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Modern order and lattice theory provides convenient mathematical tools for pattern mining, in particular for condensed irredundant representations of pattern spaces and their efficient generation. Formal Concept Analysis (FCA) offers a generic framework, called pattern structures, to formalize many types of patterns, such as itemsets, intervals, graph and sequence sets. Moreover, FCA provides generic algorithms to generate irredundantly all closed patterns, the only condition being that the pattern space is a meet-semilattice. This does not always hold, e.g., for sequential and graph patterns. Here, we discuss pattern setups consisting of descriptions making just a partial order. Such a framework can be too broad, causing several problems, so we propose a new model, dubbed pattern multistructure, lying between pattern setups and pattern structures, which relies on multilattices. Finally, we consider some techniques, namely completions, transforming pattern setups to pattern structures using sets/antichains of patterns.

Introduction

Modern order and lattice theory provide convenient mathematical tools for pattern mining, in particular for condensed irredundant representations of pattern spaces and their efficient generation. Different formal tools has been proposed in the literature to model pattern spaces. Formal Concept Analysis (FCA - [START_REF] Ganter | Formal Concept Analysis[END_REF]) has been proposed by [START_REF] Wille | Restructuring lattice theory: an approach based on hierarchies of concepts[END_REF] as a well-founded mathematical tool to models hierarchies of concepts related to some formal context (i.e. binary datasets). While basic FCA provides a natural way to analyze binary datasets, datasets with more complex attributes (e.g. numerical or nominal ones) need to be transformed to such before any manipulation. This kind of transformation has been proposed by [START_REF] Ganter | Conceptual scaling[END_REF] under the term of conceptual scaling (i.e. binarizing). Yet, even if conceptual scaling is a quite general tool, binarizing a dataset with regard to some pattern search spaces is not always obvious (i.e. [START_REF] Baixeries | Computing Functional Dependencies with Pattern Structures[END_REF], [START_REF] Belfodil | Mining Convex Polygon Patterns with Formal Concept Analysis[END_REF]). In response to that, some other more natural tools to formalize complex pattern spaces has been proposed. One could cite Logical Concept Analysis (LCA) proposed by [START_REF] Ferré | A Logical Generalization of Formal Concept Analysis[END_REF] and Pattern Structures proposed by [START_REF] Ganter | Pattern Structures and Their Projections[END_REF]. Pattern Structures allow for instance to model in a quite natural object value label g 1 1 ǵ2 3 g3 5 g4 9 ´0 10 g 1 g 4 g 2 g 3 1 3 5 9

Description language:

value " v | v P R value ď v value ě v way many pattern search spaces. Indeed, itemsets, intervals [START_REF] Kaytoue | Revisiting Numerical Pattern Mining with Formal Concept Analysis[END_REF], convex polygon [START_REF] Belfodil | Mining Convex Polygon Patterns with Formal Concept Analysis[END_REF], partition [START_REF] Baixeries | Characterizing functional dependencies in formal concept analysis with pattern structures[END_REF] pattern spaces among others [START_REF] Ganter | Pattern Structures and Their Projections[END_REF][START_REF] Kuznetsov | Pattern Structures for Analyzing Complex Data[END_REF]) can be modeled within the pattern structure framework. However, since pattern structures rely on meet-semilattices (i.e. conjunction of two patterns belongs to the pattern search spaces), some pattern spaces that are only partially ordered sets (posets) cannot be "directly" defined using such a framework. Consider for instance the example dataset depicted in Fig. 1 containing 4 objects described by attribute "value" and labeled positive or negative. We are interested by the task of finding "good" rules d Ñ `in this dataset with d a description given by attribute value. Rather than considering the usual meet-semilattice of intervals as the one proposed by [START_REF] Kaytoue | Revisiting Numerical Pattern Mining with Formal Concept Analysis[END_REF]; descriptions d are restrained to open intervals of the form pvs and rvq or singleton tvu Ď R (see Fig. 1 -right). Patterns (descriptions) form together a poset pD, Ěq where Ě is the subsumption order (i.e. if d 1 subsumes d 2 then if pattern d 2 holds for an object g then pattern d 1 hold to). However, pD, Ěq does not form a meet-semilattice. For instance, the set tt3u, t5uu does not have a meet, since lower bounds of tt3u, t5uu have two maximal elements w.r.t. Ě (i.e. r3q and p5s). Hence, the description space does not induce a pattern structure [START_REF] Ganter | Pattern Structures and Their Projections[END_REF]. It does form actually a pattern setup [START_REF] Lumpe | Pattern Structures and Their Morphisms[END_REF]) which rely on a simple poset with no additional properties.

Description spaces like the one depicted in Fig. 1 are numerous. For instance, sequence of itemset patterns [START_REF] Agrawal | Mining sequential patterns[END_REF]) ordered by "is subsequence of" do not form a meet-semilattice [START_REF] Zaki | SPADE: An Efficient Algorithm for Mining Frequent Sequences[END_REF][START_REF] Codocedo | A Proposition for Sequence Mining Using Pattern Structures[END_REF]. Sequential meet-semilattice in FCA [START_REF] Buzmakov | On mining complex sequential data by means of FCA and pattern structures[END_REF][START_REF] Codocedo | A Proposition for Sequence Mining Using Pattern Structures[END_REF]) refers usually to set (i.e. conjunction) of sequences rather than to the poset of sequences itself. Same holds for the graph meet-semilattice from [START_REF] Kuznetsov | Learning of Simple Conceptual Graphs from Positive and Negative Examples[END_REF]. In general, the base pattern setup is transformed to a pattern structure using sets (i.e. conjunctions) of descriptions thus providing a richer pattern language. Such transformations are naturally called completions, which refers to well-known completions in ordered sets and lattice theory, like Dedekind-McNeille, Alexandroff or Antichain completions [START_REF] Davey | Introduction to lattices and order[END_REF][START_REF] Boldi | On the lattice of antichains of finite intervals[END_REF]. For instance, in Fig. 1, set of patterns tvalue ě 3, value ď 5u which is equivalent to 3 ď value ď 5 belongs to the antichain completion of pD, Ďq but and not to the base description language pD, Ďq.

Understanding properties of pattern setups independently from their completions is fundamental for answering many practical questions. For instance, consider the question "What are the best descriptions covering all positive instances?". If better stands for more relevant than as in relevance theory [START_REF] Garriga | Closed Sets for Labeled Data[END_REF], the answer will be the two best incomparable rules value ě 3 Ñ `and value ď 5 Ñ rather than only one in the completion 3 ď value ď 5 Ñ `. More generally, we look for maximal common patterns (i.e. support-closed patterns as called by [START_REF] Boley | Listing closed sets of strongly accessible set systems with applications to data mining[END_REF]) of the positive instances which could be multiple.

Outlines and Contributions.

In this paper we present the following results:

(1) In Section 3, we start by studying pattern setups that was proposed by [START_REF] Lumpe | Pattern Structures and Their Morphisms[END_REF] as a tool to models pattern search spaces relying only on posets providing hence a better-understanding of this wider-class of framework. Afterwards, we revisit briefly the notion of pattern structures in Section 4. (2) In Section 5, we point-out the major problem related to pattern setups. In fact, since pattern setups rely only on posets without no additional properties, they are very permissive. Simply put, given some set of objects, they could share some common descriptions in the pattern space but none of them is maximal w.r.t. the subsumption order. We show that this problem is directly linked to the fact that the considered poset is not a multilattice. (3) In Section 6, we present multilattices and we show that all (doubly) chaincomplete posets are complete multilattices but that the converse does not hold. (4) In Section 7, we propose the framework of pattern multistructures. In a nutshell, analogously to pattern structures, pattern multistructures are based on multilattices. Such a structure provides the fact that covering descriptions of a set of objects are deducible from the maximal common descriptions using the subsumption order. This does not necessarily hold in an arbitrary pattern setup. (5) Next, in Section 8 we revisit completion (i.e. transformation) of pattern setups to pattern structures and we show that the usual completion using antichain of patterns, namely antichain completion, induce a pattern structure if and only if the pattern setup is a pattern multistructure. ( 6) Finally, we wrap-up in section 9 and we discuss some open problems related particularly to the enumeration of extents (i.e. subset of objects that are separable in the description language) in an arbitrary pattern setup. Please note that this paper is a thorough extension of a first paper published in CLA'18 [START_REF] Belfodil | Pattern Setups and Their Completions[END_REF]. The main difference with CLA'18 paper is more mathematical results and much more detailed explanations of the framework of pattern setups, pattern multistructures and their completions. Note that in this first paper, pattern multistructures were called pattern hyper-structures and were linked with the notion of hyper-lattices briefly investigated by [START_REF] Zaki | SPADE: An Efficient Algorithm for Mining Frequent Sequences[END_REF]. Stefan Schmidt attracted our attention to the work of [START_REF] Benado | Les ensembles partiellement ordonnés et le théorème de raffinement de Schreier I Théorie des multistructures[END_REF] on multilattices that interestingly was directly linked to pattern multistructure making this newly proposed framework more mathematically founded.

On Partially-Ordered Sets

To make this work self-contained, in this section we recall basic definitions and results from order theory and introduce our notations that are largely inspired by [START_REF] Ganter | Formal Concept Analysis[END_REF]; [START_REF] Davey | Introduction to lattices and order[END_REF]; [START_REF] Roman | Lattices and Ordered Sets[END_REF]. In this paper, we will be using the following base notations:

' For any set P , the set ℘pP q denotes the powerset of P . ' For any mapping f : E Ñ F and any subset A Ď E, the set f rAs denotes the image of A w.r.t. f , that is:

f rAs " tf paq | a P Au ' The set of all mappings f : E Ñ F is denoted by F E .

Basic Definitions

Definition 2.1. A partial order on a set P is a binary relation ď on P that is reflexive (p@x P P q x ď x), transitive (p@x, y, z P P q if x ď y and y ď z then x ď z.) and antisymmetric (p@x, y, z P P q if x ď y and y ď x then x " y). The pair pP, ďq is called a partially ordered set or a poset for short. Two elements x and y from P are said to be comparable if x ď y or y ď x; otherwise, they are said to be incomparable. A subset S Ď P is said to be a chain (resp. an antichain) if all elements of S are pairwise comparable (resp. incomparable). The set of all chains (resp. antichains) of P is denoted by C pP q (resp. A pP q).

Note 1. (Finite) posets are generally presented using the so called Hasse Diagram.

Where elements of the poset are represented on the plane from the smallest ones to the largest ones. Only direct neighbors (i.e. two elements are said to be direct neighbors if there is no elements strictly lying between them in the poset) are linked by a segment of line. The poset can indeed be deduced from this diagram by adding reflexivity and transitivity. Fig. 2 (1) depicts the Hasse Diagram of the powerset of a set E " ta, b, cu ordered by set inclusion (i.e. poset p℘pEq, Ďq).

Through some misuse of the notion, we will present in this paper some infinite posets using the Hasse Diagram. Fig. 2 (2) presents a poset pP, ďq where:

' P " tK, J, b 0 , b 1 u Y ta i | i P Nu, ' K ď b 0 ď b 1 ď J, and ' p@i P Nq K ď a i ď a i`1 ď J.
In what follows, pP, ďq denotes a poset and S Ď P denotes an arbitrary subset.

