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Manifold-regression to predict from MEG/EEG brain
signals without source modeling

David Sabbagh ∗†‡, Pierre Ablin, Gaël Varoquaux, Alexandre Gramfort, Denis A. Engemann §
Université Paris-Saclay, Inria, CEA, Palaiseau, 91120, France

Abstract

Magnetoencephalography and electroencephalography (M/EEG) can reveal neu-
ronal dynamics non-invasively in real-time and are therefore appreciated methods in
medicine and neuroscience. Recent advances in modeling brain-behavior relation-
ships have highlighted the effectiveness of Riemannian geometry for summarizing
the spatially correlated time-series from M/EEG in terms of their covariance. How-
ever, after artefact-suppression, M/EEG data is often rank deficient which limits
the application of Riemannian concepts. In this article, we focus on the task of
regression with rank-reduced covariance matrices. We study two Riemannian ap-
proaches that vectorize the M/EEG covariance between-sensors through projection
into a tangent space. The Wasserstein distance readily applies to rank-reduced
data but lacks affine-invariance. This can be overcome by finding a common sub-
space in which the covariance matrices are full rank, enabling the affine-invariant
geometric distance. We investigated the implications of these two approaches in
synthetic generative models, which allowed us to control estimation bias of a linear
model for prediction. We show that Wasserstein and geometric distances allow
perfect out-of-sample prediction on the generative models. We then evaluated
the methods on real data with regard to their effectiveness in predicting age from
M/EEG covariance matrices. The findings suggest that the data-driven Riemannian
methods outperform different sensor-space estimators and that they get close to
the performance of biophysics-driven source-localization model that requires MRI
acquisitions and tedious data processing. Our study suggests that the proposed
Riemannian methods can serve as fundamental building-blocks for automated
large-scale analysis of M/EEG.

1 Introduction

Magnetoencephalography and electroencephalography (M/EEG) measure brain activity with mil-
lisecond precision from outside the head [23]. Both methods are non-invasive and expose rhythmic
signals induced by coordinated neuronal firing with characteristic periodicity between minutes and
milliseconds [10]. These so-called brain-rhythms can reveal cognitive processes as well as health
status and are quantified in terms of the spatial distribution of the power spectrum over the sensor
array that samples the electromagnetic fields around the head [3].

Statistical learning from M/EEG commonly relies on covariance matrices estimated from band-
pass filtered signals to capture the characteristic scale of the neuronal events of interest [7, 22,
16]. However, covariance matrices do not live in an Euclidean space but a Riemannian manifold.
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Fortunately, Riemannian geometry offers a principled mathematical approach to use standard linear
learning algorithms such as logistic or ridge regression that work with Euclidean geometry. This is
achieved by projecting the covariance matrices into a vector space equipped with an Euclidean metric,
the tangent space. The projection is defined by the Riemannian metric, for example the geometric
affine-invariant metric [5] or the Wasserstein metric [6]. As a result, the prediction error can be
substantially reduced when learning from covariance matrices using Riemannian methods [45, 14].

In practice, M/EEG data is often provided in a rank deficient form by platform operators but
also curators of public datasets [32, 2]. Its contamination with high-amplitude environmental
electromagnetic artefacts often render aggressive offline-processing mandatory to yield intelligible
signals. Commonly used tools for artefact-suppression project the signal linearly into a lower
dimensional subspace that is hoped to predominantly contain brain signals [40, 42, 34]. But this
necessarily leads to inherently rank-deficient covariance matrices for which no affine-invariant
distance is defined. One remedy may consist in using anatomically informed source localization
techniques that can typically deal with rank deficiencies [17] and can be combined with source-level
estimators of neuronal interactions [31]. However, such approaches require domain-specific expert
knowledge, imply processing steps that are hard to automate (e.g. anatomical coregistration) and
yields pipelines in which excessive amounts of preprocessing are not under control of the predictive
model.

In this work, we focus on regression with rank-reduced covariance matrices. We propose two
Riemannian methods for this problem. A first approach uses a Wasserstein metric that can handle
rank-reduced matrices, yet is not affine-invariant. In a second approach, matrices are projected into a
common subspace in which affine-invariance can be provided. We show that both metrics can achieve
perfect out-of-sample predictions in a synthetic generative model. Based on the SPoC method [15],
we then present a supervised and computationally efficient approach to learn subspace projections
informed by the target variable. Finally, we apply these models to the problem of inferring age
from brain data [33, 31] on 595 MEG recordings from the Cambridge Center of Aging (Cam-CAN,
http://cam-can.org) covering an age range from 18 to 88 years [41]. We compare the data-driven
Riemannian approaches to simpler methods that extract power estimates from the diagonal of the
sensor-level covariance as well as the cortically constrained minimum norm estimates (MNE) which
we use to project the covariance into a subspace defined by anatomical prior knowledge.

