally:

int : p(G) — D, A inf 5[A] = [ |9[A]

Note 15. In a pattern structure, the pair of operators (ext,int) forms a Galois con-
nection between posets (p(G), <) and (D, £). Thus, extoint and intoext form closure
operators (cf. Proposition 8 in (Ganter and Wille (1999) book) on the two posets re-
spectively. Thanks to this Galois Connection, one can define a complete lattice based
on the the closed elements.

Definition 4.4. Let P = (G, D, ) be a pattern structure. The (pattern) concept
lattice associated to P is the complete lattice denoted by B(P) = (B(P), <). Elements
of B(P) are called (pattern) concepts and are given by:

(A,d) e p(G) x D s.t. A=ext(d) and d = int(A)

The concepts are ordered by < as follows: (A1,d1) < (Ag,d2) < A1 € A < do C d;.

Note 16. Two complete lattices isomorphic to the concept lattice can be derived:

2Sequence and graphs patterns will be discussed in the next section, since they do not induce pattern structures
directly, but the sets of incomparable patterns do.
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g 5() {a’b7c} ({91792>g3ag4}7®)
g {abel (ay fac (b AN
92 %ai R ({91, 92,93}, {a}) ({91, 94}, {b, ¢})
g3 a a ‘ ¢ \ /
g1 {b:c} i (o). {a.b.c})
Figure 5. The table (left) represents the pattern setup P = (G, D, §) with G = {g;}1<i<4, D = (p({a, b, c}), <)

depicted by the Hasse Diagram (center) and § maps an object to its itemset. The diagram (right) depicts the
concept lattice B(P).

(1) The poset of definable sets (Peyt, &) which on a ()-structures (i.e. Moore family,
closure system) in the powerset lattice (p(G),<). Note that definable sets are
the fixpoints of the closure operator ext o int.

(2) The poset of closed patterns (Ds, =) with Dy = int[p(G)] = {[]0[4] | A < G}
is a complete lattice. Elements of Dy are called closed patterns since they are
fixpoints of the closure operator int o ext.

Another important remark about the closure operator ext oint is that it takes to a
subset of object A < G the smallest definable set E € P.,; enclosing it. Formally:

Proposition 4.5. Let P = (G, (D,E),0) be a pattern structure, we have:

extoz’nt:p(g)ap(g),AHﬂ{EePem|A§E} =ﬂ(TAmIP’ext)

Proof. This result is straightforward from the fact that ext o int is a closure
operator. Indeed, according to Theorem 1 in |Ganter and Wille (1999)) (page 8),
we have Pey = {ext oint(A) | A < G} is closure system. By application of the
theorem we have: ext oint : A— [{E € Pyt | A S E}. O

Example 4.6. Consider again the pattern structure P = (G, (p({a,b,c}), <), d) pre-
sented in Fig. [5l Since the meet is the set intersection we have:

int({g1,94}) = 6(g1) n d(g4) = {a,b,c} n {b,c} = {b,c}

The concept lattice B(IP) is depicted in Fig. [5| (right). One should note the set of
definable sets (Peyt, &) can be deduced directly from the concept lattice by taking
extents of the pattern concepts. It is important to highlight the fact that that pattern
structure P is derived from the formal context K = (G, M, Z) presented in Fig. |3| where
0 is given by § : g — {me M | gZm}.

Definition follows [Lumpe and Schmidt| (2015). The original equivalent defini-
tion of the pattern structure (Ganter and Kuznetsov|[2001) requires that the descrip-
tion space must be a complete lattice. Theorem [4.7] builds a bridge between meet-
semilattices and pattern structures over finite set of objects or more generally between
pattern structures and complete lattices.
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Theorem 4.7. Let D = (D, ) be a poset, the following properties are equivalent:
e For any finite set G # & and any 6 € DY, (G, D, ) is a pattern structure (where
DY denotes the set of all mappings 6 : G — D).
e D is a an upper-bounded meet-semilattice (i.e. & has also a meet).
For an arbitrary set G, the following properties are equivalent:
e For any set G # & and any 6 € DY, (G,D,6) is a pattern structure.
e D is a complete lattice.

Proof. Let us show both implications for a finite G:
= The empty set has a meet in D since 0[] = ¢J has a meet. Thus D has a top
element T = | |D =[]Q. Moreover, let S < D be a finite set, one can build
a finite set G such that §[G] = S. Since P is a pattern structure then S = §[G]
has a meet. We conclude that D is an upper-bounded meet-semilattice.
< Let P = (G,D,d) be a pattern setup. Any subset of §[G] is finite subset of
D and thus has a meet (including the ¢J since D has its top element).
Let us now consider the case of arbitrary set G:
= Let S € D, one can build G such that §[G] = S. Since P is a pattern structure
then 0[G] = S has a meet. We conclude that D is a complete lattice.
< Let P = (G,D,d) be a pattern setup. Any subset of §[G] is a subset of D
and thus has a meet (including the ¢J since D has its top element).
This concludes the proof. ]

The state-of-the-art abounds with examples of descriptions spaces that are complete
lattices that someone can use to build pattern structures:

e [Itemset pattern structure (Ganter and Wille|1999). The description space is the
Boolean lattice (p(M), <) where M is a non empty finite set of attributes.

e Interval pattern structure (Kaytoue, Kuznetsov, and Napoli 2011). The descrip-
tion space is the complete lattice (C(R)™, Q)EL where C(R)™ represents the set of
all possible axis-parallel m-dimensional hyperrectangles in R (m is the number
of attributes) and = represents the hyperrectangle inclusion.

e Conver sets pattern structure (Belfodil et al.||2017). The description space is the
complete lattice of all convex sets in R ordered by inclusion (C(R™), D).

e Partition pattern structure (Codocedo and Napoli|2014}). The description space
is the complete lattice of all partitions (Z(E), E) of some finite set E. The order
C is finer-than order relation between partitions. That is for Py, P, € Z(F) two
partitions, P; & P, if and only (VE; € P 3Ey € P») Ey € Ej.