Definition 2.2. The principal ideal (resp. principal filter) of p P P , denoted by Ó p (resp. Ò) is the set of all elements below (resp. above) it:

Ó p " tx P P | x ď pu Ò p " tx P P | p ď xu Definition 2.3. A set S Ď P is said to be a lower ideal or a downset if:

p@x P P q ppDs P Sq x ď s ñ x P Sq

The notion of upper ideal (upset) is defined dually. The set of all lower (resp. upper) ideals of pP, ďq is denoted OpP q (resp. U pP q).

Definition 2.4. 

K a 0 a 1 . . . J b 0 b 1 p2q "" "a" "b" "ab" "ba" p3q tg 1 , g 2 u tg 1 , g 3 u tg 1 , g 2 , g 3 u tg 1 , g 2 , g 3 , g 4 u p4q
u Y ta i | i P Nu, K ď b 0 ď b 1 ď J and p@i P Nq K ď a i ď a i`1 ď J.
(3) Poset of common substrings of "ab" and "ba".

(4) A subposet of p℘ptg 1 , g 2 , g 3 , g 4 uq, Ďq.

2.2. Minimal, Minimum, Infimum, ...

Informally speaking

, not all elements in a subset S have the same "position". Some elements x are in the "interior" of S, that is Dy, z P S such that y ă x ă z; while some others are on its "border", that is there is no element in S strictly below/above them. These border elements are formally defined in Definition 2.6.

Definition 2.6. An element s P S is said to be a minimal (resp. maximal) element in S if all its strict lower (resp. upper) bounds are outside S. The set of minimal (resp. maximal ) elements of S is denoted by minpSq (resp. maxpSq) and given by:

minpSq " tx P S | Ó x X S " txuu maxpSq " tx P S | Ò x X S " txuu
Note that minpSq and maxpsq are antichains. Moreover, minpHq " maxpHq " H by definition. An intuitive and important relationship between the minimal elements of a subset and the minimal elements in its up-closure is presented lemma 2.7.

Lemma 2.7. We have minpÒ Sq " minpSq and maxpÓ Sq " maxpSq Proof. We prove by double inclusion the property minpÒ Sq " minpSq: (Ď) Let x P minpÒ Sq and suppose that x R S. Since x P minpÒ Sq we have

x PÒ S, that is Dy P S s.t. y ď x but y ‰ x since x R S. Thus, Dy PÒ S s.t. y ď x but y ‰ x. Thus y PÓ xX Ò S with y ‰ x which contradicts the fact that x P minpÒ Sq (i.e. Ó xX Ò S " txu). We conclude that x P S. Suppose now that x R minpSq, that Dy P S s.t. y ď x and y ‰ x. Hence, y PÒ SX Ó x which contradicts the fact that x P minpÒ Sq. Thus x P minpSq.

We conclude that minpÒ Sq Ď minpSq. (Ě) Let x P minpSq, thus x PÒ S. Suppose that x R minpÒ Sq that is Dy PÒ S such that y ď x and y ‰ x. Thus Dz P S such that z ď y ď x with z ‰ x. Hence, z PÓ x X S with z ‰ x which contradicts the fact that x P minpSq.

We conclude that x P minpÒ Sq or more generally minpSq Ď minpÒ Sq. On can follow the same steps to show maxpÓ Sq " maxpSq.

Definition 2.8. An element m P S is said to be minimum or a smallest element of S if it is a lower bound of S. Formally: m P S and p@s P Sq m ď s. The notion of maximum or greatest element of S is defined dually. Note 3. One should notice that not all subsets have a minimum or a maximum (see Example 2.9). Moreover, the minimum and the maximum are unique if they exist.

Example 2.9. Consider again Fig. 2 (1) and the subset S " ttau, ta, bu, ta, cuu. It is clear that minpSq " tau and maxpSq " tta, bu, ta, cuu. Obviously, subset S has a minimum which is tau. However, it does not have a maximum since no element in S is above all the other elements.

Note 4. If a poset has a maximum (resp. minimum) element, we say that the poset is upper-bounded (resp. lower-bounded) and this element is called the top (resp. bottom) and is denoted J (resp. K). A poset is said to be bounded if it is both lower-bounded and upper-bounded.

It is very important to distinguish between the minimal elements and the minimum. In fact, "if a subset has a minimum then it has a unique minimal element". However, the converse of this statement is not true, that is even if a subset have a single minimal element, it can have no minimum. Indeed, the intuition that every element in a subset S is at least above one minimal element in minpSq does not always hold in infinite posets. Such a property is presented in Definition 2.10. Definition 2.10 (Definition 2.4 in [START_REF] Martínez | Generalizations of lattices via non-deterministic operators[END_REF] Having a minimum is a very strong property, in fact if a subset has a minimum then the minimum is also the infimum. However, the converse is not true. Indeed a subset can have an infimum without having a minimum. For instance, consider Fig. 2 (2), it is clear that the chain S " ta i | i P Nu does not have a maximum. However, S still have a supremum which is J. Indeed, S u " tJu which minimum is J.

One interesting property is stated in the following Lemma. Proof. Let A Ď S , we have by definition: p@s P S @a P Aq a ď s, that is S Ď A u . Since Ž A is the least upper bound of A and all elements of S are upper bounds of A then: p@s P Sq Ž A ď s. We conclude that Ž A P S . Same steps can be followed to show the second part of the Lemma. Note 6. One should note that, in case of existence, we have:

ľ S " ł S ł S " ľ S u
Moreover, since for a poset pP, ďq we have H " H u " P , then the empty set has a meet (resp. join) if and only if the poset is upper-bounded (resp. lower bounded) and we have Ź H " Ž P " J and Ž H " Ź P " K.

Lattices

Definition 2.14. A poset pP, ďq is said to be: ' A meet-semilattice if for all nonempty finite subsets S Ď P , S has its meet. ' A join-semilattice if for all nonempty finite subsets S Ď P , S has its join.

' A lattice if it is both meet-semilattice and join-semilattice. ' A complete lattice if all its subsets including H has their meet and join.

Note 7. For any set E, the poset p℘pEq, Ďq is a complete lattice where the meet is set intersection Ş and the join is set union Ť . Such a poset is called a powerset lattice.

Example 2.15. Consider posets depicted in Posets Fig. 2. Poset (1) is a powerset lattice on ta, b, cu. Hence, it is a complete lattice. Poset (2) is also a complete lattice where the join of any infinite subset is J. Poset (3) of common substrings of "ab" and "ba" ordered by is substring of is neither a meet-semilattice nor a join-semilattice. Indeed, t"ab", "ba"u has not an infimum since t"ab", "ba"u " t"a", "b", ""u has two maximal elements and thus no maximum. Dually, subset t"a", "b"u has not a join since t"a", "b"u u " t"ab", "ba"u has two minimal elements and thus no minimum.

Note 8. Meet-semilattices have a weaker, yet equivalent, definition characterizing them. In fact, to check if a poset is a lattice, one should only check if: p@x, y P P q tx, yu has a meet and p@x, y P P q tx, yu has a join

That is if all pair of elements have their meets (resp. join) then all nonempty finite subsets of the poset have their meet (resp. join). Another important remark that is related to Note 6 is the fact that all complete semilattices are complete lattices.

One should notice that since in complete lattices, the empty set have also their meet and joins then all complete lattices are bounded. It is also important to note that all finite lattices are complete lattice. However, not all finite meet-semilattices are lattices since they may lack of a top element (i.e. the meet of the empty set is not guaranteed to exist). In fact, a finite meet-semilattice (resp. join-semilattice) is a lattice if and only if it is upper-bounded (resp. lower-bounded).

Morphisms on Posets

We will often use morphismes (i.e. mappings) between posets in this paper. Definition 2.16 below formulate some properties of morphismes between two posets. Definition 2.16. Let pP, ďq and pQ, ďq be the two posets. A mapping f : P Ñ Q is:

' order-preserving or monotone: p@x, y P P q x ď y ñ f pxq ď f pyq. ' order-reversing: p@x, y P P q x ď y ñ f pyq ď f pxq ' an order-embedding: p@x, y P P q x ď y ô f pxq ď f pyq If an order-embedding exist from pP, ďq and pQ, ďq then poset pQ, ďq is said to be a completion of pP, ďq or embeds pP, ďq. If this order-embedding is surjective (i.e. an order-isomorphism) we say that pP, ďq and pQ, ďq are order-isomorphic.

Definition 2.17. A closure operator on pP, ďq is a mapping φ : P Ñ P that is:

' monotone: p@x, y P P q x ď y ñ φpxq ď φpyq, ' extensive: p@x P P q x ď φpxq, and ' idempotent: p@x P P q φpφpxqq " φpxq Note 9. The fixpoints of a given mapping f : P Ñ P is the set of elements s.t. tp P P | f ppq " pu. For idempotent operator, the set of fixpoints is f rP s " tf ppq | p P P u.

Lemma 2.18. Let pP, ďq be a poset, we have Ò and Ó are closures on p℘pP q, Ďq.

Proof. Let us show that Ò: ℘pP q Ñ ℘pP q is a closure operator on p℘pP q, Ďq.

It is clear that S ĎÒ S (i.e. Ò is extensive) by definition. For S Ď T in ℘pP q, we have if x PÒ S, then Dy P S Ď T such that y ď x. That is, x PÒ T . Thus, p@S, T P ℘pP qq Ò S Ď T ùñ Ò S ĎÒ T (i.e. Ò is order-preserving). Let us show that Ò is idempotent. It is clear that Ò S ĎÒÒ S since Ò is extensive. It remains to show that ÒÒ S ĎÒ S. Let x PÒÒ S, that is Dy PÒ S such that y ď x. That is Dz P S such that z ď y ď x. We conclude that x PÒ S. One can follow the same steps to show that Ó: ℘pP q Ñ ℘pP q is a closure operator on p℘pP q, Ďq.

Note 10. Fr any poset pP, ďq and since Ò and Ó are closure operators, we have: ' For all S P U pP q, if S is minimal-handle then S "Ò minpSq.

' For all S P OpP q, if S is maximal-handle then S "Ó maxpSq.

Before finishing the section, we draw the reader attention to the tight link existing between closure operators and closure systems on a complete lattice defined below.

Definition 2.19. Let pP, ďq be a complete lattice whose meet is Ź . Given a subset S Ď P , pS, ďq is said to be a closure system or a meet-structure on pP, ďq iff :

p@A Ď Sq ľ A P S
Clearly, pS, ďq forms a complete lattice which infimum is Ź .

In fact (see Theorem 1 in [START_REF] Ganter | Formal Concept Analysis[END_REF]), if pP, ďq is a complete lattice and φ is a closure operator on pP, ďq then the poset pφrP s, ďq of fixpoints of φ is a closure system. Conversely, if pS, ďq is a closure system on a complete lattice pP, ďq then the mapping φ S : P Ñ S, p Þ Ñ Ź ts P S | p ď su that takes each element p P P to the smallest element (fixpoint) in S enclosing it is a closure operator with φ S rP s " S.

Pattern Setups

Formal Concept Analysis (FCA) were introduced in [START_REF] Wille | Restructuring lattice theory: an approach based on hierarchies of concepts[END_REF] as a mathematical framework to analyze and manipulate concepts in databases. FCA starts by a formal context K " pG, M, Iq where G is a set of objects (i.e. Gegenstände), M is a set of attributes (i.e. Merkmale) and I is a binary relation on G ˆM (i.e. Incidence relation).