Notations We denote scalars s ∈ R with regular lowercase font, vectors s = [s1, . . . , sN ] ∈ RN
with bold lowercase font and matrices S ∈ RN×M with bold uppercase fonts. IN is the identity
matrix of size N . [·]> represents vector or matrix transposition. The Frobenius norm of a matrix
will be denoted by ||M ||2F = Tr(MM>) =

∑
|Mij |2 with Tr(·) the trace operator. rank(M) is

the rank of a matrix. The l2 norm of a vector x is denoted by ||x||22 =
∑
x2
i . We denote byMP

the space of P × P square real-valued matrices, SP = {M ∈ MP ,M
> = M} the subspace of

symmetric matrices, S++
P = {S ∈ SP ,x>Sx > 0,∀x ∈ RP } the subspace of P × P symmetric

positive definite matrices, S+
P = {S ∈ SP ,x>Sx ≥ 0,∀x ∈ RP } the subspace of P ×P symmetric

semi-definite positive (SPD) matrices, S+
P,R = {S ∈ S+

P , rank(S) = R} the subspace of SPD
matrices of fixed rank R. All matrices S ∈ S++

P are full rank, invertible (with S−1 ∈ S++
P ) and

diagonalizable with real strictly positive eigenvalues: S = UΛU> with U an orthogonal matrix of
eigenvectors of S (UU> = IP ) and Λ = diag(λ1, . . . , λn) the diagonal matrix of its eigenvalues
λ1 ≥ . . . ≥ λn > 0. For a matrixM , diag(M) ∈ RP is its diagonal. We also define the exponential
and logarithm of a matrix: ∀S ∈ S++

P , log(S) = U diag(log(λ1), . . . , log(λn)) U> ∈ SP , and
∀M ∈ SP , exp(M) = U diag(exp(λ1), . . . , exp(λn)) U> ∈ S++

P . N (µ, σ2) denotes the normal
(Gaussian) distribution of mean µ and variance σ2. Finally, Es[x] represents the expectation and
Vars[x] the variance of any random variable x w.r.t. their subscript s when needed.

Background and M/EEG generative model MEG or EEG data measured on P channels are
multivariate signals x(t) ∈ RP . For each subject i = 1 . . . N , the data are a matrix Xi ∈ RP×T
where T is the number of time samples. For the sake of simplicity, we assume that T is the same for
each subject, although it is not required by the following method. The linear instantaneous mixing
model is a valid generative model for M/EEG data due to the linearity of Maxwell’s equations [23].
Assuming the signal originates from Q < P locations in the brain, at any time t, the measured signal

2



vector of subject i = 1 . . . N is a linear combination of the Q source patterns asj ∈ RP , j = 1 . . . Q:

xi(t) = As si(t) + ni(t) , (1)

where the patterns form the time and subject-independent source mixing matrixAs = [as1, . . . ,a
s
Q] ∈

RP×Q, si(t) ∈ RQ is the source vector formed by the Q time-dependent sources amplitude, ni(t) ∈
RP is a contamination due to noise. Note that the mixing matrixAs and sources si are not known.

Following numerous learning models on M/EEG [7, 15, 22], we consider a regression setting where
the target yi is a function of the power of the sources, denoted pi,j = Et[s2

i,j(t)]. Here we consider
the linear model:

yi =

Q∑
j=1

αjf(pi,j) , (2)

where α ∈ RQ and f : R+ → R is increasing. Possible choices for f that are relevant for neuro-
science are f(x) = x, or f(x) = log(x) to account for log-linear relationships between brain signal
power and cognition [7, 22, 11]. A first approach consists in estimating the sources before fitting
such a linear model, for example using the Minimum Norm Estimator (MNE) approach [24]. This
boils down to solving the so-called M/EEG inverse problem which requires costly MRI acquisitions
and tedious processing [3]. A second approach is to work directly with the signals Xi. To do so,
models that enjoy some invariance property are desirable: these models are blind to the mixing
As and working with the signals x is similar to working directly with the sources s. Riemannian
geometry is a natural setting where such invariance properties are found [18]. Besides, under Gaussian
assumptions, model (1) is fully described by second order statistics [37]. This amounts to working
with covariance matrices, Ci = XiX

>
i /T , for which Riemannian geometry is well developed. One

specificity of M/EEG data is, however, that signals used for learning have been rank-reduced. This
leads to rank-deficient covariance matrices, Ci ∈ S+

P,R, for which specific matrix manifolds need to
be considered.

2 Theoretical background to model invariances on S+
P,R manifold

2.1 Riemannian matrix manifolds

Figure 1: Tangent Space, exponential
and logarithm on Riemannian manifold
illustration.

Endowing a continuous setM of square matrices with a
metric, that defines a local Euclidean structure, gives a
Riemannian manifold with a solid theoretical framework.
LetM ∈M, aK-dimensional Riemannian manifold. For
any matrix M ′ ∈ M, as M ′ → M , ξM = M ′ −M
belongs to a vector space TM of dimension K called the
tangent space atM .

The Riemannian metric defines an inner product 〈·, ·〉M :
TM × TM → R for each tangent space TM , and as a con-
sequence a norm in the tangent space ‖ξ‖M =

√
〈ξ, ξ〉M .

Integrating this metric between two points gives a geodesic
distance d :M×M→ R+. It allows to define means on
the manifold:

Meand(M1, . . . ,MN ) = arg min
M∈M

N∑
i=1

d(Mi,M)2 . (3)

The manifold exponential at M ∈ M, denoted ExpM , is a smooth mapping from TM toM that
preserves local properties. In particular, d(ExpM (ξM ),M) = ‖ξM‖M +o(‖ξM‖M ). Its inverse is
the manifold logarithm LogM fromM to TM , with ‖LogM (M ′)‖M = d(M ,M ′)+o(d(M ,M ′))
forM ,M ′ ∈M. Finally, since TM is Euclidean, there is a linear invertible mapping φM : TM →
RK such that for all ξM ∈ TM , ‖ξM‖M = ‖φM (ξM )‖2. This allows to define the vectorization
operator at M ∈ M, PM : M → RK , defined by PM (M ′) = φM (LogM (M ′)). Fig. 1
illustrates these concepts.

The vectorization explicitly captures the local Euclidean properties of the Riemannian manifold:

d(M ,M ′) = ‖PM (M ′)‖2 + o(‖PM (M ′)‖2) (4)
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Hence, if a set of matrices M1, . . . ,MN is located in a small portion of the manifold, denoting
M = Meand(M1, . . . ,MN ), it holds:

d(Mi,Mj) ' ‖PM (Mi)− PM (Mj)‖2 (5)

For additional details on matrix manifolds, see [1], chap. 3.