Note 17. Before finishing this section, let us highlight some key differences between
arbitrary pattern setups and pattern structures. It is clear that the main difference
is the fact that the greatest common description does not necessarily exist for any
subsets of objects in an arbitrary pattern setup. This implies that the set of definable
sets (Peyt, ©) is not necessarily closed under intersection in an arbitrary pattern setup
as shown in Fig. [l One should also note that, conversely to pattern setups where
some subsets can be even non-coverable (see Example , In Pattern Structures, all
subsets A € G are coverables since cov(A) 2 cov(G) # . In fact, G is always definable

since ext ([ ]10[G]) = G.

3C(E) is the set of convex subsetes of E. The set C(R) is the set of all possible intervals of R, C(R)™ is then
the set of all axis-parallel m-dimensional hyperrectangles.
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5. From Closed Patterns to Support-Closed Patterns

In pattern mining, another notion of closedness is generally considered (Yan, Han,
and Afshar|[2003; Wang and Hanl[2004)). Definition [5.1] defines formally such a notion
dubbed support-closedness by Boley et al. (2010).

Definition 5.1. A description d is said to be support-closed in a pattern setup iff:
(Vee D) d & ¢c = ext(c) < ext(d).

We will see below that this notion is linked to maximal common descriptions.

5.1. On Maximal Common Descriptions

In pattern structures, support-closed patterns coincide exactly with closed descriptions
(i.e. fixpoints of int o ext) since int takes a subset of objects to the greatest common
description. However, when we consider an arbitrary pattern setup, such a maximum
common description may not exist (see Example. One straightforward generaliza-
tion is to associate to a subset of object the set of its maximal common descriptions (see
Definition . Proposition builds then a bridge between support-closed patterns
and maximal common descritpions.

Definition 5.2. The set of maximal covering (common) descriptions of a subset
A < G, denoted by cov*(A), is given by:

cov* 1 A — maz(cov(A)) = maz(6[A]")

Proposition 5.3. A description d € D is support-closed iff (3A < G) d € cov*(A).
The set of all support-closed descriptions is given by: D* = | 4o cov*(A).

Proof. We prove the two implications:

(=) Let d € D be a support-closed description and let A = ext(d). Hence, ac-
cording to proposition we have d € cov(A). Let us show now that
d € cov*(A). Suppose that d ¢ cov*(A) that is T d n cov(A) # {d}.
Since d € cov(A), there is then at least ¢ € cov(A) such that d = c.
Thus, in one hand and according to proposition [3.10] ext(c) < ext(d).
And since ¢ € cov(A), according to proposition [3.13] ext(c) 2 ext(d). Thus
ext(c) = ext(d). This is contradictory with the fact that d is support-closed
(3c e D s.t. d = ¢ and ext(c) = ext(d)). Therefore, (3A < G) d € cov*(A).

(<) Suppose that 3A < G s.t. d € maz(cov(A)). According to proposition
and since d € cov(A), we have A < ext(d). Let now be ¢ € D such that d = ¢,
we have ¢ ¢ cov(A) since d is maximal in cov(A). According to proposition
we have ext(c) € ext(d). Moreover, using proposition and since
c ¢ cov(A) we have A & ext(c). Since A € ext(d) then ext(c) # ext(d). Thus
Ve € D such that d & ¢ we have ext(c) < ext(d); that is d is support-closed.

The formula of D* is deduced directly. Please notice also that if there exists A

s.t. d € cov*(A) then d € cov*(ext(d)) (use (<) then (=)). Hence, d € D is

support-closed iff d € cov*(ext(d)). O
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Example 5.4. Reconsider Example we have cov({g2,94}) = {“b”, “bb",”c"}.
Hence, the maximal covering ones are given by cov*({g2, g4}) = {“bb”,” " }.

Note 18. In a pattern structure we have: cov* : p(G) — (D), A — {int(A)}.

5.2. On Upper-Approximation Extents

Going back to pattern structures, the closure operator extoint takes any subset A < G
to the smallest definable set ext(int(A)) enclosing it as stated by Proposition This
fact is used to enumerate all definable sets via the closure operator (see |[Kuznetsov
(1993, 11999)). From Rough Set Theory (Pawlak|1982) perspective, the set ext(int(A))
can be seen as the upper approximation of an arbitrary and potentially non definable
set A in P.,;. However, when it comes to an arbitrary pattern setup, a non-definable
set A may have many minimal definable sets enclosing it or no one if it is non-coverable
(see Example . Definition formalizes this second generalization.

Definition 5.5. The set of upper-approximation extents of a subset A < G,
denoted by A, is given by the set of minimal definable sets in P.;; enclosing A:

A=min({E € Py | AS E}) = min(} A N Peyt).

Example 5.6. Consider Example the upper approximations of subset A =
{g92,94} is given by A = {A} since A is definable. For the set B = {g1, g2}, we have
B = {{91,92,93},{91,92,94}} that is B has two upper-approximation extents. For
C = {g3, 94}, it is clear that there is no definable set in P.,; enclosing C (see Fig.

(right)), thus C' = .

Note 19. According to Proposition we have (VA € G) A = min(ext[cov(A)]).
Moreover, in a pattern structure, A = {ext(int(A))} for all A < G.