For pg, mq P G ˆM, g I m holds iff g has attribute m. Fig. 3 presents an example of a formal context. The basic theorem behinds FCA rely on the observation that any formal context can be transformed to a complete lattice called concept lattice. We invite the reader to read [START_REF] Ganter | Formal Concept Analysis[END_REF] book for more details.

While (basic) FCA gives a tool to analyze datasets in a form of formal context, datasets with more complex attributes (eg. numerical or nominal attributes) needs to be transformed to such a form before any manipulation. Such a transformation is called conceptual scaling (i.e. binarizing) [START_REF] Ganter | Conceptual scaling[END_REF]). Yet, even if conceptual scaling is a quite general tool, binarizing a dataset with regard to the patterns we want to look for is not always straightforward [START_REF] Baixeries | Computing Functional Dependencies with Pattern Structures[END_REF]).

In response to that, a more natural way to handle complex datasets was introduced in Ganter and [START_REF] Ganter | Pattern Structures and Their Projections[END_REF] under the name of pattern structures. Objects in a pattern structure have descriptions (e.g. the equivalent notion to set of attributes in M in a formal context) with a meet-semilattice operation on them (e.g. equivalent to set intersection in p℘pMq, Ďq in a formal context). This framework proved its usefulness in many data analysis tasks (see [START_REF] Kuznetsov | Pattern Structures for Analyzing Complex Data[END_REF]). However, pattern structures demands that the description space to be a (upper-bounded) meet-semilattice which is not the case for all description spaces such as sequence of itemsets patterns [START_REF] Codocedo | A Proposition for Sequence Mining Using Pattern Structures[END_REF]). Pattern setups were introduced in [START_REF] Lumpe | Pattern Structures and Their Morphisms[END_REF] to generalize pattern structures by demanding only a partial order on descriptions. We details in this sections the different notions related to pattern setups. Definition 3.1. A description space; called also description language, pattern space or pattern language; is any poset D :" pD, Ďq. Elements of D are called descriptions or patterns. For any c, d P D, c Ď d should be read as "c is less restrictive than d" or "c subsumes d".

Definition 3.2. A pattern setup is a triple P " pG, D, δq where G is a set (of objects), D is a description space and δ : G Ñ D defines a mapping that takes each object g P G to its description δpgq P D. Let g P G and d P D be an object and a description, respectively. We say that object g realizes description d or description d hold for or cover object g iff d Ď δpgq.

Example 3.3. Consider the pattern setup P " pG, D, δq in Fig. 4. We have G " tg i u 1ďiď4 . The description space is the set of nonempty words on the alphabet ta, b, cu (i.e. ta, b, cu `) ordered by the relationship "is substring of" Ď. The mapping δ asso- ciates to each objects in G its word in the description space. For instance δpg 1 q " "cab".

G a b c g 1 ˆˆĝ 2 ĝ3 ĝ4 ˆFigure 3. Formal Context pG, M, Iq with G " tg i u 1ďiď4 and M " ta, b, cu. G δp¨q g 1 "cab" g 2 "cbba" g 3 "a" g 4 "bbc" b c a bc bb cb ba ab ca bbc cbb bba cab cbba H tg 1 u tg 2 u tg 4 u tg 1 , g 2 , g 3 u tg 2 , g 4 u tg 1 , g 2 , g 4 u
The diagram in the center of Fig. 4 depicts the Hasse Diagram of the poset pÓ δrGs, Ďq with δrGs " t"cab", "cbba", "a", "bbc"u. In other words, it depicts the set of descriptions d P D holding for at least one object in G. It is clear that the description "ca" holds for g 1 since "ca" Ď "cab". However, description "cb" does not hold for g 1 since "cb" is not a substring of "cab". More generally, descriptions holding for g i is the principal filter of δpg i q (i.e. Ó δpg i q). For instance, the set of descriptions holding for g 1 is given by Ó δpg 1 q " t"a", "ca", "ab", "cab"u.

Example 3.4. Consider the pattern setup P " pG, D, δq presented in Fig. 5 (left). The set of objects is G " tg i u 1ďiď4 and the description space D is the powerset ordered by set inclusion p℘pMq, Ďq (i.e. itemsets) with M " ta, b, cu. Again descriptions holding for g 4 are all itemsets included in δpg 4 q " tb, cu (i.e. Ó δpg 4 q " tH, tbu, tcu, tb, cuu).

On Extent and Cover Operators

We have seen that the relation "realizes" build a binary relation between objects and descriptions. Based on this binary relation, two key operators, namely extent and cover are derived (see Definition 3.5 and 3.6).

Definition 3.5. The extent operator, denoted by ext, is the operator that takes each description d P D to the subset of objects in G realizing it:

ext : D Ñ ℘pGq, d Þ Ñ tg P G | d Ď δpgqu
The size of extpdq is called the support of d, i.e. support : d Þ Ñ |extpdq|.

Note 11. Please note that for any S Ď D, we denote extrSs " textpdq | d P Su.

Definition 3.6. The cover operator, denoted by cov, takes each subset of objects A Ď G to the set of common descriptions in D covering all of them:

cov : ℘pGq Ñ ℘pDq, A Þ Ñ δrAs " td P D | p@g P Aq d Ď δpgqu
Example 3.7. Consider the pattern setup presented in Example 3.3. We have: extp"bb"q " tg 2 , g 4 u and covptg 2 , g 4 uq "Ó δpg 2 qX Ó δpg 4 q " t"b", "bb", "c"u. Example 3.9. The poset of definable sets pP ext , Ďq associated to the pattern setup presented in Example 3.3 is depicted in Fig. 4 (right). For example, it is clear that tg 2 , g 4 u is definable since extp"bb"q " tg 2 , g 4 u. However, there is no description which extent is exactly tg 1 , g 2 u, hence tg 1 , g 2 u will be said non-definable. Still, tg 1 , g 2 u is coverable since g 1 and g 2 share at least one common descritpion (i.e. covptg 1 , g 2 u " t"a", "b", "c"u ‰ H). One should note also that tg 3 , g 4 u is non-coverable since they share no common symbol and the empty string is excluded from the pattern space.

An important property arising directly from the definition of both ext and cov is given in Proposition 3.10. It tells that: on the one hand, the more restrictive is a description, the less it covers objects in the database. On the other hand, the bigger is a set of objects the less they share descriptions in common.

Proposition 3.10. Operators ext and cov are order-reversing:

p@c, d P Dq c Ď d ñ extpdq Ď extpcq p@A, B Ď Gq A Ď B ñ covpBq Ď covpAq
Proof. We have:

(1) Let A Ď B Ď G, let d P covpBq, thus p@g P Bq d Ď δpgq. Since A Ď B, we conclude that p@g P Aq d Ď δpgq that is d P covpAq. Thus covpBq Ď covpAq.

(2) Let c, d P D such that c Ď d. Let g P extpdq, that is d Ď δpgq thus c Ď δpgq; that is g P extpcq. We conclude that extpdq Ď extpcq. This concludes the proof.

Note 13. We have seen in Proposition 3.10 that mappings ext and cov are order reversing. Hence, one could think that pext, covq may form some Galois connection1 . However, it is not the case since ext associate an extent to one description while cov outputs a set of descriptions rather than one. In other words, these two mappings are not compatibles. Yet, we will see in next section that ext will be involved into a Galois connection when the considered pattern setup verifies additional properties (i.e. the pattern setup is a pattern structure [START_REF] Ganter | Pattern Structures and Their Projections[END_REF]). Mapping cov will also be involved in another Galois connection in Section 8. We say that descriptions c, d P D are equivalent if c Ñ d and d Ñ c and we have extpcq " extpdq. Dual definition can be given for the equivalence between object sets. Note 14. Please note that if d Ď c and since ext is an order-reversing mapping, we have c Ñ d. Regarding this observation, there is two types of implications between descriptions: (i) implications deduced directly from Ď and (ii) implications that are dependent on the pattern setup. While the former implications are intrinsic to the description space, the latter are more important since they are those who enclose the knowledge hidden in the pattern setup.

Example 3.12. In the pattern setup presented in Example 3.3 and Fig. 4, we have extp"bb"q " tg 2 , g 4 u and extp"c"q " tg 1 , g 2 , g 4 u. Hence, we have "bb" Ñ "c" or in other words in every string containing "bb" in the pattern setup contains also "c". Proposition 3.13 gives characterizations of the set extrcovpAqs and covpextpdqq for A Ď G and d P D. This proposition will be useful later in this paper.

Proposition 3.13. For A Ď G and d P D:

extrcovpAqs " tE P P ext | A Ď Eu "Ò A X P ext covpextpdqq " tc P D | extpdq Ď extpcqu " tc P D | d Ñ cu
Proof. We show the two equations separately:

(1) Let E Ď G, we have: Example 3.14. Consider the pattern setup presented in Example 3.3 and its associated pP ext , Ďq depicted in Fig. 4 (right). We have: extp"bb"q " tg 2 , g 4 u and covptg 2 , g 4 uq " t"b", "bb", "c"u. Hence: ' extrcovptg 2 , g 4 uqs " textp"b"q, extp"bb"q, extp"c"qu " ttg 1 , g 2 , g 4 u, tg 2 , g 4 uu.

E P extrcovpAqs ô pDd P covpAqq E " extpdq ô pDd P D@g P Aq d Ď δpgq ô pDd P Dq A Ď extpdq " E ô E P P ext X Ò A We conclude that extrcovpAqs " tE P P ext | A Ď Eu "Ò A X P ext ( 
' covpextp"bb"qs " covptg 2 , g 4 uq " t"b", "bb", "c"u.

A Minimal Representation of a Pattern Setup

An important notion analogous to what is called representation context in pattern structures (see [START_REF] Ganter | Pattern Structures and Their Projections[END_REF]; [START_REF] Buzmakov | Revisiting Pattern Structure Projections[END_REF]) is introduced in Theorem 3.17. Technically, such a representation does not provide a practical way to explore definable sets of an arbitrary pattern setups, but helps to simulate definable sets search space of a pattern setup independently from the description space. Before introducing the Theorem, we present Proposition 3.15.

Proposition 3.15. Let G be a non empty finite set and let S Ď ℘pGq, we have DP a pattern setup such that S " P ext ðñ p@g P Gq č pÒ g X Sq P S Proof. Before showing the equivalence let us prove the following property:

p@g P Gq Ş pÒ g X P ext q " extpδpgqq P P ext (1)

Recall that extrcovptguqs "Ò g X P ext (See proposition 3.13). Let g P G, we have δpgq P covptguq, thus extpδpgqq P extrcovptguqs. Let us show that extpδpgqq is a lower bound of extrcovptguqs. We have: covptguq " td P D | d Ď δpgqu. Thus, @d P covptguq : d Ď δpgq. Since ext is an order reversing operator, we obtain: @A P extrcovptguqs : extpδpgqq Ď A. Thus, extpδpgqq is the smallest element of extrcovptguqs. That is Ş pÒ g X P ext q " extpδpgqq. We show now the two implications independently: (ñ) Let S " P ext for some pattern setup P. Using eq. ( 1), Ş pÒ g X Sq P S. (ð) Let S Ď ℘pGq for which @g P G we have Ş pÒ g X Sq P S. Let us now define the following pattern setup:

P " ´G, pS, Ěq, δ : g Þ Ñ č pÒ g X Sq

Let

A P S be a description, we have: extpAq " tg P G | Ş pÒ g X Sq Ď Au. Let us show that extpAq " A by showing double inclusion: (1) Let g P A, thus A P pÒ g X Sq. It follows that Ş pÒ g X Sq Ď A. We conclude that g P extpAq. Therefor A Ď extpAq. (2) Let g P extpAq, thus Ş pÒ g X Sq Ď A. Since @B PÒ gXS we have g P B, we have g P Ş pÒ gXSq, that is g P A. We conclude that extpAq Ď A. Both inclusion leads us to have p@A P Sq extpAq " A. We conclude that extrSs " S. In other words, P ext " S. This concludes the proof.