Regression on matrix manifolds The vectorization operator is key for machine learning ap-
plications: it projects points in M on RK , and the distance d on M is approximated by the
distance `2 on RK . Therefore, those vectors can be used as input for any standard regression
technique, which often assumes a Euclidean structure of the data. More specifically, through-
out the article, we consider the following regression pipeline. Given a training set of samples
M1, . . . ,MN ∈ M and target continuous variables y1, . . . , yN ∈ R, we first compute the mean
of the samples M = Meand(M1, . . . ,MN ). This mean is taken as the reference to compute the
vectorization. After computing v1, . . . ,vN ∈ RK as vi = PM (Mi), a linear regression technique
(e.g. ridge regression) with parameters β ∈ RK can be employed assuming that yi ' v>i β.

2.2 Distances and invariances on positive matrices manifolds

We will now introduce two important distances: the geometric distance on the manifold S++
P (also

known as affine-invariant distance), and the Wasserstein distance on the manifold S+
P,R.

The geometric distance Seeking properties of covariance matrices that are invariant by linear
transformation of the signal, leads to endow the positive definite manifold S++

P with the geometric
distance [18]:

dG(S,S′) = ‖ log(S−1S′)‖F =

[
P∑
i=1

log2 λk

] 1
2

(6)

where λk, k = 1 . . . P are the real eigenvalues of S−1S′. The affine invariance property writes:

ForW invertible, dG(W>SW ,W>S′W ) = dG(S,S′) . (7)

This distance gives a Riemannian-manifold structure to S++
P with the inner product 〈P ,Q〉S =

Tr(PS−1QS−1) [18]. The corresponding manifold logarithm at S is LogS(S′) =

S
1
2 log

(
S−

1
2S′S−

1
2

)
S

1
2 and the vectorization operator PS(S′) of S′ w.r.t. S: PS(S′) =

Upper(S−
1
2 LogS(S′)S−

1
2 ) = Upper(log(S−

1
2S′S−

1
2 )), where Upper(M) ∈ RK is the vector-

ized upper-triangular part ofM , with unit weights on the diagonal and
√

2 weights on the off-diagonal,
and K = P (P + 1)/2.

The Wasserstein distance Unlike S++
P , it is hard to endow the S+

P,R manifold with a distance
that yields tractable or cheap-to-compute logarithms [43]. This manifold is classically viewed as
S+
P,R = {YY>|Y ∈ RP×R∗ }, where RP×R∗ is the set P × R matrices of rank R [30]. This view

allows to write S+
P,R as a quotient manifold RP×R∗ /OR, where OR is the orthogonal group of size R.

This means that each matrix YY> ∈ S+
P,R is identified with the set {YQ|Q ∈ OR}.

It has recently been proposed [35] to use the standard Frobenius metric on the total space RP×R∗ .
This metric in the total space is equivalent to the Wasserstein distance [6] on S+

P,R:

dW (S,S′) =
[
Tr(S) + Tr(S′)− 2Tr((S

1
2S′S

1
2 )

1
2 )
] 1

2

(8)

This provides cheap-to-compute logarithms:

LogY Y >(Y ′Y ′>) = Y ′Q∗ − Y ∈ RP×R∗ , (9)

where UΣV > = Y >Y ′ is a singular value decomposition and Q∗ = V U>. The vectorization
operator is then given by PY Y >(Y ′Y ′>) = vect(Y ′Q∗ − Y ) ∈ RPR, where the vect of a matrix
is the vector containing all its coefficients.
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This framework offers closed form projections in the tangent space for the Wasserstein distance,
which can be used to perform regression. Importantly, since S++

P = S+
P,P , we can also use this

distance on the positive definite matrices. This distance possesses the orthogonal invariance property:

ForW orthogonal, dW (W>SW ,W>S′W ) = dW (S,S′) . (10)
This property is weaker than the affine invariance of the geometric distance (7). A natural question
is whether such an affine invariant distance also exists on this manifold. Unfortunately, it is shown
in [8] that the answer is negative for R < P (proof in appendix 6.3).

3 Manifold-regression models for M/EEG

3.1 Generative model and consistency of linear regression in the tangent space of S++
P

Here, we consider a more specific generative model than (1) by assuming a specific struc-
ture on the noise. We assume that the additive noise ni(t) = Anνi(t) with An =
[an1 , . . . ,a

n
P−Q] ∈ RP×(P−Q) and νi(t) ∈ RP−Q. This amounts to assuming that the noise

is of rank P − Q and that the noise spans the same subspace for all subjects. Denoting A =
[as1, . . . ,a

s
Q,a

n
1 , . . . ,a

n
P−Q] ∈ RP×P and ηi(t) = [si,1(t), . . . si,Q(t), νi,1(t), . . . , νi,P−Q(t)] ∈

RP , this generative model can be compactly rewritten as xi(t) = Aηi(t).

We assume that the sources si are decorrelated and independent from νi: with pi,j = Et[s2
i,j(t)]

the powers, i.e. the variance over time, of the j-th source of subject i, we suppose Et[si(t)s>i (t)] =
diag((pi,j)j=1...Q) and Et[si(t)νi(t)>] = 0. The covariances are then given by:

Ci = AEiA
> , (11)

where Ei = Et[ηi(t)ηi(t)>] is a block diagonal matrix, whose upper Q × Q block is
diag(pi,1, . . . , pi,Q).