5.3. Linking Upper-Approrimation Extents to Support-Closed Patterns.

We have seen before that on the one hand cov* operator is somehow a generalization
of pattern structure int operator in an arbitrary pattern setup and on the other hand,
upper-approrimation extents operator is a generalization of pattern structure closure
operator extoint. Indeed, in a pattern structure we have for A € G, cov*(A) = {int(A)}
and A = {ext(int(A))}. That is: A = ext[cov*(A)]. One judicious question is that, does
this property still hold for an arbitrary pattern setup? Let us analyze the following
example.

Example 5.7. Reconsider Example and the definable set A = {g2,94}. We have
cov(A) = {“b”, “bb”, “c”} and cov*(A) = {“bb”, “c”}. Thus on the one hand, we have:

ext[cov™(A)] = {ext(“bb”), ext(“c”)} = {{g2, 94}, {91, 92, 9a}}

but on the other hand, since A is definable, we have A = {{g2, g4}}-

Hence, according to Example [5.7, it is clear that the property A = ext[cov*(A)]
does not hold in a pattern setup. In fact, things can go even worse when the description
space is an arbitrary infinite poset. Let us analyze for that a second Example:
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Example 5.8. Let be the poset (D, E) presented in Fig. @ where:
e D={a,b}u{c|ieN},
e (VieN) ¢ Ecit1,¢ Eaand ¢ ED.

Let be the pattern setup P = (G, (D, ), ) such that G = {g1, 92}, 6(91) = a and
0(g2) = b. It is clear that cov({g1,92}) = {c | i € N}. Yet, cov*({g1,92}) = O since
cov({g1,92}) is an infinitely ascending chain. Therefore, there is no maximal common
description covering both ¢g; and gs. Thus, given A < G it seems that there is no
link between cov*(A) and A in an arbitrary pattern setup (G, D, §). In fact, this even
mean that considering only maximal common descriptions to look for all possible
definable sets is totally a wrong idea since maximal covering descriptions do not hold
all the information about definable sets. Indeed, while ext[D] = {{g1}, {92}, {91, 92}},
the extents obtained from the set of support-closed patterns D* is given by:

ext[D*] = {{g1}, {92}} < ewxt[D]

Going back to the case of pattern structures, there is a strong link between int
and cov. Indeed, (VA < G) cov(A) =] int(A). In other words, knowing the intent of
a subset of objects allows us to know every single common description to all objects
in A. If we had want to generalize such a property for an arbitrary pattern setup
we would have expected: (VA < G) cov(A) =| cov*(A). In the sense that knowing
maximal covering descriptions allows to deduce all the covering ones. Such a property
does not hold for any pattern setup as shown in Example This property is directly
linked to what is called multilattices which we revisit in the next section.

6. Multilattices

The term multilattice was introduced for the first time by Benado| (1955). This
notion have not received much interest for a long period, but have been unearthed
and revisited in the beginning of the 215 century by Martinez et al. (2001)); Cordero
et al. (2004); Martinez et al.| (2005) for other purposes. We will start here by presenting
multilattices following Martinez’s et al. We will then understand the main difference
between Benado’s multilattices and (Martinez’s et al.) multilattices afterward.

Before giving the formal definition of multilattices, we start by defining the notion
of multi-infimum and multi-supremum. In the following section (P, <) denotes an
arbitrary poset and S € P denotes an arbitrary subset.

Definition 6.1. A multi-infimum (resp. multi-supremum) of S is a maximal
(resp. minimal) element of S* (resp. S*). The set of multi-infima (resp. multi-suprema)
of S is denoted by minf(S) (resp. msup(S)) and:

minf(S) = maz(SY)  msup(S) = min(S)

We say then that:
e S has all its multi-infima iff: S* =| maz(S%) =| minf(9).
e S has all its multi-suprema iff: S* =1 min(S*) =1 msup(5).

Multilattices, as their names imply, are related in their definition with lattices.
Simply put, multilattices are a relaxation of lattices where rather than demanding
that the set of lower (resp. upper) bounds of each nonempty finite subset has its
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infimum (resp. supremum), multilattices demand that the set of lower (resp. upper)
bounds of each nonempty finite subset has all its multi-infima (resp. multi-suprema).

Definition 6.2. A poset (P, <) is said to be:

¢ A meet-multisemilattice if for all nonempty finite subsets S < P, S has all
its mutli-infima.

¢ A join-multisemilattice if for all nonempty finite subsets S < P, S has all its
mutli-suprema.

e A multilattice if it is both a meet-multisemilattice and a join-multisemilattice.

e A complete meet-multisemilattice if for all subsets S <€ P, S has all its
mutli-infima.

e A complete join-multisemilattice if for all subsets S < P, S has all its
mutli-suprema.

e A complete multilattice if it is both a complete meet-multisemilattice and a
complete join-multisemilattice.

It is clear that all finite posets, or more generally finite-chain posets, are complete
multilattices. More precisely, posets having the ascending (resp. descending) chain
condition are complete join-multisemilattices (resp. meet-multisemilattices). It is also
clear that all (complete) (semi)lattices are (complete) multi(semi)lattices since requir-
ing that a subset S € P to have all its multi-infima is weaker than requiring it to have
an infimum. One should note also that since @i = &% = P then we have:

e If (P, <) is a complete meet-multisemilattice then P =| maz(P).
e If (P, <) is a complete join-multisemilattice then P =1 min(P).

When we compare with lattices (cf. note , two questions straightforwardly raise:
e Are pair of elements the building blocks of a multilattice?
e Are all complete semimultilattices complete multilattices?
The followings sections answers negatively to these both questions.

