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An Accurate Third-Order Normal Form
Approximation for Power System

Nonlinear Analysis
Tian Tian, Student Member, IEEE, Xavier Kestelyn , Member, IEEE, Olivier Thomas, Hiroyuki Amano,

and Arturo Roman Messina, Fellow, IEEE

Abstract—The inclusion of higher-order terms in small-signal
(modal) analysis has been an intensive research topic in nonlinear
power system analysis. Inclusion of second-order terms with the
method of normal forms (MNF) has been well developed and inves-
tigated, overcoming the linear conventional small-signal methods
used in the power system control and stability analysis. However,
application of the MNF has not yet been extended to include
third-order terms in a mathematically accurate form to account
for nonlinear dynamic stability and dynamic modal interactions.
Due to the emergence of larger networks and long transmission
line with high impedance, modern grids exhibit predominant
nonlinear oscillations and existing tools have to be upgraded to
cope with this new situation. In this paper, first, fundamentals of
normal form theory along with a review of existing tools based on
this theory is presented. Second, a new formulation of MNF based
on a third-order transformation of the system’s dynamic approx-
imation is proposed and nonlinear indexes are proposed to make
possible to give information on the contribution of nonlinearities to
the system stability and on the presence of significant third-order
modal interactions. The induced benefits of the proposed method
are compared to those afforded by existing MNFs. Finally, the
proposed method is applied to a standard test system, the IEEE
2-area 4-generator system, and results given by the conventional
linear small signal and existing MNFs are compared to the
proposed approach. The applicability of the proposed MNF to
larger networks with more complex models has been evaluated on
the New England–New York 16-machine 5-area system.

Index Terms—Interconnected power system, methods of nor-
mal forms, nonlinear modal interaction, power system dynamic,
stability.

I. INTRODUCTION

TODAY’S standard electrical grids are composed of several
generators working in parallel to supply a common load.
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An important problem associated with interconnected power
systems is the presence of oscillations that could have dan-
gerous effects on the system. The multiplication of distributed
generation units, usually composed of renewable-energy-based-
generators, and the increase of energy exchanges through long
distance lead to highly stressed power systems. Due to the large
amount of power flowing through the lines, the low-frequency
oscillations, called in classical power system studies electrome-
chanical oscillations, exhibit predominant nonlinear behaviors.
Since these oscillations are essentially caused by modal inter-
actions between the system components after small or large dis-
turbances, they are called nonlinear modal oscillations, higher
order modes or higher order modal interactions, inaccurately
modeled by the linear analysis based on a linearized model.

Although intensive research has been conducted on the an-
alytical analysis of nonlinear modal oscillations based on the
Normal Form Theory with inclusion of 2nd order terms in the
system’s dynamics, this paper proposes to show that in certain
stressed conditions, as modern grids experience more and more,
inclusion of 3rd order terms offer some indubitable advantages
over existing methods.

The Method of Normal Forms (MNF) being based on suc-
cessive transformations of increasing orders, the proposed 3rd
order-based method inherits the benefits of the linear and the
2nd order-based methods, i.e.:

1) Analytical expressions of decoupled (or invariant) normal
dynamics;

2) Physical insights keeping the use of modes to study the
contribution of system components to inter-area oscilla-
tions;

3) Stability analysis based on the evaluation of the system
parameters.

The paper is organized as follows. Section II introduces the
need for including higher-order terms in the modal analysis of
power systems. A literature review on the major applications of
Normal Form Theory for the study of power grids is then con-
ducted along with the proposal of a new formulation at the third
order in Section III. Based on this new approximation, nonlinear
indexes are proposed in Section IV to make possible to quantify
the modal interactions and to give information on the effects
of the nonlinearities on the system stability. Section V is dedi-
cated to comparisons of the proposed third-order-based method
to the exiting methods in the literature. The different methods
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reviewed and proposed in this work are applied to IEEE standard
test systems (The Kundur’s 4 machine 2 area system and the New
England New York 16 machine 5 area system) to emphasize the
advantages of taking into account high-order terms in the small-
signal analysis. Section VI discusses the factors influencing the
Normal Form analysis. Section VII proposes some conclusions
and possible applications of the proposed method are suggested.

II. NEED FOR INCLUSION OF HIGHER-ORDER TERMS

Small-signal analysis is the conventional analysis tool for
studying electromechanical oscillations that appear in intercon-
nected power systems. It linearizes the power system’s equations
around an operating point by including only the first-order terms
of the Taylor’s series expansion of the system’s dynamic. The
eigenanalysis is made to obtain analytical expressions of the
system’s dynamic performances and the stability analysis is re-
alized on the basis of the first Lyapunov Method (Analysis of
the real parts of the poles). Besides, modal analysis uses the
eigenvectors to give an insight of the modal structure of a power
system, showing how the components of the power system in-
teract. Thanks to modal analysis, power system stabilizers can
be placed at the optimal location in order to stabilize the whole
system, ensuring then a small-signal stability [1].