In the following, we show that different functions f from (2) yield a linear relationship between the
yi’s and the vectorization of the Ci’s for different Riemannian metrics.
Proposition 1 (Euclidean vectorization). Assume f(pi,j) = pi,j . Then, the relationship between yi
and Upper(Ci) is linear.

Proof. Indeed, if f(p) = p, the relationship between yi and the pi,j is linear. Rewriting Eq. (11) as
Ei = A−1CiA

−>, and since the pi,j are on the diagonal of the upper block of Ei, the relationship
between the pi,j and the coefficients of Ci is also linear. This means that there is a linear relationship
between the coefficients ofCi and the variable of interest yi. In other words, yi is a linear combination
of the vectorization of Ci w.r.t. the standard Euclidean distance.

Proposition 2 (Geometric vectorization). Assume f(pi,j) = log(pi,j). Denote C =
MeanG(C1, . . . ,CN ) the geometric mean of the dataset, and vi = PC(Ci) the vectorization of Ci
w.r.t. the geometric distance. Then, the relationship between yi and vi is linear.

The proof is given in appendix 6.1. It relies crucially on the affine invariance property that means that
using Riemannian embeddings of the Ci’s, is equivalent to working directly with the Ei’s.
Proposition 3 (Wasserstein vectorization). Assume f(pi,j) =

√
pi,j . Assume thatA is orthogonal.

Denote C = MeanW (C1, . . . ,CN ) the Wasserstein mean of the dataset, and vi = PC(Ci) the
vectorization of Ci w.r.t. the Wasserstein distance. Then, the relationship between yi and vi is linear.

The proof is given in appendix 6.2. The restriction to the case where A is orthogonal stems from
the orthogonal invariance of the Wasserstein distance. In the neuroscience literature square root
rectifications are however not commonly used for M/EEG modeling. Nevertheless, it is interesting to
see that the Wasserstein metric that can naturally cope with rank reduced data is consistent with this
particular generative model.

These propositions show that the relationship between the samples and the variable y is linear in
the tangent space, motivating the use of linear regression methods (see simulation study in Sec. 4).
The argumentation of this section relies on the assumption that the covariance matrices are full rank.
However, this is rarely the case in practice.
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Xi

raw Xi Ci Σi vi ỹi

Identity
Supervised
Unsupervised

Log-diag
Euclidean
Wasserstein
Geometric

RidgeCovariance

Representation Projection Vectorization

Figure 2: Proposed regression pipeline. The considered choices for each sequential step are detailed
below each box. Identity means no spatial filtering W = I . Only the most relevant combinations
are reported. For example Wasserstein vectorization does not need projections as it directly applies
to rank-deficient matrices. Geometric vectorization is not influenced by the choice of projections
due to its affine-invariance. Choices for vectorization are depicted by the colors used for visualizing
subsequent analyses.

3.2 Learning projections on S++
R

In order to use the geometric distance on the Ci ∈ S+
P,R, we have to project them on S++

R to make
them full rank. In the following, we consider a linear operator W ∈ RP×R of rank R which is
common to all samples (i.e. subjects). For consistency with the M/EEG literature we will refer to rows
of W as spatial filters. The covariance matrices of ‘spatially filtered’ signals W>xi are obtained
as: Σi = W>CiW ∈ RR×R. With probability one, rank(Σi) = min(rank(W ), rank(Ci)) = R,
hence Σi ∈ S++

R . Since theCi’s do not span the same image, applyingW destroys some information.
Recently, geometry-aware dimensionality reduction techniques, both supervised and unsupervised,
have been developed on covariance manifolds [28, 25]. Here we considered two distinct approaches
to estimateW .

Unsupervised spatial filtering A first strategy is to project the data into a subspace that captures
most of its variance. This is achieved by Principal Component Analysis (PCA) applied to the averaged
covariance matrix computed across subjects: WUNSUP = U , where U contains the eigenvectors
corresponding to the top R eigenvalues of the average covariance matrixC = 1

N

∑N
i=1Ci. This step

is blind to the values of y and is therefore unsupervised. Note that under the assumption that the time
series across subjects are independent, the average covariance C is the covariance of the data over
the full population.

Supervised spatial filtering We use a supervised spatial filtering algorithm [15] originally de-
veloped for intra-subject Brain Computer Interfaces applications, and adapt it to our cross-person
prediction problem. The filtersW are chosen to maximize the covariance between the power of the
filtered signals and y. Denoting by Cy = 1

N

∑N
i=1 yiCi the weighted average covariance matrix, the

first filter wSUP is given by:

wSUP = arg max
w

w>Cyw

w>Cw
.

In practice, all the other filters inWSUP are obtained by solving a generalized eigenvalue decomposi-
tion problem (see the proof in Appendix 6.4).

The proposed pipeline is summarized in Fig. 2.

4 Experiments

4.1 Simulations

We start by illustrating Prop. 2. Independent identically distributed covariance matrices
C1, . . . ,CN ∈ S++

P and variables y1, . . . , yN are generated following the above generative model.
The matrix A is taken as exp(µB) with B ∈ RP×P a random matrix, and µ ∈ R a scalar con-
trolling the distance from A to identity (µ = 0 yields A = IP ). We use the log function for f to
link the source powers (i.e. the variance) to the yi’s. Model reads yi =

∑
j αj log(pij) + εi, with

εi ∼ N (0, σ2) a small additive random perturbation.