6.1. On Benado’s Multilattices

As said before, multilattices ware introduced for the first time by Benado| (1955)).
However, Benado defined multilattices as follow: a poset (P, <) is said to be multilattice
if and only if all pairs of elements have all their multi-infima and all their multi-
suprema. Formally:

vx7y epP: {x’y}f :i mmf({a?,y}) and {x7y}u :T msup({a?,y}) (2)

We will call here posets verifying such a property Benado’s multilattices. As clearly
explained in Martinez et al. (2005), such a property is not sufficient to have all non
empty finite subsets have their multi-infima and multi-suprema. This is in contrast
to lattices where it suffices to have a meet and join for all subsets of two elements
to have the meet and join for all non empty finite subsets. For instance, one could
verify that the poset depicted in Fig. [7] is a Benado’s multilattice. Yet, it is not a
multilattice according to Definition For instance, the set {a,b,c} does not have
all its multi-infima. Indeed, {a,b,c}’ = {abc; | i € N}, however, maz({a, b, c}*) = &. It
follows that {a,b, c}’ #| maz({a,b, c}*).
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complete join-
multisemilattice Figure 7. For all z,y in this poset, {z,y} has all its multi-infima. That is, this poset is
but not a meet- a multistructure following |Benado| (1955), however it is not a multilattice following our
multisemilattice definition.

6.2. On Complete Multisemilattices

We have seen that all complete semilattices are complete lattices. However, this prop-
erty no longer holds for complete multisemilattices. In fact one could have complete
meet-multisemilattice that is even not a join-multisemilattice and wvice versa. For
instance, Fig. [6] depicts a complete join-multisemilattice that is even not a meet-
semimultilattice. For instance, the set of lower bounds {a,b}’ = {c; | i € N} is an
infinitely ascending chain and thus maz({a,b}’) = &. Thus, {a,b}’ #| maz({a,b}’).
In other words, {a,b} does not have all its multi-infima.

6.3. On chain-completeness and complete multilattices

Complete multilattices are linked chain-complete posets. Before giving this relation-
ship, let us recall the definition of chain-completeness.

Definition 6.3. A poset (P, <) is said to be:
¢ Chain-complete if all chains in P, including ¢, has its join.
e Dually chain-complete if all chains in P, including ¢, has its meet.
e Doubly chain-complete if it is chain-complete and dually chain-complete.

Since the empty set matches the definition of a chain-complete, all chain-complete
posets are bounded. An important theorem linking complete lattices to chain-
completeness is given in Theorem

Theorem 6.4 (Theorem 3.24 from Roman (2008)). A lattice (P, <) is a complete
lattice if and only if it is chain-complete.

One straightforward question is what is the relationship between complete multi-
lattices and chain-complete posets. The answer is given in Theorem

Theorem 6.5. Under Axiom of Choice (AC) assumptioﬂ we have:
e All chain-complete posets are complete meet-multisemilattice.
o All dually chain-complete posets are complete join-multisemilattice.
o All doubly chain-complete posets are complete multilattices.

41 am grateful to JozEF P&cs for attracting my attention to Zorn’s Lemma.
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Figure 8. A complete multilattice that is not chain-complete

Proof. Before proving the theorem, we attract the reader to Zorn’s Lemma.
This lemma states that if every chain in a poset (P, <) has an upper-bound, then
(P, <) has a maximal element. Formally:

(VCe¥(P) C"#F — max(P)# J
A stronger statement, yet equivalent, of Zorn’s Lemma say even that:
(VCe¥€(P)) C"*# @ — P =| max(P) (3)

Zorn’s Lemma need to be considered as an axiom since it is equivalent to the
well-known axiom of choice (AC).

Let be now a chain-complete poset (P, <), we need to show that (P, <) is a com-
plete meet-multisemilattice. Let S © P be an arbitrary subset of P. We show here
that S¢ =] maxz(SY). Tt is straightforward by definition and independently from
any assumption that | maz(S*) < S’ Tt remains to show that S* <| max(S?).
Since (P, <) is chain-complete, then every C' < S* has its join \/ C' € P. Hence,
according to Lemma and since C < S’ then \/C € S*. Thus every chain
C in the sub-poset (S%, <) has an upper bound \/ C € S*. According to Zorn’s
Lemma (cf. equation , we have S =| maxz(S%). Hence, (P, <) is a complete
meet-multisemilattice.

In order to demonstrate the other statements of the theorem, one can follow
the same steps to show that S* =1 min(S") using Zorn’s Lemma on the dual
poset of dually chain-complete posets. O

Note 20. It is important to note that double chain-completeness is only a sufficient
condition (under the Axiom of Choice) to have a complete multilattice but not a
necessary one. Indeed, one can show that the poset depicted in Figure |8 is a complete
multilattice (Remark that Vi € N : ¢; < a4, ¢; < ¢41, a; < ¢g and a; < e1) but not
chain-complete since the chain C' = {¢; | i € N} has not a join. Indeed, C" = {eq,e1}
which is an antichain (i.e. C* has two minimal elements).
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7. Pattern Multistructure

Definition proposes a new structure that lies between pattern setups which rely
only on arbitrary posets with no additional property and pattern structures which
demand a meet for every subset of 4[G].

Definition 7.1. A pattern setup P = (G, (D,5),d) is said to be a pattern multi-
structure if every subset of §[G] has all its multi-infima, i.e. :

(VA < G) cov(A) =] cov*(A)

A pattern multistructure adds an additional condition on a pattern setup which is
the following: knowing maximal common descriptions covering all elements of a set
of objects A allows us to deduce using the order = every single covering description.
Please note that using the notation of multi-infima, cov*(A) is given by minf(5[A]).
It is clear that all pattern structures are by definition pattern multi-structures.