Example 3.16. Proposition 3.15 tells that not all families of subsets of G could be seen as a set of extents of some pattern setup. Consider the poset depicted in Fig. 2 (4) where G " tg 1 , g 2 , g 3 , g 4 u and S " ttg 1 , g 2 u, tg 1 , g 3 u, tg 1 , g 2 , g 3 u, tg 1 , g 2 , g 3 , g 4 uu can never be seen as a P ext for some pattern setup P. Indeed, Ò g 1 X S " ttg 1 , g 2 u, tg 1 , g 3 uu whose intersection is not in S.

Theorem 3.17. For any pattern setup P, the pattern setup RpPq given by RpPq " ´G, pP ext , Ěq, g Þ Ñ č pÒ g X P ext q īs called the minimal representation of P and we have RpPq ext " P ext .

Proof. Theorem 3.17 is a corollary of Proposition 3.15. Indeed, the pattern setup RpPq is the same as the one built in the proof of Proposition 3.15 pðq since P ext is a set system verifying the property p@g P Gq Ş pÒ g X P ext q P P ext (i.e. implication (ñ)). We have RpPq ext " P ext . Moreover, this representation is said to be minimal since any proper subposet of pP ext , Ěq will drop at least one definable set.

Pattern Structures

Pattern structures were introduced in Ganter and [START_REF] Ganter | Pattern Structures and Their Projections[END_REF]. They require that every set of objects has a greatest common description (least general generalization). A formal definition is given in Definition 4.1. Pattern structures provide a very strong tool to formalize a large class of pattern languages [START_REF] Kuznetsov | Pattern Structures for Analyzing Complex Data[END_REF]. For instance, pattern setups over the language of itemsets [START_REF] Ganter | Formal Concept Analysis[END_REF], intervals [START_REF] Kaytoue | Revisiting Numerical Pattern Mining with Formal Concept Analysis[END_REF], convex polygons [START_REF] Belfodil | Mining Convex Polygon Patterns with Formal Concept Analysis[END_REF], sequence sets [START_REF] Buzmakov | On mining complex sequential data by means of FCA and pattern structures[END_REF] 2 , and graph sets 2 [START_REF] Kuznetsov | Learning of Simple Conceptual Graphs from Positive and Negative Examples[END_REF]) are all pattern structures. Definition 4.1. A pattern setup P " pG, D, δq is said to be a pattern structure iff every subset of objects has a greatest common description. Formally: p@S Ď δrGsq S does have a meet ę S

Example 4.2. The pattern setup presented in Example 3.4 and Fig. 5 is a pattern structure. Indeed, since the description space is the powerset lattice p℘pta, b, cuq, Ďq (i.e a complete lattice) then every subsets S Ď δrGs Ď D does have a meet which is the set intersection Ş S. However, the pattern setup P presented in Example 3.3 and Fig. 4 is not a pattern structure. Indeed, the set of common descriptions covptg 2 , g 4 uq " t"b", "bb", "c"u does not have a maximum (i.e. tδpg 2 q, δpg 4 qu does not have a meet) since t"b", "bb", "c"u has two maximal elements.

One can define a new operator, namely the intent, in a pattern structure thanks to the existence of the meet.

Definition 4.3. The intent operator, denoted by int, is the operator that takes each subset of objects A Ď G to the greatest common description in D covering them (i.e. the maximum of covpAq). Formally:

int : ℘pGq Ñ D, A Þ Ñ inf δrAs " ę δrAs
Note 15. In a pattern structure, the pair of operators pext, intq forms a Galois connection between posets p℘pGq, Ďq and pD, Ďq. Thus, ext ˝int and int ˝ext form closure operators (cf. Proposition 8 in [START_REF] Ganter | Formal Concept Analysis[END_REF] book) on the two posets respectively. Thanks to this Galois Connection, one can define a complete lattice based on the the closed elements.

Definition 4.4. Let P " pG, D, δq be a pattern structure. The (pattern) concept lattice associated to P is the complete lattice denoted by BpPq " pBpPq, ďq. Elements of BpPq are called (pattern) concepts and are given by: pA, dq P ℘pGq ˆD s.t. A " extpdq and d " intpAq

The concepts are ordered by ď as follows:

pA 1 , d 1 q ď pA 2 , d 2 q ô A 1 Ď A 2 ô d 2 Ď d 1 .
Note 16. Two complete lattices isomorphic to the concept lattice can be derived: (1) The poset of definable sets pP ext , Ďq which on a Ş -structures (i.e. Moore family, closure system) in the powerset lattice p℘pGq, Ďq. Note that definable sets are the fixpoints of the closure operator ext ˝int.

G δp¨q g 1 ta, b,
(2) The poset of closed patterns pD δ , Ěq with D δ " intr℘pGqs " t Ű δrAs | A Ď Gu is a complete lattice. Elements of D δ are called closed patterns since they are fixpoints of the closure operator int ˝ext.

Another important remark about the closure operator ext ˝int is that it takes to a subset of object A Ď G the smallest definable set E P P ext enclosing it. Formally: Proposition 4.5. Let P " pG, pD, Ďq, δq be a pattern structure, we have:

ext ˝int : ℘pGq Ñ ℘pGq, A Þ Ñ č E P P ext | A Ď E ( " č pÒ A X P ext q
Proof. This result is straightforward from the fact that ext ˝int is a closure operator. Indeed, according to Theorem 1 in Ganter and Wille (1999) (page 8), we have P ext " text ˝intpAq | A Ď Gu is closure system. By application of the theorem we have:

ext ˝int : A Þ Ñ Ş tE P P ext | A Ď Eu.
Example 4.6. Consider again the pattern structure P " pG, p℘pta, b, cuq, Ďq, δq presented in Fig. 5. Since the meet is the set intersection we have:

intptg 1 , g 4 uq " δpg 1 q X δpg 4 q " ta, b, cu X tb, cu " tb, cu

The concept lattice BpPq is depicted in Fig. 5 (right). One should note the set of definable sets pP ext , Ďq can be deduced directly from the concept lattice by taking extents of the pattern concepts. It is important to highlight the fact that that pattern structure P is derived from the formal context K " pG, M, Iq presented in Fig. 3 where δ is given by δ : g Þ Ñ tm P M | g I mu.

Definition 4.1 follows [START_REF] Lumpe | Pattern Structures and Their Morphisms[END_REF]. The original equivalent definition of the pattern structure [START_REF] Ganter | Pattern Structures and Their Projections[END_REF] requires that the description space must be a complete lattice. Theorem 4.7 builds a bridge between meetsemilattices and pattern structures over finite set of objects or more generally between pattern structures and complete lattices.

Theorem 4.7. Let D " pD, Ďq be a poset, the following properties are equivalent: ' For any finite set G ‰ H and any δ P D G , pG, D, δq is a pattern structure (where D G denotes the set of all mappings δ : G Ñ D). ' D is a an upper-bounded meet-semilattice (i.e. H has also a meet). For an arbitrary set G, the following properties are equivalent: ' For any set G ‰ H and any δ P D G , pG, D, δq is a pattern structure. ' D is a complete lattice.

Proof. Let us show both implications for a finite G:

ñ The empty set has a meet in D since δrHs " H has a meet. Thus D has a top element J " Ů D " Ű H. Moreover, let S Ď D be a finite set, one can build a finite set G such that δrGs " S. Since P is a pattern structure then S " δrGs has a meet. We conclude that D is an upper-bounded meet-semilattice. ð Let P " pG, D, δq be a pattern setup. Any subset of δrGs is finite subset of D and thus has a meet (including the H since D has its top element). Let us now consider the case of arbitrary set G: ñ Let S Ď D, one can build G such that δrGs " S. Since P is a pattern structure then δrGs " S has a meet. We conclude that D is a complete lattice. ð Let P " pG, D, δq be a pattern setup. Any subset of δrGs is a subset of D and thus has a meet (including the H since D has its top element). This concludes the proof.

The state-of-the-art abounds with examples of descriptions spaces that are complete lattices that someone can use to build pattern structures:

' Itemset pattern structure [START_REF] Ganter | Formal Concept Analysis[END_REF]. The description space is the Boolean lattice p℘pM q, Ďq where M is a non empty finite set of attributes. ' Interval pattern structure [START_REF] Kaytoue | Revisiting Numerical Pattern Mining with Formal Concept Analysis[END_REF]. The description space is the complete lattice pCpRq m , Ěq3 , where CpRq m represents the set of all possible axis-parallel m-dimensional hyperrectangles in R m (m is the number of attributes) and Ď represents the hyperrectangle inclusion. ' Convex sets pattern structure [START_REF] Belfodil | Mining Convex Polygon Patterns with Formal Concept Analysis[END_REF]. The description space is the complete lattice of all convex sets in R m ordered by inclusion pCpR m q, Ěq. ' Partition pattern structure [START_REF] Codocedo | Lattice-based biclustering using Partition Pattern Structures[END_REF]. The description space is the complete lattice of all partitions pBpEq, Ďq of some finite set E. The order Ď is finer-than order relation between partitions. That is for P 1 , P 2 P BpEq two partitions, P 1 Ď P 2 if and only p@E 1 P P 1 DE 2 P P 2 q E 1 Ď E 2 .

Note 17. Before finishing this section, let us highlight some key differences between arbitrary pattern setups and pattern structures. It is clear that the main difference is the fact that the greatest common description does not necessarily exist for any subsets of objects in an arbitrary pattern setup. This implies that the set of definable sets pP ext , Ďq is not necessarily closed under intersection in an arbitrary pattern setup as shown in Fig. 4. One should also note that, conversely to pattern setups where some subsets can be even non-coverable (see Example 3.9), In Pattern Structures, all subsets A Ď G are coverables since covpAq Ě covpGq ‰ H. In fact, G is always definable since ext p Ű δrGsq " G.

From Closed Patterns to Support-Closed Patterns

In pattern mining, another notion of closedness is generally considered [START_REF] Yan | CloSpan: Mining Closed Sequential Patterns in Large Datasets[END_REF][START_REF] Wang | BIDE: Efficient Mining of Frequent Closed Sequences[END_REF]. Definition 5.1 defines formally such a notion dubbed support-closedness by [START_REF] Boley | Listing closed sets of strongly accessible set systems with applications to data mining[END_REF].

Definition 5.1. A description d is said to be support-closed in a pattern setup iff:

p@c P Dq d Ĺ c ùñ extpcq Ĺ extpdq.

We will see below that this notion is linked to maximal common descriptions.

On Maximal Common Descriptions

In pattern structures, support-closed patterns coincide exactly with closed descriptions (i.e. fixpoints of int ˝ext) since int takes a subset of objects to the greatest common description. However, when we consider an arbitrary pattern setup, such a maximum common description may not exist (see Example 4.2). One straightforward generalization is to associate to a subset of object the set of its maximal common descriptions (see Definition 5.2). Proposition 5.3 builds then a bridge between support-closed patterns and maximal common descritpions.