6



We compare three methods of vectorization: the geometric distance, the Wasserstein distance and
the non-Riemannian method “log-diag” extracting the log of the diagonals of Ci as features. Note
that the diagonal of Ci contains the powers of each sensor for subject i. A linear regression model
is used following the procedure presented in Sec. 2. We take P = 5, N = 100 and Q = 2. We
measure the score of each method as the average mean absolute error (MAE) obtained with 10-fold
cross-validation. Fig. 3 displays the scores of each method when the parameters σ controlling the
noise level and µ controlling the distance from A to Ip are changed. We also investigated the realistic
scenario where each subject has a mixing matrix deviating from a reference: Ai = A + Ei with
entries of Ei sampled i.i.d. from N (0, σ2).

The same experiment with f(p) =
√
p yields comparable results, yet with Wasserstein distance

performing best and achieving perfect out-of-sample prediction when σ → 0 and A is orthogonal.
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Figure 3: Illustration of Prop.2. Data is generated following the generative model with f = log.
The regression pipeline consists in projecting the data in the tangent space, and then use a linear
model. The left plot shows the evolution of the score when random noise of variance σ2 is added
to the variables yi. The MAE of the geometric distance pipeline goes to 0 in the limit of no noise,
indicating perfect out-of-sample prediction. This illustrates the linearity in the tangent space for the
geometric distance (Prop. 2). The middle plot explores the effect of the parameter µ controlling
the distance between A and IP . Riemannian geometric method is not affected by µ due to its
affine invariance property. Although the Wasserstein distance is not affine invariant, its performance
does not change much with µ. On the contrary, the log-diag method is sensitive to changes in
A. The right plot shows how the score changes when mixing matrices become sample dependent.
We can see then only when σ = 0 supervised + log-diag and Riemann reach perfect performance.
Geometric Riemann is uniformly better and indifferent to projection choice. Wasserstein, despite
model mismatch, outperforms supervised + log-diag with high σ.

4.2 MEG data

Predicting biological age from MEG on the Cambridge center of ageing dataset In the follow-
ing, we apply our methods to infer age from brain signals. Age is a dominant driver of cross-person
variance in neuroscience data and a serious confounder [39]. As a consequence of the globally
increased average lifespan, ageing has become a central topic in public health that has stimulated
neuropsychiatric research at large scales. The link between age and brain function is therefore of
utmost practical interest in neuroscientific research.

To predict age from brain signals, here we use the currently largest publicly available MEG dataset
provided by the Cam-CAN [38]. We only considered the signals from magnetometer sensors
(P = 102) as it turns out that once SSS is applied (detailed in Appendix 6.6), magnetometers and
gradiometers are linear combination of approximately 70 signals (65 ≤ Ri ≤ 73), which become
redundant in practice [19]. We considered task-free recordings during which participants were asked
to sit still with eyes closed in the absence of systematic stimulation. We then drew T ' 520, 000 time
samples from N = 595 subjects. To capture age-related changes in cortical brain rhythms [4, 44, 12],
we filtered the data into 9 frequency bands: low frequencies [0.1−1.5], δ[1.5−4], θ[4−8], α[8−15],
βlow[15− 26], βhigh[26− 35], γlow[35− 50], γmid[50− 74] and γhigh[76− 120] (Hz unit). These
frequencies are compatible with conventional definitions used in the Human Connectome Project
[32]. We verify that the covariance matrices all lie on a small portion of the manifold, justifying
projection in a common tangent space. Then we applied the covariance pipeline independently in
each frequency band and concatenated the ensuing features.
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Data-driven covariance projection for age prediction Three types of approaches are here com-
pared: Riemannian methods (Wasserstein or geometric), methods extracting log-diagonal of matrices
(with or without supervised spatial filtering, see Sec. 3.2) and a biophysics-informed method based
on the MNE source imaging technique [24]. The MNE method essentially consists in a standard
Tikhonov regularized inverse solution and is therefore linear (See Appendix 6.5 for details). Here it
serves as gold-standard informed by the individual anatomy of each subject. It requires a T1-weighted
MRI and the precise measure of the head in the MEG device coordinate system [3] and the coor-
dinate alignment is hard to automate. We configured MNE with Q = 8196 candidate dipoles. To
obtain spatial smoothing and reduce dimensionality, we averaged the MNE solution using a cortical
parcellation encompassing 448 regions of interest from [31, 21]. We then used ridge regression
and tuned its regularization parameter by generalized cross-validation [20] on a logarithmic grid
of 100 values in [10−5, 103] on each training fold of a 10-fold cross-validation loop. All numerical
experiments were run using the Scikit-Learn software [36], the MNE software for processing M/EEG
data [21] and the PyRiemann package [13]. We also ported to Python some part of the Matlab
code of Manopt toolbox [9] for computations involving Wasserstein distance. The proposed method,
including all data preprocessing, applied on the 500GB of raw MEG data from the Cam-CAN dataset,
runs in approximately 12 hours on a regular desktop computer with at least 16GB of RAM. The
preprocessing for the computation of the covariances is embarrassingly parallel and can therefore be
significantly accelerated by using multiple CPUs. The actual predictive modeling can be performed
in less than a minute on standard laptop. Code used for data analysis can be found on GitHub5.

biophysics

unsupervised

identity

supervised

identity

6 7 8 9 10 11
mean absolute error (years)

log−diag Wasserstein geometric MNE

Figure 4: Age prediction on Cam-CAN
MEG dataset for different methods, or-
dered by out-of-sample MAE. The y-
axis depicts the projection method, with
identity denoting the absence of projec-
tion. Colors indicate the subsequent em-
bedding. The biophysics-driven MNE
method (blue) performs best. The
Riemannian methods (orange) follow
closely and their performance depends
little on the projection method. The non-
Riemannian methods log-diag (green)
perform worse, although the supervised
projection clearly helps.