Graphs ordered by subgraph isomorphism relation introduced in [Kuznetsov] (1999)
induce a pattern multistructure on the set of graphs, but not a pattern structure (a
pattern structure is induced on sets of graphs incomparable wrt. subgraph isomor-
phism). Same remark holds for sequential patterns (Buzmakov et al.[2016; |(Codocedo
et al[[2017)). This is under the assumption of the existence of a largest element T
subsumed by all sequences/graphs (see Example [7.2)).

Note 21. Note that in a pattern multistructure the empty set § < D has all its multi-
infima. Since @* = D, the set D has all its maximal elements (i.e. D =] maxz(D)) or
in other words every chain in (D, Z) is upper-bounded.

Example 7.2. Reconsider the pattern setup presented in Example Since only
finite sequences are considered in the description space, we have: cov*(J) = J even
if cov(J) = D. Thus, the considered pattern setup in Example is not a pattern
multistructure due to the empty set (recall that for a nonempty A < G, §[A]’ is finite
and thus §[A] has all its multi-infima). The common trick to handle the empty set is
to enrich D with an additional largest element T = \/D if it does not exist. In such
a case, we have cov™ (&) = {T}.

Let us now reconsider the question investigated at the end of section “What is
the link between maximal covering descriptions and upper-approzimations extents in a
pattern multistructure”. Before stating Theorem [7.4] answering this question, we shall
state the following Lemma.

Lemma 7.3. Let (P,<) and (Q,<) be two posets and let f : P — Q be an order-
reversing mapping. We have for any S < P that 1 f[| S] =1 f[S].

Proof. Recall that 1 and | are closure operator (cf. Lemma. Let us start by
showing that 1 f[S] <t f[| S]. Since S | S, we have f[S] < f[| S]. Since 1 is
monotone, we have 1T f[S] <1 f[| S]. It remains to show that 1 f[| ST <1 f[S].
Let uw et f[| S], that is Jv € f[| S] s.t. v E u. Since v € f[| S], then Jx €] S s.t.
v = f(x). Hence 3y € S s.t. x < y. Using the fact that f is an anti-embedding,
we obtains that f(y) & f(z) E u. In other words, Jw € f[S] s.t. w = u. This is
equivalent to say that u €1 f[S]. We conclude hence that 1 f[| S] <t f[S]. O

23



Theorem 7.4. For any pattern multistructure P we have:

(VAcS G) A= min(ext[cov*(A)])

Proof. The proof of the theorem is a straightforward application of Lemma
and Lemma Let A G, since P is a pattern multistructure, then:

cov(A) =| mazx(cov(A)) = ext[cov(A)] = ext[]| max(cov(A))]
=1 ext[cov(A)] =1 ext[| max(cov(A))]

Since ext : D — p(G) is an order reversing, then using Lemma we have:

1 ext[| max(cov(A))] =1 ext[maz(cov(A))] =
1 ext[cov(A)] =1 ext[maz(cov(A)) =
min(] ext[cov(A)]) = min(1 ext[maz(cov(A)])

Using Lemma [2.7) we obtain min(ext[cov(A)]) = min(ext[maz(cov(A))). That
is, A = min(ext[max(cov(A))). O

Another important remark related to Example[5.8]is the fact that the support-closed
patterns in a pattern setup does not hold all the information about the definable sets.
Theorem [7.5] states that this is no longer the case for pattern multistructures.

Theorem 7.5. Given a pattern multistructure P for which the set of support-closed
patterns is D* (cf. Proposition , we have:

Peyt = ext[D¥]

Proof. Recall that D* = | Jpcg ext[cov*(B)]. Since D* < D and by definition
Peyt = ext[D]. It is clear that ext[D*] < ext[D]. It remains to show that ext[D] <
ext[D*]. Let A € ext[D], since P is a pattern multistructure then cov*(A) =

cov(A). Let d € cov(A) s.t. A = ext(d) (we have A € ext[D]). Since P is a pattern
multistructure then we have a support-closed pattern d* € cov*(A) < D* s.t.
d = d*. Hence, ext(d*) < ext(d). Moreover, since cov*(A) < cov(A), we have d* €
cov(A). Therefore, A = ext(d) < ext(d*). We obtain thus A = ext(d) = ext(d*),
that is A € ext[D*]. O

Similarly to Theorem [4.7] for pattern structures, Theorem [7.6] connects multilattices
with pattern multistructures. It state that (complete) meet-multisemilattices are to
pattern multistructures what (complete) lattices are to pattern structures.

Theorem 7.6. Let D = (D,=) be a posel, the following properties are equivalent:
e For any finite set G # & and any § € DY, (G,D,6) is a pattern multistructure.
e D is a meet-multisemilattice having all its mazximal elements (i.e. D =| max(D))
The following properties are equivalent:
e For any set G # & and any 6 € DY, (G,D,6) is a pattern multistructure.
e D is a complete meet-multisemilattice.
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Figure 9. A complete multilattice with an infinite antichain (Proof of proposition [7.7)

Proof. Recall that P = (G,D,d) is a pattern multistructure iff any subset S <
0[G] has all its multi-infima. The proof of this theorem is almost the same as the
one of Theorem [£.7] where the existence of the meet is replaced by the existence
of all multi-infima. O

Last but not least, we have seen in section [4] that in the case of a pattern structure,
(Pest, ©) is a complete lattice. One can say that the property of having the infimum
in the description space has been transferred to the poset of definable sets thanks to
extent operator. When it comes to a pattern setup on finite set of objects, it is clear
that (Peyt, ©) is a complete multilattice since it is finite. However, does this property
still hold for the case of infinite set of objects? Unfortunately, the answer is negative as
stated in Proposition [7.7] This proposition tells also that not all definable sets above
A in a pattern multistructure are above at least one upper-approximation of A.