Definition 5.2. The set of maximal covering (common) descriptions of a subset A Ď G, denoted by cov ˚pAq, is given by:

cov ˚: A Þ Ñ maxpcovpAqq " maxpδrAs q Proposition 5.3. A description d P D is support-closed iff pDA Ď Gq d P cov ˚pAq.
The set of all support-closed descriptions is given by: D ˚" Ť AĎG cov ˚pAq.

Proof. We prove the two implications: pñ ñ ñq Let d P D be a support-closed description and let A " extpdq. Example 5.4. Reconsider Example 3.3, we have covptg 2 , g 4 uq " t"b", "bb", "c"u. Hence, the maximal covering ones are given by cov ˚ptg 2 , g 4 uq " t"bb", "c"u.

Note 18. In a pattern structure we have: cov ˚: ℘pGq Ñ ℘pDq, A Þ Ñ tintpAqu.

On Upper-Approximation Extents

Going back to pattern structures, the closure operator ext˝int takes any subset A Ď G to the smallest definable set extpintpAqq enclosing it as stated by Proposition 4.5. This fact is used to enumerate all definable sets via the closure operator (see [START_REF] Kuznetsov | A Fast Algorithm for Computing All Intersections of Objects in a Finite Semi-lattice[END_REF][START_REF] Kuznetsov | Learning of Simple Conceptual Graphs from Positive and Negative Examples[END_REF]). From Rough Set Theory [START_REF] Pawlak | Rough sets[END_REF] perspective, the set extpintpAqq can be seen as the upper approximation of an arbitrary and potentially non definable set A in P ext . However, when it comes to an arbitrary pattern setup, a non-definable set A may have many minimal definable sets enclosing it or no one if it is non-coverable (see Example 5.6). Definition 5.5 formalizes this second generalization.

Definition 5.5. The set of upper-approximation extents of a subset A Ď G, denoted by A, is given by the set of minimal definable sets in P ext enclosing A:

A " minptE P P ext | A Ď Euq " minpÒ A X P ext q.

Example 5.6. Consider Example 3.3, the upper approximations of subset A " tg 2 , g 4 u is given by A " tAu since A is definable. For the set B " tg 1 , g 2 u, we have B " ttg 1 , g 2 , g 3 u, tg 1 , g 2 , g 4 uu that is B has two upper-approximation extents. For C " tg 3 , g 4 u, it is clear that there is no definable set in P ext enclosing C (see Fig. 4 (right)), thus C " H. Note 19. According to Proposition 3.13, we have p@A Ď Gq A " minpextrcovpAqsq. Moreover, in a pattern structure, A " textpintpAqqu for all A Ď G.

Linking Upper-Approximation Extents to Support-Closed Patterns.

We have seen before that on the one hand cov ˚operator is somehow a generalization of pattern structure int operator in an arbitrary pattern setup and on the other hand, upper-approximation extents operator is a generalization of pattern structure closure operator ext˝int. Indeed, in a pattern structure we have for A Ď G, cov ˚pAq " tintpAqu and A " textpintpAqqu. That is: A " extrcov ˚pAqs. One judicious question is that, does this property still hold for an arbitrary pattern setup? Let us analyze the following example.

Example 5.7. Reconsider Example 3.3 and the definable set A " tg 2 , g 4 u. We have covpAq " t"b", "bb", "c"u and cov ˚pAq " t"bb", "c"u. Thus on the one hand, we have: extrcov ˚pAqs " textp"bb"q, extp"c"qu " ttg 2 , g 4 u, tg 1 , g 2 , g 4 uu but on the other hand, since A is definable, we have A " ttg 2 , g 4 uu.

Hence, according to Example 5.7, it is clear that the property A " extrcov ˚pAqs does not hold in a pattern setup. In fact, things can go even worse when the description space is an arbitrary infinite poset. Let us analyze for that a second Example:

Example 5.8. Let be the poset pD, Ďq presented in Fig. 6 where:

' D " ta, bu Y tc i | i P Nu, ' p@i P Nq c i Ď c i`1 , c i Ď a and c i Ď b.
Let be the pattern setup P " pG, pD, Ďq, δq such that G " tg 1 , g 2 u, δpg 1 q " a and δpg 2 q " b. It is clear that covptg 1 , g 2 uq " tc i | i P Nu. Yet, cov ˚ptg 1 , g 2 uq " H since covptg 1 , g 2 uq is an infinitely ascending chain. Therefore, there is no maximal common description covering both g 1 and g 2 . Thus, given A Ď G it seems that there is no link between cov ˚pAq and A in an arbitrary pattern setup pG, D, δq. In fact, this even mean that considering only maximal common descriptions to look for all possible definable sets is totally a wrong idea since maximal covering descriptions do not hold all the information about definable sets. Indeed, while extrDs " ttg 1 u, tg 2 u, tg 1 , g 2 uu, the extents obtained from the set of support-closed patterns D ˚is given by: extrD ˚s " ttg 1 u, tg 2 uu Ĺ extrDs Going back to the case of pattern structures, there is a strong link between int and cov. Indeed, p@A Ď Gq covpAq "Ó intpAq. In other words, knowing the intent of a subset of objects allows us to know every single common description to all objects in A. If we had want to generalize such a property for an arbitrary pattern setup we would have expected: p@A Ď Gq covpAq "Ó cov ˚pAq. In the sense that knowing maximal covering descriptions allows to deduce all the covering ones. Such a property does not hold for any pattern setup as shown in Example 5.8. This property is directly linked to what is called multilattices which we revisit in the next section.

Multilattices

The term multilattice was introduced for the first time by [START_REF] Benado | Les ensembles partiellement ordonnés et le théorème de raffinement de Schreier I Théorie des multistructures[END_REF]. This notion have not received much interest for a long period, but have been unearthed and revisited in the beginning of the 21 st century by [START_REF] Martínez | Multilattices via multisemilattices[END_REF]; [START_REF] Cordero | A new algebraic tool for automatic theorem provers[END_REF]; [START_REF] Martínez | Generalizations of lattices via non-deterministic operators[END_REF] for other purposes. We will start here by presenting multilattices following Martinez's et al. We will then understand the main difference between Benado's multilattices and (Martinez's et al.) multilattices afterward.

Before giving the formal definition of multilattices, we start by defining the notion of multi-infimum and multi-supremum. In the following section pP, ďq denotes an arbitrary poset and S Ď P denotes an arbitrary subset. Definition 6.1. A multi-infimum (resp. multi-supremum) of S is a maximal (resp. minimal) element of S (resp. S u ). The set of multi-infima (resp. multi-suprema) of S is denoted by minf(S) (resp. msup(S)) and: minfpSq " maxpS q msuppSq " minpS u q

We say then that: ' S has all its multi-infima iff: S "Ó maxpS q "Ó minfpSq.

' S has all its multi-suprema iff: S u "Ò minpS u q "Ò msuppSq.

Multilattices, as their names imply, are related in their definition with lattices. Simply put, multilattices are a relaxation of lattices where rather than demanding that the set of lower (resp. upper) bounds of each nonempty finite subset has its infimum (resp. supremum), multilattices demand that the set of lower (resp. upper) bounds of each nonempty finite subset has all its multi-infima (resp. multi-suprema). Definition 6.2. A poset pP, ďq is said to be:

' A meet-multisemilattice if for all nonempty finite subsets S Ď P , S has all its mutli-infima. ' A join-multisemilattice if for all nonempty finite subsets S Ď P , S has all its mutli-suprema. ' A multilattice if it is both a meet-multisemilattice and a join-multisemilattice. ' A complete meet-multisemilattice if for all subsets S Ď P , S has all its mutli-infima. ' A complete join-multisemilattice if for all subsets S Ď P , S has all its mutli-suprema. ' A complete multilattice if it is both a complete meet-multisemilattice and a complete join-multisemilattice.

It is clear that all finite posets, or more generally finite-chain posets, are complete multilattices. More precisely, posets having the ascending (resp. descending) chain condition are complete join-multisemilattices (resp. meet-multisemilattices). It is also clear that all (complete) (semi)lattices are (complete) multi(semi)lattices since requiring that a subset S Ď P to have all its multi-infima is weaker than requiring it to have an infimum. One should note also that since H " H u " P then we have:

' If pP, ďq is a complete meet-multisemilattice then P "Ó maxpP q. ' If pP, ďq is a complete join-multisemilattice then P "Ò minpP q.

When we compare with lattices (cf. note 8), two questions straightforwardly raise: ' Are pair of elements the building blocks of a multilattice? ' Are all complete semimultilattices complete multilattices? The followings sections answers negatively to these both questions.

On Benado's Multilattices

As said before, multilattices ware introduced for the first time by [START_REF] Benado | Les ensembles partiellement ordonnés et le théorème de raffinement de Schreier I Théorie des multistructures[END_REF]. However, Benado defined multilattices as follow: a poset pP, ďq is said to be multilattice if and only if all pairs of elements have all their multi-infima and all their multisuprema. Formally: @x, y P P : tx, yu "Ó minfptx, yuq and tx, yu u "Ò msupptx, yuq

We will call here posets verifying such a property Benado's multilattices. As clearly explained in [START_REF] Martínez | Generalizations of lattices via non-deterministic operators[END_REF], such a property is not sufficient to have all non empty finite subsets have their multi-infima and multi-suprema. This is in contrast to lattices where it suffices to have a meet and join for all subsets of two elements to have the meet and join for all non empty finite subsets. For instance, one could verify that the poset depicted in Fig. 7 is a Benado's multilattice. Yet, it is not a multilattice according to Definition 6.2. For instance, the set ta, b, cu does not have all its multi-infima. Indeed, ta, b, cu " tabc i | i P Nu, however, maxpta, b, cu q " H. It follows that ta, b, cu ‰Ó maxpta, b, cu q. . For all x, y in this poset, tx, yu has all its multi-infima. That is, this poset is a multistructure following [START_REF] Benado | Les ensembles partiellement ordonnés et le théorème de raffinement de Schreier I Théorie des multistructures[END_REF], however it is not a multilattice following our definition.

On Complete Multisemilattices

We have seen that all complete semilattices are complete lattices. However, this property no longer holds for complete multisemilattices. In fact one could have complete meet-multisemilattice that is even not a join-multisemilattice and vice versa. For instance, Fig. 6 depicts a complete join-multisemilattice that is even not a meetsemimultilattice. For instance, the set of lower bounds ta, bu " tc i | i P Nu is an infinitely ascending chain and thus maxpta, bu q " H. Thus, ta, bu ‰Ó maxpta, bu q. In other words, ta, bu does not have all its multi-infima.

On chain-completeness and complete multilattices

Complete multilattices are linked chain-complete posets. Before giving this relationship, let us recall the definition of chain-completeness. Definition 6.3. A poset pP, ďq is said to be:

' Chain-complete if all chains in P , including H, has its join. ' Dually chain-complete if all chains in P , including H, has its meet. ' Doubly chain-complete if it is chain-complete and dually chain-complete.

Since the empty set matches the definition of a chain-complete, all chain-complete posets are bounded. An important theorem linking complete lattices to chaincompleteness is given in Theorem 6.4. Theorem 6.4 (Theorem 3.24 from [START_REF] Roman | Lattices and Ordered Sets[END_REF]). A lattice pP, ďq is a complete lattice if and only if it is chain-complete.