Riemannian projections are the leading data-driven methods Fig. 4 displays the scores for each
method. The biophysically motivated MNE projection yielded the best performance (7.4y MAE),
closely followed by the purely data-driven Riemannian methods (8.1y MAE). The chance level
was 16y MAE. Interestingly, the Riemannian methods give similar results, and outperformed the
non-Riemannian methods. When Riemannian geometry was not applied, the projection strategy
turned out to be decisive. Here, the supervised method performed best: it reduced the dimension of
the problem while preserving the age-related variance.

Rejecting a null-hypothesis that differences between models are due to chance would require several
independent datasets. Instead, for statistical inference, we considered uncertainty estimates of paired
differences using 100 Monte Carlo splits (10% test set size). For each method, we counted how often
it was performing better than the baseline model obtained with identity and log-diag. We observed
for supervised log-diag 73%, identity Wasserstein 85%, unsupervised geometric 96% and biophysics
95% improvement over baseline. This suggests that inferences will carry over to new data.

Importantly, the supervised spatial filters and MNE both support model inspection, which is not the
case for the two Riemannian methods. Fig. 5 depicts the marginal patterns [27] from the supervised
filters and the source-level ridge model, respectively. The sensor-level results suggest predictive
dipolar patterns in the theta to beta range roughly compatible with generators in visual, auditory
and motor cortices. Note that differences in head-position can make the sources appear deeper than

5 https://www.github.com/DavidSabbagh/NeurIPS19_manifold-regression-meeg
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they are (distance between the red positive and the blue negative poles). Similarly, the MNE-based
model suggests localized predictive differences between frequency bands highlighting auditory, visual
and premotor cortices. While the MNE model supports more exhaustive inspection, the supervised
patterns are still physiologically informative. For example, one can notice that the pattern is more
anterior in the β-band than the α-band, potentially revealing sources in the motor cortex.

Figure 5: Model inspection.
Upper panel: sensor-level pat-
terns from supervised projec-
tion. One can notice dipolar
configurations varying across
frequencies. Lower panel:
standard deviation of patterns
over frequencies from MNE
projection highlighting bilat-
eral visual, auditory and pre-
motor cortices.

5 Discussion

In this contribution, we proposed a mathematically principled approach for regression on rank-reduced
covariance matrices from M/EEG data. We applied this framework to the problem of inferring age
from neuroimaging data, for which we made use of the currently largest publicly available MEG
dataset. To the best of our knowledge, this is the first study to apply a covariance-based approach
coupled with Riemannian geometry to regression problem in which the target is defined across
persons and not within persons (as in brain-computer interfaces). Moreover, this study reports
the first benchmark of age prediction from MEG resting state data on the Cam-CAN. Our results
demonstrate that Riemannian data-driven methods do not fall far behind the gold-standard methods
with biophysical priors, that depend on manual data processing. One limitation of Riemannian
methods is, however, their interpretability compared to other models that allow to report brain-
region and frequency-specific effects. These results suggest a trade-off between performance and
explainability. Our study suggests that the Riemannian methods have the potential to support
automated large-scale analysis of M/EEG data in the absence of MRI scans. Taken together, this
potentially opens new avenues for biomarker development.
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6 Appendix

6.1 Proof of proposition 2

First, we note that by invariance, C = MeanG(C1, . . . ,CN ) = AMeanG(E1, . . . ,EN )A> =

AEA>, where E has the same block diagonal structure as the Ei’s, and Ejj = (
∏N
i=1 pi,j)

1
N for

j ≤ Q. Denote U = C
1
2A−>E

− 1
2 . By simple verification, we obtain U

>
U = IP , i.e. U is

orthogonal.

Furthermore, we have:
U
>
C
− 1

2CiC
− 1

2U = E
− 1

2EiE
− 1

2 .

It follows that for all i,

U
>

log(C
− 1

2CiC
− 1

2 )U = log(E
− 1

2EiE
− 1

2 )

Note that log(E
− 1

2EiE
− 1

2 ) shares the same structure as the Ei’s, and that log(E
− 1

2EiE
− 1

2 )jj =
log(

pi,j
p̄j

). for j ≤ Q.

Therefore, the relationship between log(C
− 1

2CiC
− 1

2 ) and the log(pi,j) is linear.

Finally, since vi = Upper(log(C
− 1

2CiC
− 1

2 )), the relationship between the vi’s and the log(pi,j) is
linear, and the result holds.

6.2 Proof of proposition 3

First, we note that Ci = AEiA
> ∈ S++

P = S+
P,P so it can be decomposed as Ci = YiY

>
i with

Yi = AE
1
2
i .

By orthogonal invariance, C = MeanW (C1, . . . ,CN ) = AMeanW (E1, . . . ,EN )A> = AEA>,
where E so has the same block diagonal structure as the Ei’s, and Ejj = (

∑
i

√
pij)

2 for j ≤ Q. C

is also decomposed as C = Y Y
>

with Y = AE
1
2 .

Further, Q∗i = ViU
>
i with Ui and Vi coming from the SVD of Y

>
Yi = E

1
2E

1
2
i which has the

same structure as the Ei’s. ThereforeQ∗i has also the same structure with the identity matrix as its
upper block.

Finally we have vi = PC(Ci) = vect(YiQ
∗
i − Y ) so it is linear in

√
(pi,j) for j ≤ Q.

6.3 Proof that there is no continuous affine invariant distance on S+
P,R if R < P

We show the result for P = 2 and R = 1; the demonstration can straightforwardly be extended to the
other cases. The proof, from [8], is by contradiction.

Assume that d is a continuous invariant distance on S+
2,1. ConsiderA =

(
1 0
0 0

)
andB =

(
1 1
1 1

)
,

both in S+
2,1. For ε > 0, consider the invertible matrixWε =

(
1 0
0 ε

)
.