Later, researchers suggested that in certain cases, such as
when the system is severely stressed, linear analysis techniques
might not provide an accurate picture of the power system modal
characteristics. From 1996 to 2005, numerous papers [2]–[11]
have been published proving that higher order modal interac-
tions must be studied in case of certain stressed conditions. MNF
with the inclusion of 2nd order terms shows its great potential
in power system stability analysis and control design. Those
achievements are well summarized in the Task-force committee
report [12].

The existing 2nd-order-based method gives a better picture
of the dynamic performance and the mode interactions than the
classical linear modal analysis. However, it fails to take benefit
of the system’s nonlinearities for studying the stability where
the conventional small-signal stability analysis fails. Based on
this, [13] proposed to keep a second order transformation but
with including some of the third-order terms in order to improve
the system stability analysis.

Finally, excepted in [14] and [15], some 3rd-order-based
MNFs have been proposed [16], [17] but have not been fully
developed yet, not leading to a more useful tool than the ones us-
ing linear-based and second-order-based methods. For nonlinear
mechanical systems, that often include lightly damped oscilla-
tory modes and possible internal resonances, Normal Forms up
to third order are widely used, either to classify the generic
families of bifurcations in dynamical systems [18], [19] or to
define Nonlinear Modes of vibration and to build reduced-order
models [20]–[22].

III. LITERATURE REVIEW ON THE EXISTING MNFS AND

PROPOSAL OF A NEW METHOD FOR THE STUDY OF STRESSED

POWER GRIDS

The Methods of Normal Forms (MNF) was initially devel-
oped by Poincaré [23] to simplify the system dynamics of
nonlinear systems by successive use of near-identity changes

of coordinates. The transformations are chosen in such a way as
to eliminate the nonresonant terms of a corresponding order.

The procedure is well documented in [24], [25] and can be
adapted to the power system analysis. It consists of eight major
steps:

1) Building the differential algebraic equations (DAEs) of
the power system : differential equations and power flow
constraints;

2) Solving the power flow to obtain the stable equilibrium
point (SEP) for the post-fault system, i.e the operating
point;

3) Transforming the DAEs on an equivalent system of dif-
ferential equations and expanding the system of equations
around the SEP into Taylor’s series up to third-order;

4) Simplifying the linear part of the system by the use of a
linear transformation;

5) Simplifying the non-resonant terms of higher-order terms
by successive Normal Form (NF) transformations. This
paper will use 2nd and 3rd order NF transformations;

6) Simplifying the Normal Forms’ dynamics by neglecting
(if possible) some resonant terms that can not be annihi-
lated by NF transformations;

7) Reconstructing the original system’s dynamic from the
Normal Forms’ dynamics in order to determine the order
of the Taylor’s series expansion and the NF transforma-
tions to be selected according to the expected accuracy;

8) Using the chosen Normal Forms’ approximation for dy-
namic and stability analysis.

A. Class of Systems that can be Studied by Methods of Normal
Forms

The class of systems that can be studied by MNF are usually
modeled using Differential Algebraic Equations (DAEs) [1].
By subsituting the algebraic equations into the differential ones,
one transforms those DAEs in a dynamical system, which can
be written:

ẋ = f(x, u), (1)

where x is the state-variables vector, u is the system’s inputs
vector and f is a nonlinear vector field. Expanding this system
in Taylor series around a stable equilibrium point, one obtains:

�ẋ = H1(�x) +
1
2!

H2(�x) +
1
3!

H3(�x) + O(4)
(2)

where Hq gathers the q th-order partial derivatives of f , i.e., for
j = 1, 2, · · · , n, H1j

k = ∂fj/∂xk , H2j
kl =

[
∂2fj /∂xk∂xl

]
,

H3j
klm =

[
∂3fj/∂xk∂xl∂xm

]
and O(4) are terms of order 4

and higher.

B. Simplifying the Linear Terms

The linear part of (2) is simplified using its Jordan form:

ẏ = Λy + F2(y) + F3(y) + O(4) (3)
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supposed here to be diagonal, where the jth equation of (3) is:

ẏj =λj yj +
n∑

k=1

n∑

l=1

F2j
klykyl +

n∑

p=1

n∑

q=1

n∑

r=1

F3j
pqr ypyq yr +· · ·

(4)

λj is the jth eigenvalue of matrix H1 and j = 1, 2, · · · , n.
U and V are the matrices collecting the right and left eigen-
vectors of H1. UV = I , F2j = 1

2

∑n
i=1 vji

[
UT Hi

2U
]

and F3j
pqr = 1

6

∑n
i=1 vji

∑n
k=1

∑n
k=1

∑n
m=1 H3i

k lm ul
pu

m
q un

r

where vji is the element at j-th row and i-th column of V and
ul

p the element at the p-th row and l-th column of U . The fun-
damentals of linear small-signal analysis use the sign of the real
parts σj of the eigenvalues λj = σj + jωj to estimate the system
stability. U is used to indicate how each mode yj contribute to
the state-variables of x, and V indicates how the state-variables
of x are associated to each mode yj .

