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ABSTRACT

In this paper, we propose a state-of-the-art video denoising al-
gorithm based on a convolutional neural network architecture.
Previous neural network based approaches to video denois-
ing have been unsuccessful as their performance cannot com-
pete with the performance of patch-based methods. However,
our approach outperforms other patch-based competitors with
significantly lower computing times. In contrast to other ex-
isting neural network denoisers, our algorithm exhibits sev-
eral desirable properties such as a small memory footprint,
and the ability to handle a wide range of noise levels with a
single network model. The combination between its denois-
ing performance and lower computational load makes this al-
gorithm attractive for practical denoising applications. We
compare our method with different state-of-art algorithms,
both visually and with respect to objective quality metrics.
The experiments show that our algorithm compares favor-
ably to other state-of-art methods. Video examples, code and
models are publicly available at https://github.com/
m-tassano/dvdnet.

Index Terms— video denoising, CNN, residual learning,
neural networks, image restoration

1. INTRODUCTION

We introduce a network for Deep Video Denoising: DVD-
net. The algorithm compares favorably to other state-of-the-
art methods, while it features fast running times. The out-
puts of our algorithm present remarkable temporal coherence,
very low flickering, strong noise reduction, and accurate de-
tail preservation.

1.1. Image Denoising

Compared to image denoising, video denoising appears as a
largely underexplored domain. Recently, new image denois-
ing methods based on deep learning techniques have drawn
considerable attention due to their outstanding performance.
Schmidt and Roth proposed in [1] the cascade of shrinkage
fields method that unifies the random field-based model and
half-quadratic optimization into a single learning framework.

Based on this method, Chen and Pock proposed in [2] a train-
able nonlinear reaction diffusion model. This model can be
expressed as a feed-forward deep network by concatenating
a fixed number of gradient descent inference steps. Meth-
ods such as these two attain denoising performances compa-
rable to those of well-known algorithms such as BM3D [3]
or non-local Bayes (NLB [4]). However, their performance is
restricted to specific forms of prior. Additionally, many hand-
tuned parameters are involved in the training process. In [5],
a multi-layer perceptron was successfully applied for image
denoising. Nevertheless, a significant drawback of all these
algorithms is that a specific model must be trained for each
noise level.

Another popular approach involves the use of convolu-
tional neural networks (CNN), e.g. RBDN [6], DnCNN [7],
and FFDNet [8]. Their performance compares favorably to
other state-of-the-art image denoising algorithms, both quan-
titatively and visually. These methods are composed of a
succession of convolutional layers with nonlinear activation
functions in between them. This type of architecture has been
applied to the problem of joint denoising and demosaicing of
RGB and raw images by Gharbi et al. in [9]. Contrary to other
deep learning denoising methods, one of the remarkable fea-
tures that these CNN-based methods present is the ability to
denoise several levels of noise with only one trained model.
Proposed by Zhang et al. in [7], DnCNN is an end-to-end
trainable deep CNN for image denoising. This method is able
to denoise different noise levels (e.g. with standard deviation
σ ∈ [0, 55]) with only one trained model. One of its main
features is that it implements residual learning [10], i.e. it es-
timates the noise existent in the input image rather than the de-
noised image. In a following paper [8], Zhang et al. proposed
FFDNet, which builds upon the work done for DnCNN.

1.2. Video Denoising

As for video denoising, the method proposed by Chen et al.
in [11] is one of the few to approach this problem with neural
networks—recurrent neural networks in their case. However,
their algorithm only works on grayscale images and it does
not achieve satisfactory results, probably due to the difficul-
ties associated with training recurring neural networks [12].
Vogels et al. proposed in [13] an architecture based on kernel-



predicting neural networks able to denoise Monte Carlo ren-
dered sequences. The state-of-the-art in video denoising is
mostly defined by patch-based methods. Kokaram et al. pro-
posed in [14] a 3D Wiener filtering scheme. We note in par-
ticular an extension of the popular BM3D to video denois-
ing, V-BM4D [15], and Video non-local Bayes (VNLB [16]).
Nowadays, VNLB is the best video denoising algorithm in
terms of quality of results, as it outperforms V-BM4D by a
large margin. Nonetheless, its long running times render the
method impractical—it could take several minutes to denoise
a single frame. The performance of our method compares fa-
vorably to that of VNLB for moderate to large values of noise,
while it features significantly faster inference times.