We have: WεAW
>
ε = A, andWεBW

>
ε =

(
1 ε
ε ε2

)
.

Hence, as ε goes to 0, we haveWεBW
>
ε → A

Using affine invariance, we have:

d(A,B) = d(WεAW
>
ε ,WεBW

>
ε )

Letting ε → 0 and using continuity of d yields d(A,B) = d(A,A) = 0, which is absurd since
A 6= B.
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6.4 Supervised Spatial Filtering

We assume that the signal x(t) is band-pass filtered in one of frequency band of interest, so that for
each subject the band power of signal is approximated by the variance over time of the signal. We
denote the expectation E and the variance Var over time t or subject i by a corresponding subscript.

The source extracted by a spatial filter w for subject i is ŝi = w>xi(t). Its power reads:

Φwi = Vart[w>xi(t)] = Et[w>xi(t)x>i (t)w] = w>Ciw

and its expectation across subjects is given by:

Ei[Φwi ] = w>Ei[Ci]w = w>Cw ,

where C = 1
N

∑
iCi is the average covariance matrix across subjects. Note that here, Ci refers to

the covariance of the xi and not its estimate as in Sec. 3.2.

We aim to maximize the covariance between the target y and the power of the sources, Covi[Φwi , yi].
This quantity is affected by the scaling of its arguments. To address this, the target variable y is
normalized:

Ei[yi] = 0 Vari[yi] = 1 .

Following [15], to also scale Φwi we constrain its expectation to be 1:

Ei[Φwi ] = w>Cw = 1

The quantity one aims to maximize reads:
Covi[Φwi , yi] = Ei[ (Φwi − Ei[Φwi ]) (yi − Ei[yi]) ]

= w>Ei[Ciyi]w −w>CwEi[yi]
= w>Cyw

where Cy = 1
N

∑
i yiCi.

Taking into account the normalization constraint we obtain:

ŵ = arg max
w>Cw=1

w>Cyw . (12)

The Lagrangian of (12) reads F (w, λ) = w>Cyw + λ(1−w>Cw). Setting its gradient w.r.t. w
to 0 yields a generalized eigenvalue problem:

∇wF (w, λ) = 0 =⇒ Σyw = λΣxw (13)
Note that (12) can be also written as a generalized Rayleigh quotient:

ŵ = arg max
w

w>Cyw

w>Cw
.

Equation (13) has a unique closed-form solution called the generalized eigenvectors of (Cy,C). The
second derivative gives:

∇λF (w, λ) = 0 =⇒ λ = w>Σyw = Covi[Φwi , yi] (14)
Equation (14) leads to an interpretation of λ as the covariance between Φw and y, which should be
maximal. As a consequence,WSUP is built from the generalized eigenvectors of Eq.(13), sorted by
decreasing eigenvalues.

6.5 MNE-based spatial filtering

Let us denote G ∈ RP×Q the instantaneous mixing matrix that relates the sources in the brain to
the MEG/EEG measurements. This forward operator matrix is obtained by solving numerically
Maxwell’s equations after specifying a geometrical model of the head, typically obtained using an
anatomical MRI image [26]. Here Q ≥ P corresponds to the number of candidate sources in the
brain. The MNE approach [24] offers a way to solve the inverse problem. MNE can be seen as
Tikhonov regularized estimation, also similar to a ridge regression in statistics. Using such problem
formulation the sources are obtained from the measurements with a linear operator which is given by:

WMNE = G>(GG> + λIP )−1 ∈ RQ×P .

The rows of this linear operatorWMNE can be seen also as spatial filters that are mapped to specific
locations in the brain. These are the filters used in Fig. 4, using the implementation from [21].
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6.6 Preprocessing

Typical brain’s magnetic fields detected by MEG are in the order of 100 femtotesla (1fT = 10−15 T)
which is ~10−8 times the strength of the earth’s steady magnetic field. That is why MEG recordings
are carried out inside special magnetically shielded rooms (MSR) that eliminate or at least dampen
external ambient magnetic disturbances.

To pick up such tiny magnetic fields sensitive sensors have to be used [26]. Their extreme sensitivity is
challenged by many electromagnetic nuisance sources (any moving metal objects like cars or elevators)
or electrically powered instruments generating magnetic induction that is orders of magnitude stronger
than the brain’s. Their influence can be reduced by combining magnetometers coils (that directly
record the magnetic field) with gradiometers coils (that record the gradient of the magnetic field
in certain directions). Those gradiometers, arranged either in a radial or tangential (planar) way,
record the gradient of the magnetic field towards 2 perpendicular directions hence inherently greatly
emphasize brain signals with respect to environmental noise.

Even though the magnetic shielded room and gradiometer coils can help to reduce the effects of
external interference signals the problem mainly remains and further reduction is needed. Also
additional artifact signals can be caused by movement of the subject during recording if the subject
has small magnetic particles on his body or head. The Signal Space Separation (SSS) method can
help mitigate those problems [40].

Signal Space Separation (SSS) The Signal Space Separation (SSS) method [40], also called
Maxwell Filtering, is a biophysical spatial filtering method that aim to produce signals cleaned from
external interference signals and from movement distortions and artifacts.

A MEG device records the neuromagnetic field distribution by sampling the field simultaneously at P
distinct locations around the subject’s head. At each moment of time the measurement is a vector
x ∈ RP is the total number of recording channels.