One straightforward question is what is the relationship between complete multilattices and chain-complete posets. The answer is given in Theorem 6.5. Theorem 6.5. Under Axiom of Choice (AC) assumption4 , we have:

' All chain-complete posets are complete meet-multisemilattice. ' All dually chain-complete posets are complete join-multisemilattice. ' All doubly chain-complete posets are complete multilattices. Proof. Before proving the theorem, we attract the reader to Zorn's Lemma. This lemma states that if every chain in a poset pP, ďq has an upper-bound, then pP, ďq has a maximal element. Formally: p@C P C pP qq C u ‰ H ùñ maxpP q ‰ H A stronger statement, yet equivalent, of Zorn's Lemma say even that:

p@C P C pP qq C u ‰ H ùñ P "Ó maxpP q (3) 
Zorn's Lemma need to be considered as an axiom since it is equivalent to the well-known axiom of choice (AC).

Let be now a chain-complete poset pP, ďq, we need to show that pP, ďq is a complete meet-multisemilattice. Let S Ď P be an arbitrary subset of P . We show here that S "Ó maxpS q. It is straightforward by definition and independently from any assumption that Ó maxpS q Ď S . It remains to show that S ĎÓ maxpS q. Since pP, ďq is chain-complete, then every C Ď S has its join Ž C P P . Hence, according to Lemma 2.13 and since C Ď S then Ž C P S . Thus every chain C in the sub-poset pS , ďq has an upper bound Ž C P S . According to Zorn's Lemma (cf. equation 3), we have S "Ó maxpS q. Hence, pP, ďq is a complete meet-multisemilattice.

In order to demonstrate the other statements of the theorem, one can follow the same steps to show that S u "Ò minpS u q using Zorn's Lemma on the dual poset of dually chain-complete posets.

Note 20. It is important to note that double chain-completeness is only a sufficient condition (under the Axiom of Choice) to have a complete multilattice but not a necessary one. Indeed, one can show that the poset depicted in Figure 8 is a complete multilattice (Remark that @i P N : c i ď a i , c i ď c i`1 , a i ď e 0 and a i ď e 1 ) but not chain-complete since the chain C " tc i | i P Nu has not a join. Indeed, C u " te 0 , e 1 u which is an antichain (i.e. C u has two minimal elements).

Pattern Multistructure

Definition 7.1 proposes a new structure that lies between pattern setups which rely only on arbitrary posets with no additional property and pattern structures which demand a meet for every subset of δrGs.

Definition 7.1. A pattern setup P " pG, pD, Ďq, δq is said to be a pattern multistructure if every subset of δrGs has all its multi-infima, i.e. : p@A Ď Gq covpAq "Ó cov ˚pAq A pattern multistructure adds an additional condition on a pattern setup which is the following: knowing maximal common descriptions covering all elements of a set of objects A allows us to deduce using the order Ď every single covering description. Please note that using the notation of multi-infima, cov ˚pAq is given by minfpδrAsq. It is clear that all pattern structures are by definition pattern multi-structures.

Graphs ordered by subgraph isomorphism relation introduced in Kuznetsov (1999) induce a pattern multistructure on the set of graphs, but not a pattern structure (a pattern structure is induced on sets of graphs incomparable wrt. subgraph isomorphism). Same remark holds for sequential patterns [START_REF] Buzmakov | On mining complex sequential data by means of FCA and pattern structures[END_REF][START_REF] Codocedo | A Proposition for Sequence Mining Using Pattern Structures[END_REF]. This is under the assumption of the existence of a largest element J subsumed by all sequences/graphs (see Example 7.2).

Note 21. Note that in a pattern multistructure the empty set H Ď D has all its multiinfima. Since H " D, the set D has all its maximal elements (i.e. D "Ó maxpDq) or in other words every chain in pD, Ďq is upper-bounded.

Example 7.2. Reconsider the pattern setup presented in Example 3.3. Since only finite sequences are considered in the description space, we have: cov ˚pHq " H even if covpHq " D. Thus, the considered pattern setup in Example 3.3 is not a pattern multistructure due to the empty set (recall that for a nonempty A Ď G, δrAs is finite and thus δrAs has all its multi-infima). The common trick to handle the empty set is to enrich D with an additional largest element J fi Ž D if it does not exist. In such a case, we have cov ˚pHq " tJu.

Let us now reconsider the question investigated at the end of section 5: "What is the link between maximal covering descriptions and upper-approximations extents in a pattern multistructure". Before stating Theorem 7.4 answering this question, we shall state the following Lemma.

Lemma 7.3. Let pP, ďq and pQ, ďq be two posets and let f : P Ñ Q be an orderreversing mapping. We have for any S Ď P that Ò f rÓ Ss "Ò f rSs.

Proof. Recall that Ò and Ó are closure operator (cf. Lemma 2.18). Let us start by showing that Ò f rSs ĎÒ f rÓ Ss. Since S ĎÓ S, we have f rSs Ď f rÓ Ss. Since Ò is monotone, we have Ò f rSs ĎÒ f rÓ Ss. It remains to show that Ò f rÓ Ss ĎÒ f rSs. Let u PÒ f rÓ Ss, that is Dv P f rÓ Ss s.t. v Ď u. Since v P f rÓ Ss, then Dx PÓ S s.t. v " f pxq. Hence Dy P S s.t. x ď y. Using the fact that f is an anti-embedding, we obtains that f pyq Ď f pxq Ď u. In other words, Dw P f rSs s.t. w Ď u. This is equivalent to say that u PÒ f rSs. We conclude hence that Ò f rÓ Ss ĎÒ f rSs.

Theorem 7.4. For any pattern multistructure P we have:

p@A Ď Gq A " minpextrcov ˚pAqsq
Proof. The proof of the theorem is a straightforward application of Lemma 2.7 and Lemma 7.3. Let A Ď G, since P is a pattern multistructure, then:

covpAq "Ó maxpcovpAqq ñ extrcovpAqs " extrÓ maxpcovpAqqs ñÒ extrcovpAqs "Ò extrÓ maxpcovpAqqs

Since ext : D Ñ ℘pGq is an order reversing, then using Lemma 7.3 we have:

Ò extrÓ maxpcovpAqqs "Ò extrmaxpcovpAqqs ñ Ò extrcovpAqs "Ò extrmaxpcovpAqq ñ minpÒ extrcovpAqsq " minpÒ extrmaxpcovpAqsq Using Lemma 2.7 we obtain minpextrcovpAqsq " minpextrmaxpcovpAqqq. That is, A " minpextrmaxpcovpAqqq.

Another important remark related to Example 5.8 is the fact that the support-closed patterns in a pattern setup does not hold all the information about the definable sets. Theorem 7.5 states that this is no longer the case for pattern multistructures.

Theorem 7.5. Given a pattern multistructure P for which the set of support-closed patterns is D ˚(cf. Proposition 5.3), we have: Proof. Recall that P " pG, D, δq is a pattern multistructure iff any subset S Ď δrGs has all its multi-infima. The proof of this theorem is almost the same as the one of Theorem 4.7 where the existence of the meet is replaced by the existence of all multi-infima.

P ext "
Last but not least, we have seen in section 4 that in the case of a pattern structure, pP ext , Ďq is a complete lattice. One can say that the property of having the infimum in the description space has been transferred to the poset of definable sets thanks to extent operator. When it comes to a pattern setup on finite set of objects, it is clear that pP ext , Ďq is a complete multilattice since it is finite. However, does this property still hold for the case of infinite set of objects? Unfortunately, the answer is negative as stated in Proposition 7.7. This proposition tells also that not all definable sets above A in a pattern multistructure are above at least one upper-approximation of A.

Proposition 7.7. There exists a pattern multistructure P " pG, pD, Ďq, δq such that pP ext , Ďq is not a join-multisemilattice in which: pDA Ď Gq Ò A X P ext ‰Ò A X P ext .

Proof. Consider the pattern setup P " pG, pD, Ďq, δq where pD, Ďq is the complete multilattice depicted in Fig. 9. We have:

' p@i, j P Nq i ď j ô b i Ď a j . ' p@i P Nq b i Ď a α and b i Ď a β . Since pD, Ďq is a complete multilattice (i.e. it is chain-finite), then P is a pattern multistructure. Consider now an infinite set G " tg i | i P Nu Y tg α , g β u. The mapping δ is given by: δpg α q " a α , δpg β q " a β and p@i P Nq δpg i q " a i . To show that the poset pP ext , Ďq is not a join-multisemilattice we need to consider two definable sets in P ext and show that the set of their common upper-bounds in P ext does not have all its minimal elements. Let us compute ext for every d P D:

' extpa α q " tg α u and extpa β q " tg β u. ' p@i P Nq extpa i q " tg i u and p@i P Nq extpb i q " tg α , g β u Y tg j | j ě iu.

Consider now the set of definable sets ttg α u, tg β uu, it is clear that the set of their common upper-bounds (in P ext q is given by:

ttg α u, tg β uu u " tg α , g β u Y tg j | j ě iu | i P N (
The set of upper bounds is hence an infinitely descending chain and hence does not have a minimal element, in other words: minpttg α u, tg β uu u q " H. Hence, pP ext , Ďq is not a join-multisemilattice. The proof of the second part of the proposition is straightforward. Indeed, consider the non-definable set A " tg α , g β u. We do have: Ò A X P ext " extrcovpAqs " tg α , g β u Y tg j | j ě iu | i P N ( . Hence, A " minpÒ A X P ext q " H. That is Ò A X P ext ‰Ò A X P ext .

Pattern Setup and Pattern Multistructure Completions

Example 3.3 presents a pattern setup which is not a pattern structure. However, in FCA and pattern structure literature, it is recurrent to talk about sequential pattern structures [START_REF] Buzmakov | On mining complex sequential data by means of FCA and pattern structures[END_REF][START_REF] Codocedo | A Proposition for Sequence Mining Using Pattern Structures[END_REF]. In fact, instead of sequences, sets of sequences are considered which induce a richer description space. Same trick has been even used in the first paper introducing pattern structures [START_REF] Ganter | Pattern Structures and Their Projections[END_REF]) concerning graph description space ordered by subgraph isomorphism. Such a technique that embeds a poset into another is called a completion (see Definition 2.16). Different natural completions exist in the literature. For instance, the Dedekind-MacNeille completion [START_REF] Davey | Introduction to lattices and order[END_REF] takes an arbitrary poset to the smallest complete lattice containing it. The usual trick used in FCA and Pattern Structure literature to augment a base pattern setup to a pattern structure is tightly linked to the antichain completion presented below.

Definition 8.1. The antichain completion of pP, ďq is the poset pA pP q, őq s.t.:

' A pP q is the set of all antichains of pP, ďq. ' The order ő is given by p@A, B P A pP qq A ő B ôÓ A ĎÓ B.5 ' The order embedding ϕ from pP, ďq to pA pP q, őq is given by ϕ : P Ñ A pP q, a Þ Ñ tau [START_REF] Boldi | On the lattice of antichains of finite intervals[END_REF] and [START_REF] Crampton | The completion of a poset in a lattice of antichains[END_REF] had discussed the properties of such a completion. In fact, when P have the ACC, pA pP q, ďq is a distributive lattice, where the meet and the join are given by S 1 ^S2 " maxpÓ S 1 X Ó S 2 q and S 1 _ S 2 " maxpS 1 Y S 2 q, respectively. Moreover, pA pP q, őq is always a _-semilattice whatever the nature of the poset pP, ďq, but not necessarily a lattice. [START_REF] Boldi | On the lattice of antichains of finite intervals[END_REF] formulated a sufficient and necessary condition in order to have pA pP q, őq be a lattice: @A, B P A pP q DC P A pP q Ó AX Ó B "Ó C.