Proposition 7.7. There exists a pattern multistructure P = (G, (D, E),6) such that
(Pewt, ©) is not a join-multisemilattice in which: (3A S G) 1 AN Peyt #1 A N Peyy.

Proof. Consider the pattern setup P = (G, (D, £),0) where (D, &) is the complete
multilattice depicted in Fig. [9] We have:

e (Vi,jeN)i<j < b; C aj.

e (VieN) b © ay and b; = ag.

Since (D, £) is a complete multilattice (i.e. it is chain-finite), then P is a pattern
multistructure. Consider now an infinite set G = {g; | i € N} U {gqa, 93} The
mapping J is given by: 0(ga) = @a, 6(gs) = ag and (Vi € N) 6(g;) = a;. To show
that the poset (P, S) is not a join-multisemilattice we need to consider two
definable sets in P.,; and show that the set of their common upper-bounds in Pg,;
does not have all its minimal elements. Let us compute ext for every d € D:

o ext(aq) = {9} and ext(ag) = {gs}.
o (VieN) ext(a;) = {¢9;} and (Vi € N) ext(b;) = {ga, 98} v {g; | 7 = i}.

Consider now the set of definable sets {{gn},{gs}}, it is clear that the set of
their common upper-bounds (in Pe.;) is given by:

{90}, {98}}" = {{90: 95} © {g; | = i} | i e N}

The set of upper bounds is hence an infinitely descending chain and hence does
not have a minimal element, in other words: min({{ga},{9s}}") = &. Hence,
(Pest, ) is not a join-multisemilattice. The proof of the second part of the propo-
sition is straightforward. Indeed, consider the non-definable set A = {g,, gg}. We
do have: 1 A N Peyy = ext[cov(A)] = {{ga,gs} v {g; | j =i} | i € N}. Hence,
A=min(} AnPey) = &. That is 1 AN Peyy #1 A 0 Peyy. O
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8. Pattern Setup and Pattern Multistructure Completions

Example presents a pattern setup which is not a pattern structure. However, in
FCA and pattern structure literature, it is recurrent to talk about sequential pattern
structures (Buzmakov et al.|2016; Codocedo et al.|2017). In fact, instead of sequences,
sets of sequences are considered which induce a richer description space. Same trick
has been even used in the first paper introducing pattern structures (Ganter and
Kuznetsov 2001) concerning graph description space ordered by subgraph isomor-
phism. Such a technique that embeds a poset into another is called a completion (see
Definition [2.16)). Different natural completions exist in the literature. For instance, the
Dedekind-MacNeille completion (Davey and Priestley 2002) takes an arbitrary poset
to the smallest complete lattice containing it. The usual trick used in FCA and Pattern
Structure literature to augment a base pattern setup to a pattern structure is tightly
linked to the antichain completion presented below.

Definition 8.1. The antichain completion of (P, <) is the poset (&7 (P), <) s.t.:
e o/ (P) is the set of all antichains of (P, <).
e The order < is given by (VA,Be «/(P)) A< B<| Ac| Bf
e The order embedding ¢ from (P, <) to (&/(P), <) is given by

p: P — d(P),a— {a}

Boldi and Vigna| (2016) and |Crampton and Loizou (2001)) had discussed the proper-
ties of such a completion. In fact, when P have the ACC, (&7 (P), <) is a distributive
lattice, where the meet and the join are given by S A Sy = maz(] S1n | S2) and
S1 v S2 = maz(S) U S2), respectively. Moreover, (&7 (P), <) is always a v-semilattice
whatever the nature of the poset (P, <), but not necessarily a lattice. Boldi and Vigna
(2016)) formulated a sufficient and necessary condition in order to have (27 (P), <) be
a lattice: VA, Be &/(P) 3C e &/(P) | An | B=|C.

We take the opportunity here to underline an important link between the antichain
completion and multilattices. Before expliciting this link in Propsosition let us
take a close look to the following Lemma.

Lemma 8.2. Let (P, <) be an arbitrary poset and let o/ (P) be the set of its antichain.
We have VS < P : (3C e &/ (P)) S =| C = C = max(S).

Proof. The case of S = (J is trivial since | J = & and max() = J. Let be a
nonempty set S < P s.t. (3C € &7(P)) S =| C. Let us show that C' = maz(5):
o C < max(S): let ce C < S, suppose that ¢ ¢ max(S) that is 3z € S s.t.
c < x.Since S =] C then dco € C' s.t. £ < ¢9. Thus dcg € C such that ¢ > ¢
which is a contradiction with the fact that C is an antichain.
e C 2 max(9): Suppose Ja € max(S) s.t. a ¢ C. We have a € S =| C, that is:
dec e C s.t. a < ¢ (since a ¢ C). However, since S =] C then C < S. Thus,
Jec € S s.t. a < ¢ which is in contradiction with the fact that a € maz(S).
This concluds the proof. O

5Note that < does not induce an order in p(P), but just a pre-order, since the anti-symmetry does not hold
(see|Crampton and Loizou(2001)). Indeed, consider poset ({a, b}, <) where a < b. Since | {a, b} =| {b} = {a, b},
we have {a, b} < {b} and {b} < {a,b}. Yet, {a,b} # {b}. Therefor, < does not induce an antisymmetric relation
on (p({a,b}), <) but it is still reflexive and transitive (i.e. < induce a preorder on p({a, b}).
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Figure 10. The Antichain completion of this complete lattice is not even a meet-semilattice

Proposition 8.3. Let (P, <) be an arbitrary poset and let (<7 (P), <) be its antichain
completion: If (<7 (P), <) is a lattice then (P, <) is a meet-multisemilattice. Moreover,
if ((P),=) has a top element then P =| max(P).