In theory, any direction of this vector in the signal space represents a valid measurement of a magnetic
field, however the knowledge of the location of possible sources of magnetic field, the geometry of
the sensor array and electromagnetic theory (Maxwell’s equations and the quasistatic approximation)
considerably constrain the relevant signal space and allow us to differentiate between signal space
directions consistent with a brain’s field and those that are not.

To be more precise, it has been shown that the recorded magnetic field is a gradient of a harmonic
scalar potential. A harmonic potential V (r) is a solution of the Laplacian differential equation
∇2V = 0, where r is represented by its spherical coordinates (r, θ, ψ). It has been shown that any
harmonic function in a three-dimensional space can be represented as a series expansion of spherical
harmonic functions Ylm(θ, φ):

V (r) =
∞∑
l=1

l∑
m=−l

αlm
Ylm(θ, φ)

rl+1
+
∞∑
l=1

l∑
m=−l

βlmr
lYlm(θ, φ) (15)

We can separate this expansion into two sets of functions: those proportional to inverse powers of r
and those proportional to powers of r. From a given array of sensors and a coordinate system with its
origin somewhere inside of the helmet, we can compute the signal vectors corresponding to each of
the terms in 15.

Following notations of [40], let alm be the signal vector corresponding to term Ylm(θ,φ)
rl+1 and blm the

signal vector corresponding to rlYlm(θ, φ). A set of P such signal vectors forms a basis in the P
dimensional signal space, and hence, the signal vector is given as

x =

∞∑
l=1

l∑
m=−l

αlmalm +

∞∑
l=1

l∑
m=−l

βlmblm (16)

This basis is not orthogonal, but linearly independent so any measured signal vector has a unique
representation in this basis:

x = [Sin Sout]

[
xin
xout

]
(17)
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where the sub-bases Sin and Sout contain the basis vectors alm and blm, and vectors xin and xout
contain the corresponding αlm and βlm values.

It can be shown that the spherical harmonic functions contain increasingly higher spatial frequencies
when going to higher index values (l,m) so that the signals from real magnetic sources are mostly
contained in the low l,m end of the spectrum. By discarding the high l,m end of the spectrum we
thus reduce the noise. Then we can do signal space separation. It can be shown that the basis vectors
corresponding to the terms in the second sum in expansion (15) represent the perturbating sources
external to the helmet. We can than separate the components of field arising from sources inside and
outside of the helmet. By discarding them we are left with the part of the signal coming from inside
of the helmet only. The signal vector x is then decomposed into 2 components φin and φout with
φin = Sinxin reproducing in all the MEG channels the signals that would be seen if no interference
from sources external to the helmet existed.

The real data from the Cam-CAN dataset have been measured with an Elekta Neuromag 306-channel
device, the only one that has been extensively tested on Maxwell Filtering. For this device we
included components up to l = Lin = 8 for the Sin basis, and up to l = Lout = 3 for the Sout basis.

SSS requires a comprehensive sampling (more than about 150 channels) and a relatively high
calibration accuracy that is machine/site-specific. For this purpose we used the fine-calibration
coefficients and the cross-talk correction information provided in the Can-CAM repository for the
306-channels Neuromag system used in this study.

For this study we used the temporal SSS (tSSS) extension [40], where both temporal and spatial
projection are applied to the MEG data. We used an order 8 (resp. 3) of internal (resp. external)
component of spherical expansion, a 10s sliding window, a correlation threshold of 98% (limit
between inner and outer subspaces used to reject overlapping intersecting inner/outer signals), basis
regularization, no movement compensation.

The origin of internal and external multipolar moment space is fitted via head-digitization hence
specified in the ’head’ coordinate frame and the median head position during the 10s window is used.

After projection in the lower-dimensional SSS basis we project back the signal in its original space
producing a signalXclean = S>inSinX ∈ RP×T with a much better SNR (reduced noise variance)
but with a rank R ≤ P . As a result each reconstructed sensor is then a linear combination of
R synthetic source signals, which modifies the inter-channel correlation structure, rendering the
covariance matrix rank-deficient.

Signal Space Projection (SSP) Recalling the MEG generative model (1) if one knows, or
can estimate, K linearly independent source patterns a1, . . . ,aK that span the space S =
span(a1, . . . ,aK) ⊂ RP that contains the brain signal, one can estimate an orthonormal basis
UK ∈ RP×K of S by singular value decomposition (SVD). One can then project any sensor space
signal x ∈ RP onto S to improve the SNR. The projection reads:

UKU
>
Kx .

This is the idea behind the Signal Space Projections (SSP) method [42]. In practice SSP is used
to reduce physiological artifacts (eye blinks and heart beats) that cause prominent artifacts in the
recording. In the Cam-CAN dataset eye blinks are monitored by 2 electro-oculogram (EOG channels),
and heart beats by an electro-cardiogram (ECG channel).

SSP projections are computed from time segments contaminated by the artifacts and the first compo-
nent (per artifact and sensor type) are projected out. More precisely, the EOG and ECG channels are
used to identify the artifact events (after a first band-pass filter to remove DC offset and an additional
[1-10]Hz filter applied only to EOG channels to remove saccades vs blinks). After filtering the raw
signal in [1-35]Hz band, data segments (called epochs) are created around those events, rejecting
those whose peak-to-peak amplitude exceeds a certain global threshold (see section below). For each
artifact and sensor type those epochs are then averaged and the first component of maximum variance
is extracted via PCA. Signal is then projected in the orthogonal space. This follows the guidelines of
the MNE software [21].

Marking bad data segments We epoch the resulting data in 30s non overlapping windows and
identify bad data segments (i.e. trials containing transient jumps in isolated channels) that have a
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peak-to-peak amplitude exceeding a certain global threshold, learnt automatically from the data using
the autoreject (global) algorithm [29].
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