C. Simplification of a Maximum Number of Nonlinear Terms

Based on the Normal Form Theory, (3) can be simplified by
successive NF transformations.

1) Elimination of Quadratic Terms: When only 2nd order
terms are kept in the Taylor’s Expansion Series of the system’s
dynamics, (3) becomes:

ẏ = Λy + F2(y) (5)

where the jth equation of (5) writes :

ẏj = λj yj +
n∑

k=1

n∑

l=1

F2j
klykyl (6)

To eliminate the second-order terms in (5), the following second-
order NF transformation is applied:

y = z + h2(z) (7)

or, in component form:

yj = zj +
n∑

k=1

n∑

l=1

h2j
klzk zl (8)

Use of (7) in (5) leads to:

ż = Λz − Dh2(z)Λz + Λh2(z) + F2(z) + O(3) (9)

where Dh2 is the Jacobian matrix of h2 and the jth term of
(9) takes the form of:

żj = λj zj −
n∑

k=1

n∑

l=1

[(λk + λl − λj )h2j
kl − F2j

kl ]zkzl

+ O(3) (10)

If one wants to eliminate all second-order terms from (9),
transformation (7) must satisfy the following equation, for all
z:

Dh2(z)Λz − Λh2(z) = F2(z) (11)

which gives, for all j, k, l:

(λk + λl − λj )h2j
kl − F2j

kl = 0 (12)

Equation (12) shows that the computations of coefficients
h2j

kl of the change of variables are not possible (or numerically
difficult) if the conditions λk + λl − λj ≈ 0 holds. This con-
dition is only met for undamped systems (or weakly damped
systems) and corresponds to the so-called internal resonances
(when frequencies are such that ωk + ωl − ωj = 0). It is impor-
tant to note that this condition appears only when the eigenval-
ues share a commensurability relationship, as for example when
ω1 = 2ω2 . Although it may be a rare case, [26] proved that it
can be the reason of instability in the Japanese power system
model.

If it is supposed that no internal resonance occurs, h2j
kl is

given by [12]:

h2j
kl =

F2j
kl

λk + λl − λj
(13)

and, by neglecting terms of order greater than 2, the normal
dynamics are modeled by a set of decoupled first-order linear
differential equations:

ż = Λz (14)

It is very important to note that the normal dynamics given by
(14) uses the linear modes of the linearized system. The nonlin-
earities are then taken into account only through the nonlinear
2nd-order transform (7) and it results in a quadratic combina-
tion of linear modes, leading to 2nd-order modal interactions.
Then, the stability analyses conducted using this linear normal
dynamics give the same conclusion than the analysis that can be
conducted using the linear dynamics.

Gradually established and advocated by investigators from
Iowa State University, the period 1996 to 2001 [2]–[11] opens
the era to apply Normal Forms analysis in studying nonlinear
dynamics in power system. Its effectiveness has been shown in
many examples [2], [5]–[8], [10], [11], [27], [28], to approx-
imate the stability boundary [5], to investigate the strength of
the interaction between oscillation modes [2], [6], [27], to dealt
with a control design [7], [8], to analyze a vulnerable region
over parameter space and resonance conditions [10], [11] and
to optimally place controllers [28].

This method is well summarized in [12], which demonstrated
the importance of nonlinear modal interactions in the dynamic
response of a power system and the utility of including 2nd order
terms. Reference [29] proposes an extension of the method to
deal with resonant cases. It has become a mature computational
tool and other applications have been developed [30], [31], or
are still emerging [32].

2) Consideration of Cubic Terms: Although the second-
order-based method gives a more accurate picture of the sys-
tem’s dynamics than the linear small-signal analysis, keeping
the 3rd order terms in the Taylor’s expansion series adds some
important features to the method. As examples, improvements
in the stability analysis have been proved in [13] and new criteria
to design the system controllers in order to improve the transfer
capacity of transmissions lines have been established in [33].