Proof. Let us start by showing the first property that is if (& (P), <) is a lat-
tice then (P, <) is meet-multisemilattice. We have (&7 (P), <) is a lattice. Then,
following [Boldi and Vigna (2016), we have:

VAc &/(P) ICed(P) | An | B=|C
More generally:

VS € &/ (P) finite and nonempty 3C € o/ (P) ﬂ JA=|C
AeS

Since C is an antichain, we have C' = maz ([ s | A) (Lemma[8.2)), that is:

VS € &/ (P) finite and non empty ﬂ | A=] mam(ﬂ 1 A) (4)
AeS AeS

Let be S < P be a non empty finite subset. We need to show that S has all its
multi-infima. That is S* =| maz(S*). We have S* = (,.q | {s}. Since, (7 (P), =)
is a lattice we have according to equation :

S = L {s} =1 max(s")

seS

For the second part of the proposition, consider that <7 (P) has a top elements.
That is 3C' € &/ (P) P =| C. Hence, we have P =] maxz(P) since C is an antichain
(Lemma . In other words, & has all its multi-infima. d

Note 22. One should note that the converse of Proposition[8.3] In fact, one can create
complete lattices for which the antichain completion is not even a lattice. Fig.
depicts such a complete lattice. Indeed, for antichains A = {a; | i € N} and B = {b; |
i € N}, we have | A() | B = {¢; | i € N}. Hence, there is no antichain D € &/ (P) s.t.
{c¢i | i e N} =] D making the antichain completion not a meet-semilattice.
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8.1. On Pattern Setups Antichain Completions

The main purpose of transforming a pattern setup to another one is to augment it to
a pattern structure in order to use the different results related to this latter structure.
We define below the most common trick used in the FCA literature which can be
called pattern setup antichain completion.

Definition 8.4. Let P = (G, D, ) be a pattern setup, the antichain completion of
P is the pattern setup denoted by PV and given by:

PY = (G, ((D),<),6" : g — {5(9)})

Earlier in this section, we have mentioned that (</(D), <) is a lattice when (D, E)
is a finite poset (i.e. a sufficient condition). However, given an arbitrary pattern setup
on an infinite description space, PV is not always guaranteed to be a pattern structure.
Theorem gives a necessary and sufficient condition on P that makes PV a pattern
structure. Here ext” and int" denote extent and intent of PV, respectively.

Theorem 8.5. Let P = (G,D,0) be a pattern setup, the antichain completion of P is
a pattern structure if and only if P is a¢ pattern multistructure. Moreover:

(VS € (D)) ext”(S) = ﬂext[S] (VA < G) int"(A) = minf(§[A]) = cov™(A)

We have PY,, = {(1S | S S Pext} and (1 =G € PY

ext*

Proof. Let us show that:
P is a pattern multistructure < PV is a pattern structure

Recall that PV is a pattern structure iff every subset of §V[G] has a meet in
(A(D),<). For A € G we have:

07[A]" = {Se A(D) | (Vg e A) S =l 6(9)} = {S e A(D) | S < d[A]'}

where 6[A]¢ and §V[A]’ denote respectively the lower bounds of 6[A] w.r.t. = and
the lower bounds of of 6V[A] w.r.t. < (recall that §[A]* = (N,.4 | 9(g)). In this
proof | refers to the down-closure related to =.
We show each implication independently:
o (=) Let A< G :6[A]" =] max(5[A]"). Thus 6"[A]* = {Se A(D) | S <|
maz(5[A]°)} = {S € A(D) | S < maz(6[A]%)}. Since max(5[A]") € A(D),
so maz(6[A]%) is the meet of 6V[A] in A(D).
e (<) PV is a pattern structure is equivalent to say: VA < G, §V[A] has
a meet M € A(D). That is, IM € §V[A]f for A < G: VS € A(D) : S <
§[A]* & S <| M. Particularly, for S = {d} with d € D, we deduce that
Vd € 6[A]* : d €| M. Thus, §[A]* <| M. Moreover, since M < §[A]*
(M € 6V[A]%) and | is a closure operator on (p(D), <) we have by monotony
| M < 6[A] <| M (note that | 6[A]* = 6[A]%). We conclude that we have
§[A]* =| M. Using Lemmawe obtain d[A]¢ =] max(5[A]°).
We conclude the equivalence.

geA
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Let us now determine int" and ext”. The previous proof has shown that for
A C G the meet of §[A] is maz(5[A])’. i.e.:

int” (A) = max(5[A]Y) = cov*(A)
For ext” operator, let S € A(D). We have:

ext” (9)

{9eg|S<oa(g)}={gegG|Sc]dg)}
{ge G| (vde S)d=d(g)} = ) ext(d) = )ext[S]

deS

Let us show that PY, = {1 S| S € Pey}. By definition of ext”, the property

xT

PY: € {()S|S S Peyi} holds. For the inverse inclusion, it is sufficient to show

ext
that Peyy € P, (since (PY,,, €) is closed under intersection). Let A € Peyy. 3d € D
s.t. A = ext(d). Since {d} € A(D), and ext" ({d}) = ext(d) = A. We conclude that
AeP?,. Hence, P7, ={[1S|S S Pew}. O

8.2. On Pattern Setups Direct Completions

There is a completion that transforms any pattern setup to a pattern structure without
demanding any additional property.