2. OUR METHOD

Methods based on neural networks are nowadays state-of-the-
art in image denoising. However, state-of-the-art in video
denoising still consists of patch-based methods. Generally
speaking, most previous approaches based on deep learning
have failed to employ the temporal information existent in
image sequences effectively. Temporal coherence and the
lack of flickering are vital aspects in the perceived quality of
a video. Most state-of-the-art algorithms in video denoising
are extensions of their image denoising counterparts. Such is
the case, for example, of V-BM4D and BM3D, or VNLB and
NLB. There are mainly two factors in these video denoising
approaches which enforce temporal coherence in the results,
namely the extension of search regions from spatial neigh-
borhoods to volumetric neighborhoods, and the use of mo-
tion estimation. In other words, the former implies that when
denoising a given pixel (or patch), the algorithm is going to
look for similar pixels (patches) not only in the same frame,
but also in adjacent frames of the sequence. Secondly, the use
of motion estimation and/or compensation has been shown
to help improving video denoising performance [17, 16, 15].
We thus incorporated these two elements into our algorithm,
as well as different aspects of other relevant CNN-based de-
noising architectures [8, 9, 13]. Thanks to all these charac-
teristics, our algorithm improves the state-of-the-art results,
while featuring fast inference times.

Figure 1 displays a simplified diagram of the architecture
of our method. When denoising a given frame, its 2T neigh-
boring frames are also taken as inputs. The denoising pro-
cess of our algorithm can be split in two stages. Firstly, the
2T + 1 frames are individually denoised with a spatial de-
noiser. Although each individual frame output at this stage
features relatively good image quality, they present evident
flickering when considered as a sequence. In the second stage
of the algorithm, the 2T denoised temporal neighbors are reg-
istered with respect to the central frame. We use optical flow
for this purpose. Splitting denoising in two stages allows for
an individual pre-processing of each frame. On top of this,
motion compensation is performed on pre-denoised images,

which facilitates the task. Finally, the 2T + 1 aligned frames
are concatenated and input into the temporal denoising block.
Using temporal neighbors when denoising each frame helps
to reduce flickering as the residual error in each frame will
be correlated. We also add a noise map as input to the spa-
tial and temporal denoisers. The inclusion of the noise map
as input allows the processing of spatially varying noise [18].
Contrary to other denoising algorithms, our denoiser takes no
other parameters as inputs apart from the image sequence and
the estimation of the input noise.

Observe that experiments presented in this paper focus on
the case of additive white Gaussian noise (AWGN). Never-
theless, this algorithm can be straightforwardly extended to
other types of noise, e.g. spatially varying noise (e.g. Poisso-
nian). Let I be a noiseless image, while Ĩ is its noisy version
corrupted by a realization of zero-mean white Gaussian noise
N of standard deviation σ, then

Ĩ = I+N . (1)

2.1. Spatial and Temporal Denoising Blocks

The design characteristics of the spatial and temporal blocks
make a good compromise between performance and fast run-
ning times. Both blocks are implemented as standard feed-
forward networks, as shown in fig. 2. The architecture of the
spatial denoiser is inspired by the architectures in [8, 9], while
the temporal denoiser also borrows some elements from [13].