We take the opportunity here to underline an important link between the antichain completion and multilattices. Before expliciting this link in Propsosition 8.3, let us take a close look to the following Lemma.

Lemma 8.2. Let pP, ďq be an arbitrary poset and let A pP q be the set of its antichain. We have @S Ď P : pDC P A pP qq S "Ó C ñ C " maxpSq.

Proof. The case of S " H is trivial since Ó H " H and maxpHq " H. Let be a nonempty set S Ď P s.t. Proposition 8.3. Let pP, ďq be an arbitrary poset and let pA pP q, őq be its antichain completion: If pA pP q, őq is a lattice then pP, ďq is a meet-multisemilattice. Moreover, if pA pP q, őq has a top element then P "Ó maxpP q.

Proof. Let us start by showing the first property that is if pA pP q, őq is a lattice then pP, ďq is meet-multisemilattice. We have pA pP q, őq is a lattice. Then, following [START_REF] Boldi | On the lattice of antichains of finite intervals[END_REF], we have:

@A Ď A pP q DC P A pP q Ó AX Ó B "Ó C
More generally: @S Ď A pP q finite and nonempty DC P A pP q

č APS Ó A "Ó C
Since C is an antichain, we have C " max p Ş APS Ó Aq (Lemma 8.2), that is: @S Ď A pP q finite and non empty

č APS Ó A "Ó maxp č APS Ó Aq (4) 
Let be S Ď P be a non empty finite subset. We need to show that S has all its multi-infima. That is S "Ó maxpS q. We have S " Ş sPS Ó tsu. Since, pA pP q, őq is a lattice we have according to equation (4):

S " č sPS Ó tsu "Ó maxpS q
For the second part of the proposition, consider that A pP q has a top elements. That is DC P A pP q P "Ó C. Hence, we have P "Ó maxpP q since C is an antichain (Lemma 8.2). In other words, H has all its multi-infima.

Note 22. One should note that the converse of Proposition 8.3. In fact, one can create complete lattices for which the antichain completion is not even a lattice. Fig. 10 depicts such a complete lattice. Indeed, for antichains A " ta i | i P Nu and B " tb i | i P Nu, we have Ó A Ş Ó B " tc i | i P Nu. Hence, there is no antichain D P A pP q s.t. tc i | i P Nu "Ó D making the antichain completion not a meet-semilattice.

Let us now determine int and ext . The previous proof has shown that for A Ď G the meet of δ rAs is maxpδrAsq . i.e.: int pAq " maxpδrAs q " cov ˚pAq For ext operator, let S P ApDq. We have: 

On Pattern Setups Direct Completions

There is a completion that transforms any pattern setup to a pattern structure without demanding any additional property.

Theorem 8.6. The direct completion of P " pG, D, δq is the pattern structure:

P İ " pG, p℘pDq, Ďq, δ İ : g Þ Ñ Ó δpgqq

Where p@S Ď Dq ext İ pSq " Ş extrSs and p@A Ď Gq int İ pAq " covpAq " δrAs . The set of definable sets is given by P İ ext " t Ş S | S Ď P ext u.

Proof. Let us show that the pattern setup P İ is a pattern structure. Let A Ď G.

We need to show that δ rAs has a meet in p℘pDq, Ďq. We have: pH H H, tJ J Juq ptg 1 u, t"cab"uq ptg 2 u, t"cbba"uq ptg 4 u, t"bbc"qu ptg 1 , g 2 u, t"a", "b", "c"uq ptg 2 , g 4 u, t"bb", "c"u ptg 1 , g 2 , g 3 u, t"a"uq ptg 1 , g 2 , g 4 u, t"b", "c"uq ptg 1 , g 2 , g 3 , g 4 u, Hq Example 8.7. Fig. 11 depicts the concept lattice BpP q of the antichain completion of the pattern multistructure P considered in Fig. 4 (i.e., the description space is augmented with the top element J). For any concept pA, Bq, descriptions d P B in bold are those which whose extpdq " A. Please notice that while description "c" has for extent tg 1 , g 2 , g 4 u, description "c" does belong to the concept related to the extent tg 2 , g 4 u.

Another important remark, are the underlined concepts. They represent concepts that are related to the non definable sets in P but still definable in P , i.e. tg 1 , g 2 u and tg 1 , g 2 , g 3 , g 4 u in P ext zP ext . For instance, consider the intent of tg 1 , g 2 u in the completion, each pattern d has extent extpdq Ľ tg 1 , g 2 u. Extent tg 1 , g 2 , g 3 , g 4 u is non-coverable in P and thus int ptg 1 , g 2 , g 3 , g 4 uq " maxpcovptg 1 , g 2 , g 3 , g 4 uqq " maxpHq " H.

Note that while in Example 8.7, the size difference between the set of definable sets in the base pattern setup P ext and the set of definable sets in the antichain completion P ext is not large (i.e. |P ext zP ext | = 2). In some cases, the size of P ext can be exponentially larger than P ext . Consider, for instance, the following example:

Example 8.8. Let n P N with n ě 3. We denote by rns the subset rns " t1, 2, ..., nu. Let P " pG, pD, Ďq, δq be the pattern setup with G " tg i u iPrns , D " ttiu | i P rnsu Y trnsztiu | i P rnsu and the mapping δ : g i Þ Ñ rnsztiu for all i P rns. One can verify that we have P ext " ttg i u | i P rnsu Y tGztg i u | i P rnsu. Indeed, we have:

' p@i P rnsq extprnsztiuq " tg j | rnsztju Ď δpg j qu " tg j | rnsztju Ď rnsztiuu " tg i u. ' p@i P rnsq extptiuq " tg j | tiu Ď δpg j qu " tg j | tiu Ď rnsztjuu " Gztg i u. Hence, we have |P ext | " 2n. However, according to Theorem 8.5, we have

P ext " ! č S | S Ď P ext
) " ℘pGq since P ext contains all the coatoms of ℘pGq (i.e. p@g P Gq Gztgu P P ext ) and the powerset lattice is coatomistic. It follows that |P ext | " 2 n . In other words, P ext is exponentially larger than P ext . One should notice that the new description space associated to P is (order-)isomorphic to p℘prnsq, Ďq.

Conclusion and Discussion

In this paper, we provided a better understanding of the pattern setup framework. We have shown that while pattern structures demand a strong condition on the partially ordered set of descriptions, pattern setups do not require any additional property on the description space, which makes them rather permissive. We have introduced a new framework, namely pattern multistructure, lying between both structures. Informally, pattern multistructures demands that the set of maximal common description resume properly the set of common descriptions of any subset of objects. Analogously to pattern structures, pattern multistructures are tightly linked to multilattices. We have shown also that the usual antichain completion used in FCA literature to transform pattern setups, like sequence of itemsets ones, to pattern structure is applicable if and only if the considered pattern setup is a pattern multistructure.

An important open problem we are thoroughly working on is the following: "Given an arbitrary pattern setup P with a finite set of objects, generate its definable sets exhaustively and irredundantly". If the pattern setup is a pattern structure, the literature abounds of algorithms solving such a problem (e.g. [START_REF] Ganter | Two basic algorithms in concept analysis[END_REF][START_REF] Kuznetsov | A Fast Algorithm for Computing All Intersections of Objects in a Finite Semi-lattice[END_REF][START_REF] Outrata | Fast algorithm for computing fixpoints of Galois connections induced by object-attribute relational data[END_REF]). However, no algorithm exists to solve such a problem for an arbitrary pattern setup. Indeed, the usual solution in FCA is to transform the pattern setup to a pattern structure via a completion (e.g. antichain completion for [START_REF] Kuznetsov | Learning Closed Sets of Labeled Graphs for Chemical Applications[END_REF][START_REF] Buzmakov | On mining complex sequential data by means of FCA and pattern structures[END_REF][START_REF] Codocedo | A Proposition for Sequence Mining Using Pattern Structures[END_REF]). Such a solution could create a (exponentially) larger search space. Other algorithms in the literature tackles this problem by enumerating support-closed patterns (e.g. [START_REF] Yan | CloSpan: Mining Closed Sequential Patterns in Large Datasets[END_REF]). These latter algorihms may generate twice the same definable sets, since two support-closed patterns could have the same extent. Solving this problem will be the subject of future research.

Figure 1 .

 1 Figure 1. Dataset with numerical attribute (left), its representation in R with black dots representing positive objects (center) and the description language (right).

Figure 2 .

 2 Figure 2. From left to right: (1) Poset p℘pta, b, cuq, Ďq.(2) A poset pP, ďq with P " tK, J, b 0 , b 1 u Y ta i | i P Nu, K ď b 0 ď b 1 ď J and p@i P Nq K ď a i ď a i`1 ď J. (3) Poset of common substrings of "ab" and "ba". (4) A subposet of p℘ptg 1 , g 2 , g 3 , g 4 uq, Ďq.

Figure 4 .

 4 Figure 4. The table (left) represents the mapping function δ of the pattern setup considered in running example 3.3. The diagram (center) represents the set of non empty substrings in ta, b, cu `holding for at least one object in G. The diagram (right) represents the poset of definable sets pPext, Ďq.

  Definition 3.11. For c, d P D, the pattern implication c Ñ d holds if extpcq Ď extpdq. That is, every object realizing c realizes d. Dually, for A, B Ď G, the object implication A Ñ B holds if covpAq Ď covpBq. That is, every description covering all object in A covers also all objects in B.

  2) Let c P D, we have: c P covpextpdqq ô p@g P extpdqq c Ď δpgq ô p@g P extpdqq g P extpcq ô extpdq Ď extpcq Thus covpextpdqq " tc P D | extpdq Ď extpcqu " tc P D | c Ñ du.

Figure 5 .

 5 Figure 5. The table (left) represents the pattern setup P " `G, D, δ ˘with G " tg i u 1ďiď4 , D " p℘pta, b, cuq, Ďq depicted by the Hasse Diagram (center) and δ maps an object to its itemset. The diagram (right) depicts the concept lattice BpPq.

  Figure 6. A complete joinmultisemilattice but not a meetmultisemilattice
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 7 Figure7. For all x, y in this poset, tx, yu has all its multi-infima. That is, this poset is a multistructure following[START_REF] Benado | Les ensembles partiellement ordonnés et le théorème de raffinement de Schreier I Théorie des multistructures[END_REF], however it is not a multilattice following our definition.

Figure 8 .

 8 Figure 8. A complete multilattice that is not chain-complete

  Similarly to Theorem 4.7 for pattern structures, Theorem 7.6 connects multilattices with pattern multistructures. It state that (complete) meet-multisemilattices are to pattern multistructures what (complete) lattices are to pattern structures.Theorem 7.6. Let D " pD, Ďq be a poset, the following properties are equivalent:' For any finite set G ‰ H and any δ P D G , pG, D, δq is a pattern multistructure. ' D is a meet-multisemilattice having all its maximal elements (i.e. D "Ó maxpDq) The following properties are equivalent:' For any set G ‰ H and any δ P D G , pG, D, δq is a pattern multistructure. ' D is a complete meet-multisemilattice.

Figure 9 .