Theorem 8.6. The direct completion of P = (G, D, ) is the pattern structure:

P" = (G, (p(D),2),0" :g—|d(9))

Where (VS < D) ext™(S) = (ext[S] and (VA € G) int"(A) = cov(A) = 5[A]". The
set of definable sets is given by P {S]S < Pert}-

ext —

Proof. Let us show that the pattern setup P” is a pattern structure. Let A < G.
We need to show that §¥[A] has a meet in (p(D),<). We have:

SV[Af ={ScD|(Vge A)Sc|§(A)}={ScD|Sc[A]"}
Since §[A] € §V[A]¢, we conclude §[A]¢ is the meet of 6V[A]¢, Hence:
int” (A) = §[A]" = cov(A)
For the extent operator ext”, let S € p(D). We have
ext’(S) ={ge G| Scli(g)} ={ge G| (Vde S)dc o(g)} = [ )ext[S]

Let us show that P, = {()S|S & Pest}. Thanks to the definition of ext”,
property Py, < {()S | S € Peyt} holds. For the inverse inclusion, it is sufficient
to show that Pey < P, (since (PY,,, €) is closed under intersection). Let A € Peyy,
dd € D s.t. A = ext(d). We have ext”({d}) ={ge G |{d} S| d(g)} ={g9eg|dC
5(g)} = ext(d) = A. We conclude that A€ Py, and Py, = {[)S | S S Pext}. O
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({91392793794}3 @)

— ~
({81,82.83}, {“a”}) ({g1,82,84},{“D”, “c”})
/o \
g1, 92, {07, 07, °C"}) ({g2. 84}, {“bb”, “c")
({g1}, {“Cab”}) ({g2}7 {“cbba”}) ({g4}7 {“bbc”)}
T
(AT}

Figure 11. Concept lattice B(PV).

Example 8.7. Fig. [11]depicts the concept lattice B(PY) of the antichain completion
of the pattern multistructure [P considered in Fig. |4 (i.e., the description space is aug-
mented with the top element T). For any concept (A, B), descriptions d € B in bold are
those which whose ext(d) = A. Please notice that while description “c¢” has for extent
{91, 92,94}, description “c” does belong to the concept related to the extent {g2, g4}
Another important remark, are the underlined concepts. They represent concepts that
are related to the non definable sets in P but still definable in PV, i.e. {g1,¢92} and
{91,92, 93,94} in PY,\PPes. For instance, consider the intent of {g1, g2} in the comple-
tion, each pattern d has extent ext(d) 2 {g1, g2}. Extent {g1, g2, g3, g4} is non-coverable
in P and thus int¥ ({g1, 92, g3, g4}) = max(cov({g1, 92, g3, 94})) = max() = .

Note that while in Example the size difference between the set of definable sets
in the base pattern setup P.;; and the set of definable sets in the antichain completion
PY.; is not large (i.e. Py, \Pest| = 2). In some cases, the size of PY,, can be exponentially
larger than P..;. Consider, for instance, the following example:

Example 8.8. Let n € N with n > 3. We denote by [n] the subset [n] = {1,2,...,n}.
Let P = (G, (D, <),d) be the pattern setup with G = {gi}ie[n],

D ={{i} [ie[n]} v{ln)\{i} | i€ [n]}

and the mapping ¢ : g; — [n]\{i} for all i € [n]. One can verify that we have Pey =
{{gi} | i € [n]} U {G\{gi} | i € [n]}. Indeed, we have:
o (Vie[n]) ext([n]\{i}) = {g; | [n]\{7} < 6(g)} = {g; | [n]\{5} < [n]\{i}} = {g:}-
o (Vie[n]) ext({i}) = {g; | {i} < d(95)} = {g; | {1} < [n]\{4}} = G\{gi}-

Hence, we have |Pey¢| = 2n. However, according to Theorem 8.5, we have

P = {15 P} = 0(9)

since P¢,; contains all the coatoms of p(G) (i.e. (Vg € G) G\{g} € Pest) and the powerset
lattice is coatomistic. It follows that |P7,,| = 2". In other words, Py, is exponentially
larger than Pe;;. One should notice that the new description space associated to PV is
(order-)isomorphic to (p([n]),<).
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9. Conclusion and Discussion

In this paper, we provided a better understanding of the pattern setup framework. We
have shown that while pattern structures demand a strong condition on the partially
ordered set of descriptions, pattern setups do not require any additional property on
the description space, which makes them rather permissive. We have introduced a new
framework, namely pattern multistructure, lying between both structures. Informally,
pattern multistructures demands that the set of maximal common description resume
properly the set of common descriptions of any subset of objects. Analogously to
pattern structures, pattern multistructures are tightly linked to multilattices. We have
shown also that the usual antichain completion used in FCA literature to transform
pattern setups, like sequence of itemsets ones, to pattern structure is applicable if and
only if the considered pattern setup is a pattern multistructure.

An important open problem we are thoroughly working on is the following: “Given
an arbitrary pattern setup P with a finite set of objects, generate its definable sets
exhaustively and irredundantly”. If the pattern setup is a pattern structure, the lit-
erature abounds of algorithms solving such a problem (e.g. (Ganter||{1984; |Kuznetsov
1993; Outrata and Vychodil|2012)). However, no algorithm exists to solve such a prob-
lem for an arbitrary pattern setup. Indeed, the usual solution in FCA is to transform
the pattern setup to a pattern structure via a completion (e.g. antichain completion
for (Kuznetsov and Samokhin| 2005; Buzmakov et al. [2016; Codocedo et al.|[2017)).
Such a solution could create a (exponentially) larger search space. Other algorithms
in the literature tackles this problem by enumerating support-closed patterns (e.g.
Yan, Han, and Afshar| (2003))). These latter algorihms may generate twice the same
definable sets, since two support-closed patterns could have the same extent. Solving
this problem will be the subject of future research.
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