The spatial and temporal denoising blocks are composed
of Dspa = 12, and Dtemp = 6 convolutional layers, re-
spectively. The number of feature maps is set to W = 96.
The outputs of the convolutional layers are followed by point-
wise ReLU [19] activation functions ReLU(·) = max(·, 0).
At training time, batch normalization layers (BN [20]) are
placed between the convolutional and ReLU layers. At eval-
uation time, the batch normalization layers are removed, and
replaced by an affine layer that applies the learned normaliza-
tion. The spatial size of the convolutional kernels is 3 × 3,
and the stride is set to 1. In both blocks, the inputs are first
downscaled to a quarter resolution. The main advantage of
performing the denoising in a lower resolution is the large
reduction in running times and memory requirements, with-
out sacrificing denoising performance [8, 18]. The upscaling
back to full resolution is performed with the technique de-
scribed in [21]. Both blocks feature residual connections [10],
which have been observed to ease the training process [18].

3. TRAINING DETAILS

The spatial and temporal denoising parts are trained sepa-
rately, with the spatial denoiser trained first as its outputs are
used to train the temporal denoiser. Both blocks are trained
using crops of images, or patches. The size of the patches
should be larger than the receptive field of the networks. In



Fig. 1. Simplified architecture of our method.

Fig. 2. Simplified architecture of the spatial (top) and tempo-
ral (bottom) denoising blocks.

the case of the spatial denoiser, the training dataset is com-

posed of pairs of input-output patches
{(

(̃Ij ,Mj), Ij
)}ms

j=0

which are generated by adding AWGN with standard devi-
ation σ ∈ [0, 55] to the clean patches Ij and building the
corresponding noise map Mj (which is in this case constant
with all its elements equal to σ). A total of ms = 1024000
patches are extracted from the Waterloo Exploration Database
[22]. The patch size is 50×50. Patches are randomly cropped
from randomly sampled images of the training dataset. Resid-
ual learning is used, which implies that if the network outputs
an estimation of the input noise Fspa( Ĩ; θspa ) = N̂, then the
denoised image is computed by subtracting the output noise
to the noisy input

Î( Ĩ; θspa ) = Ĩ−Fspa( Ĩ; θspa ) . (2)

The loss function of the spatial denoiser writes

Lspa(θspa) =
1

2ms

ms∑
j=1

∥∥∥Îj( Ĩj ; θspa )− Ij
∥∥∥2 , (3)

where θspa is the collection of all learnable parameters.
As for the temporal denoiser, the training dataset consists

of input-output pairs

P j
t =

{(
( (w Îjt−T , . . . , Î

j
t , . . . ,

w Îjt+T ),M
j ), Ijt

)}mt

j=0
,

where (w Îjt−T , . . . , Î
j
t , . . . ,

w Îjt+T ) is a collection of 2T +1
spatial patches cropped at the same location in contiguous
frames. These are generated by adding AWGN of σ ∈ [0, 55]
to clean patches of a given sequence, and denoising them us-
ing the spatial denoiser. Then, the 2T patches contiguous to
the central reference patch Ijt are motion-compensated with
respect to the latter, i.e. w Îjl = compensate(̂Ijl , Î

j
t ). To

compensate frames, we use the DeepFlow algorithm [23] for
the estimation of the optical flow between frames. The noise
map Mj is the same as the one used in the spatial denoising
stage. A total of mt = 450000 training samples are extracted
from the training set of the DAVIS database [24]. The spa-
tial size of the patches is 44 × 44, while the temporal size is
2T + 1 = 5. The loss function for the temporal denoiser is

Ltemp(θtemp) =
1

2mt

mt∑
j=1

∥∥∥Îjtemp, t − Ijt

∥∥∥2 , (4)

where Îjtemp, t = Ftemp(P
j
t ; θtemp).

In both cases, the ADAM algorithm [25] is applied to min-
imize the loss function, with all its hyper-parameters set to
their default values. The number of epochs is set to 80, and
the mini-batch size is 128. The scheduling of the learning rate
is also common to both cases. It starts at 1e−3 for the first 50
epochs, then changes to 1e−4 for the following 10 epochs,
and finally switches to 1e−6 for the remaining of the train-
ing. Data is augmented five times by introducing rescaling by
different scale factors and random flips. During the first 60
epochs, the orthogonalization of the convolutional kernels is
applied as a means of regularization. It has been observed that
initializing the training with orthogonalization may be bene-
ficial to performance [8, 18].