 9 Figure 9. A complete multilattice with an infinite antichain (Proof of proposition 7.7)

  pDC P A pP qq S "Ó C. Let us show that C " maxpSq:' C Ď maxpSq: let c P C Ď S, suppose that c R maxpSq that is Dx P S s.t. c ă x. Since S "Ó C then Dc 2 P C s.t. x ď c 2 . Thus Dc 2 P C such that c ą c 2which is a contradiction with the fact that C is an antichain. ' C Ě maxpSq: Suppose Da P maxpSq s.t. a R C. We have a P S "Ó C, that is:Dc P C s.t. a ă c (since a R C).However, since S "Ó C then C Ď S. Thus, Dc P S s.t. a ă c which is in contradiction with the fact that a P maxpSq. This concluds the proof.

Figure 10 .

 10 Figure10. The Antichain completion of this complete lattice is not even a meet-semilattice

  ext pSq " tg P G | S ď σpgqu " tg P G | S ĎÓ δpgqu " tg P G | p@d P Sq d Ď δpgqu " that P ext " t Ş S | S Ď P ext u.

δ

  rAs " tS Ď D | p@g P Aq S ĎÓ δpAqu " tS Ď D | S Ď δrAs u Since δrAs P δ rAs , we conclude δrAs is the meet of δ rAs , Hence: int İ pAq " δrAs " covpAq For the extent operator ext İ , let S P ℘pDq. We have ext İ pSq " tg P G | S ĎÓ δpgqu " tg P G | p@d P Sq d Ď δpgqu " č extrSs Let us show that P İ ext " t Ş S | S Ď P ext u.

Figure 11 .

 11 Figure 11. Concept lattice BpP q.

  ). We say that: ' S is minimum-handle if S has a minimum (i.e. pDm P Sq S ĎÒ m). ' S is maximum-handle if S has a maximum (i.e. pDm P Sq S ĎÓ m).' S is minimal-handle if S ĎÒ minpSq ' S is maximal-handle if S ĎÓ maxpSq.Example 2.11. Consider the poset pP, ďq depicted in Fig.2and let S "P ztJu " tK, b 0 , b 1 u Y ta i | i P Nu. It is clear that maxpSq " tb 1 u. Since Ó tb 1 u " tK, b 0 , b 1 u, subset S is not a maximal-handle.Hence, even if S has a single maximal element, it has no maximum. On the other hand, minpSq " K. Since S ĎÒ K " P , we can say that S is a minimal-handle. Moreover, since the minimal element is unique than S is minimum-handle which minimum is K. The largest lower bound of S (i.e. the maximum of S ) if it exists is called the infimum or the meet of S and is denoted inf pSq or Ź S. The join or the supremum of S is given by the minimum of S u and is denoted suppSq or Ž S.

	Note 5. If S is minimal-handle, then S has a minimum if and only if S has a unique
	minimal element. It is clear that all subsets of a finite posets (i.e. posets with a finite
	set) are maximal-handle and minimal-handle. Posets where all subsets are minimum-
	handle are said to be well-founded or equivalently have the minimal condition
	or the descending chain condition (DCC). Dually, posets where all subsets are
	maximal-handle are said to be dually well-founded or equivalently have the maxi-
	mal condition or the ascending chain condition (ACC). A poset having at the
	same time the ACC and DCC is said to be chain-finite since it has no infinite chain
	(but, still, could have infinite antichains). A poset is in fact finite if and only if it is
	chain-finite and antichain-finite.
	Definition 2.12.

  One should note that poset pP ext , Ďq does form a subposet of p℘pGq, Ďq, that is definable sets are naturally ordered by Ď. The set of coverable sets is naturally given by Ó P ext . In other words, any subset of a coverable set is coverable. Conversely, any superset of a non coverable set is a non coverable set.

Definition 3.8. A subset A Ď G is said to be: ' Definable, Separable or an Extent if pDd P Aq A " extpdq. ' Coverable if covpAq ‰ H. The set of definable sets is then given by: P ext " extrDs " textpdq | d P Du Note 12.

  , g 2 , g 3 u, tauq ptg 1 , g 4 u, tb, cuq ptg 1 , g 2 , g 3 , g 4 u, Hq

				ta, b, cu		
	g 2 tau	cu	ta, bu	ta, cu	tb, cu	ptg 1
	g 3 tau		tau	tbu	tcu	
	g 4 tb, cu			H		ptg 1 u, ta, b, cuq

  Gq d P cov ˚pAq. pð ð ðq Suppose that DA Ď G s.t. d P maxpcovpAqq. According to proposition 3.13 and since d P covpAq, we have A Ď extpdq. Let now be c P D such that d Ĺ c, we have c R covpAq since d is maximal in covpAq. According to proposition 3.10 we have extpcq Ď extpdq. Moreover, using proposition 3.13 and since c R covpAq we have A Ę extpcq. Since A Ď extpdq then extpcq ‰ extpdq. Thus @c P D such that d Ĺ c we have extpcq Ĺ extpdq; that is d is support-closed. The formula of D ˚is deduced directly. Please notice also that if there exists A s.t. d P cov ˚pAq then d P cov ˚pextpdqq (use pð ð ðq then pñ ñ ñq). Hence, d P D is support-closed iff d P cov ˚pextpdqq.

Hence, according to proposition 3.13 we have d P covpAq. Let us show now that d P cov ˚pAq. Suppose that d R cov ˚pAq that is Ò d X covpAq ‰ tdu. Since d P covpAq, there is then at least c P covpAq such that d Ĺ c. Thus, in one hand and according to proposition 3.10, extpcq Ď extpdq. And since c P covpAq, according to proposition 3.13, extpcq Ě extpdq. Thus extpcq " extpdq. This is contradictory with the fact that d is support-closed (Dc P D s.t. d Ĺ c and extpcq " extpdq). Therefore, pDA Ď

  extrD BĎG extrcov ˚pBqs. Since D ˚Ď D and by definition P ext " extrDs. It is clear that extrD ˚s Ď extrDs. It remains to show that extrDs Ď extrD ˚s. Let A P extrDs, since P is a pattern multistructure then cov ˚pAq "Ó covpAq. Let d P covpAq s.t. A " extpdq (we have A P extrDs). Since P is a pattern multistructure then we have a support-closed pattern d ˚P cov ˚pAq Ď D ˚s.t. d Ď d ˚.Hence, extpd ˚q Ď extpdq. Moreover, since cov ˚pAq Ď covpAq, we have d Therefore, A " extpdq Ď extpd ˚q. We obtain thus A " extpdq " extpd ˚q, that is A P extrD ˚s.

		˚s
	Proof. Recall that D	˚" Ť

˚P

covpAq.

  By definition of ext , the property P ext Ď t Ş S | S Ď P ext u holds. For the inverse inclusion, it is sufficient to show that P ext Ď P ext (since pP ext , Ďq is closed under intersection). Let A P P ext . Dd P D s.t. A " extpdq. Since tdu P ApDq, and ext ptduq " extpdq " A. We conclude that A P P ext . Hence, P ext " t Ş S | S Ď P ext u.

  Thanks to the definition of ext İ , property P ext Ď t Ş S | S Ď P ext u holds. For the inverse inclusion, it is sufficient to show that P ext Ď P İ ext (since pP İ ext , Ďq is closed under intersection). Let A P P ext , Dd P D s.t. A " extpdq. We have ext İ ptduq " tg P G | tdu ĎÓ δpgqu " tg P G | d Ď δpgqu " extpdq " A. We conclude that A P P İ ext and P İ ext " t Ş S | S Ď P ext u.

A Galois connection between two posets pP, ďq and pQ, Ďq is a pair pf, gq with f : P Ñ Q and g : Q Ñ P are order-reversing and both operators f ˝g and g ˝f are extensive.

Sequence and graphs patterns will be discussed in the next section, since they do not induce pattern structures directly, but the sets of incomparable patterns do.

CpEq is the set of convex subsetes of E. The set CpRq is the set of all possible intervals of R, CpRq m is then the set of all axis-parallel m-dimensional hyperrectangles.

I am grateful to Jozef Pócs for attracting my attention to Zorn's Lemma.

Note that ő does not induce an order in ℘pP q, but just a pre-order, since the anti-symmetry does not hold (see[START_REF] Crampton | The completion of a poset in a lattice of antichains[END_REF]). Indeed, consider poset pta, bu, ďq where a ď b. Since Ó ta, bu "Ó tbu " ta, bu, we have ta, bu ő tbu and tbu ő ta, bu. Yet, ta, bu ‰ tbu. Therefor, ő does not induce an antisymmetric relation on p℘pta, buq, őq but it is still reflexive and transitive (i.e. ő induce a preorder on ℘pta, buq.

On Pattern Setups Antichain Completions

The main purpose of transforming a pattern setup to another one is to augment it to a pattern structure in order to use the different results related to this latter structure. We define below the most common trick used in the FCA literature which can be called pattern setup antichain completion. Definition 8.4. Let P " pG, D, δq be a pattern setup, the antichain completion of P is the pattern setup denoted by P and given by: P " `G, pA pDq, őq, δ : g Þ Ñ tδpgqu Ȇarlier in this section, we have mentioned that pA pDq, őq is a lattice when pD, Ďq is a finite poset (i.e. a sufficient condition). However, given an arbitrary pattern setup on an infinite description space, P is not always guaranteed to be a pattern structure. Theorem 8.5 gives a necessary and sufficient condition on P that makes P a pattern structure. Here ext and int denote extent and intent of P , respectively. Theorem 8.5. Let P " pG, D, δq be a pattern setup, the antichain completion of P is a pattern structure if and only if P is a pattern multistructure. Moreover: p@S P A pDqq ext pSq " č extrSs p@A Ď Gq int pAq " minfpδrAsq " cov ˚pAq

We have P ext " t Ş S | S Ď P ext u and Ş H " G P P ext .

Proof. Let us show that:

P is a pattern multistructure ô P is a pattern structure Recall that P is a pattern structure iff every subset of δ rGs has a meet in pApDq, ďq. For A Ď G we have:

δ rAs " tS P ApDq | p@g P Aq S ĎÓ δpgqu " tS P ApDq | S Ď δrAs u where δrAs and δ rAs denote respectively the lower bounds of δrAs w.r.t. Ď and the lower bounds of of δ rAs w.r.t. ď (recall that δrAs " Ş gPA Ó δpgq). In this proof Ó refers to the down-closure related to Ď.

We show each implication independently: ' (ñ) Let A Ď G : δrAs "Ó maxpδrAs q. Thus δ rAs " tS P ApDq | S ĎÓ maxpδrAs qu " tS P ApDq | S ď maxpδrAs qu. Since maxpδrAs q P ApDq, so maxpδrAs q is the meet of δ rAs in ApDq. ' (ð) P is a pattern structure is equivalent to say: @A Ď G, δ rAs has a meet M P ApDq. That is, DM P δ rAs for A Ď G: @S P ApDq : S Ď δrAs ô S ĎÓ M . Particularly, for S " tdu with d P D, we deduce that @d P δrAs : d PÓ M . Thus, δrAs ĎÓ M . Moreover, since M Ď δrAs (M P δ rAs ) and Ó is a closure operator on p℘pDq, Ďq we have by monotony Ó M Ď δrAs ĎÓ M (note that Ó δrAs " δrAs ). We conclude that we have δrAs "Ó M . Using Lemma 8.2 we obtain δrAs "Ó maxpδrAs q. We conclude the equivalence.