4. RESULTS

Two different testsets were used for benchmarking our
method: the DAVIS-test testset, and Set8, which is composed
of 4 color sequences from the Derf’s Test Media collec-
tion1 and 4 color sequences captured with a GoPro camera.
The DAVIS set contains 30 color sequences of resolution

1https://media.xiph.org/video/derf



(b) Noisy σ = 50 (c) V-BM4D (d) VNLB (e) Neat Video (e) DVDnet (ours)

Fig. 3. Comparison of results. Left to right: noisy frame (PSNRseq = 14.15dB), output by V-BM4D (PSNRseq = 24.91dB),
output by VNLB (PSNRseq = 26.34dB), output by Neat Video (PSNRseq = 23.11dB), output by DVDnet (PSNRseq =
26.62dB). Note the clarity of the denoised text, and the lack of low-frequency residual noise and chroma noise for DVDnet.
Best viewed in digital format.

854 × 480. The sequences of Set8 have been downscaled
to a resolution of 960 × 540. In all cases, sequences were
limited to a maximum of 85 frames. We used the DeepFlow
algorithm to compute flow maps for DVDnet and VNLB. We
also compare our method to a commercial blind denoising
software, Neat Video (NV [26]).

In general, DVDnet outputs sequences which feature re-
markable temporal coherence. Flickering rendered by our
method is notably small, especially in flat areas, where patch-
based algorithms often leave behind low-frequency residual
noise. An example can be observed in fig. 3 (which is best
viewed in digital format). Temporally decorrelated low-
frequency noise in flat areas appears as particularly annoying
in the eyes of the viewer. More video examples can be found
in the website of the algorithm. The reader is encouraged to
watch these examples to compare the visual quality of the
results of our method.

Tables 1 and 2 show a comparison of PSNR on the Set8
and DAVIS dataset, respectively. It can be observed that for
smaller values of noise, VNLB performs better. In effect,
DVDnet tends to over denoise in some of these cases. How-
ever, for larger values of noise DVDnet surpasses VNLB.

Table 1. Comparison of PSNR on the Set8 testset.

DVDnet VNLB V-BM4D NV

σ = 10 36.08 37.26 36.05 35.67
σ = 20 33.49 33.72 32.19 31.69
σ = 30 31.79 31.74 30.00 28.84
σ = 40 30.55 30.39 28.48 26.36
σ = 50 29.56 29.24 27.33 25.46

4.1. Running times

Our method achieves fast inference times, thanks to its de-
sign characteristics and simple architecture. DVDnet takes
less than 8s to denoise a 960 × 540 color frame, which is

Table 2. Comparison of PSNR on the DAVIS testset.

DVDnet VNLB V-BM4D

σ = 10 38.13 38.85 37.58
σ = 20 35.70 35.68 33.88
σ = 30 34.08 33.73 31.65
σ = 40 32.86 32.32 30.05
σ = 50 31.85 31.13 28.80

about 20 times faster than V-BM4D, and about 50 times faster
than VNLB. Even running on CPU, DVDnet is about an order
of magnitude faster than these methods. Of the 8s it takes to
denoise a frame, 6s are spent on compensating motion of the
temporal neighboring frames. Table 3 compares the running
times of different state-of-the-art algorithms.

Table 3. Comparison of running times. Time to denoise a
color frame of resolution 960 × 540. Note: values displayed
for VNLB do not include the time required to estimate mo-
tion.

Method V-BM4D VNLB DVDnet DVDnet
(CPU) (GPU)

Time (s) 156 420 19 8

5. CONCLUSIONS

In this paper, we presented DVDnet, a video denoising algo-
rithm which improves the state-of-the-art. Denoising results
of DVDnet feature remarkable temporal coherence, very low
flickering, and excellent detail preservation. The algorithm
achieves running times which are at least an order of magni-
tude faster than other state-of-the-art competitors. Although
the results presented in this paper hold for Gaussian noise, our
method could be extended to denoise other types of noise.
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