Including third-order terms, (3) becomes:

ẏ = Λy + F2(y) + F3(y) (15)
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The j-th state equation being:

ẏj = λj yj +
n∑

k=1

n∑

l=1

F2j
klykyl +

n∑

p=1

n∑

q=1

n∑

r=1

F3j
pqr ypyq yr

(16)
Applying the 2nd Order NF transformation y = z + h2(z),

the normal dynamics reads:

ż = Λz + DF2(z)h2(z) + F3(z) + O(4) (17)

where:
1) DF2(z)h2(z) are third order terms coming from the

2nd Order NF transformation used to cancel the 2nd order
terms;

2) F3(z) are the original 3rd order terms from the system
(3).

Neglecting terms of order higher than 3, for the jth variable
(17) results in:

żj = λj zj +
n∑

p=1

n∑

q=1

n∑

r=1

Cj
pqr zpzq zr (18)

where Cj
pqr =

∑n
l=1(F2j

pl + F2j
lp)h2p

qr + F3j
pqr

To simplify as much as possible the third order terms, the
following third-order NF transformation is applied to (17) [16]:

z = w + h3(w) (19)

where h3 is a polynomial of w containing only 3rd-order terms.
Applying transformation (19) to (17), it leads to:

ẇ = Λw + DF2(w)h2(w)

+ Λh3(w) − Dh3(w)Λw + F3(w) + O(5) (20)

It should be emphasized that there are neither terms of order 2
nor terms of order 4 in (20), and terms of order 3 are:

1) DF2(w)h2(w) that comes from the 2nd-order NF trans-
formation used to cancel the 2nd-order terms;

2) Λh3(w) − Dh3(w)Λw that comes from the use of
transformation (19) in order to cancel the 3rd-order terms;

3) F3(w), the original 3rd order terms of system (16).
For the j-th variable, (20) can be written as:

ẇj = λjwj

+
n∑

p=1

n∑

q=1

n∑

r=1

[Cj
pqr − (λp + λq + λr − λj )h3j

pqr ]

× wpwqwr + O(5) (21)

3) Elimination of Third-order Terms and Effects of the Res-
onant Terms: The next step is dedicated to the elimination of a
maximum number of 3rd-order terms. This elimination is based
on the same procedure as the one used to eliminate the second
order terms. Equation (21) shows that third order terms can be
eliminated with setting h3 computed by:

h3j
pqr =

F3j
pqr +

∑n
l=1(F2j

pl + F2j
lp)h2p

qr

λp + λq + λr − λj
(22)

Computation of h3 are impossible if the condition λp + λq +
λr − λj ≈ 0 holds. A careful attention is then mandatory since

resonant terms are systematically present when the system ex-
hibits undamped (or weakly damped) oscillating modes (pairs
of complex eigenvalues close the the real axis).

If we consider a weak-damped oscillating mode, composed of
two conjugated poles λ2l and λ2l−1 , the necessary condition for
eliminating the associated third-order term wjw2lw2l−1 will not
be met for some j leading to the impossibility of computing the
coefficient h3j

j2l2l−1 . As a consequence, term wjw2lw2l−1 can-
not then be eliminated and must be kept in the normal dynamics
[25], [34].

If we consider that the system possesses M weakly-damped
oscillatory modes, M third-order terms can thus not be elimi-
nated from the normal dynamics of the jth variable (j ∈ M ).
Apart from internal resonances due to commensurability rela-
tionships between eigenvalues, as for example when ω1 = 3ω2 ,
ω1 = 2ω2 + ω3 or ω1 = ω2 + ω3 + ω4 , all the other third-order
terms are eliminated by third-order transformation (19).

Neglecting terms with an order higher than three, the normal
dynamics of a system composed of M weakly-damped oscilla-
tory modes are then:

ẇj = λjwj +
M∑

l=1

cj
2lwjw2lw2l−1 , j ∈ M (23)

ẇj = λjwj , j /∈ M (24)

where w2l−1 is the complex conjugate of w2l and coefficients
cj
2l are defined as:

cj=2k
2l = C2k

(2k)(2l)(2l−1) + C2k
(2k)(2l−1)(2l) + C2k

(2l)(2k)(2l−1)

+ C2k
(2l)(2l−1)(2k) + C2k

(2l−1)(2l)(2k) + C2k
(2l−1)(2k)(2l)

c2l
2l = C2l

(2l)(2l)(2l−1) + C2j
(2l)(2l−1)(2l) + C2l

(2l−1)(j )(j ) (25)

Equation (23) shows that considering third-order terms in
the Normal Dynamic changes the way of making the stability
analysis. As shown in [13], [33], the third order terms can have
a stabilizing or a destabilizing effect and the inspection of the
sign of the eigenvalue real parts is not sufficient to predict the
stability of the system.

D. Comparison with Other Works where Third Order Terms
were Considered

In [13], [33], third-order terms are present in the Taylor’s
series but only the second-order transformation is used. Some
3rd order terms are kept on the normal dynamics and leads for
the oscillatory modes to :

żj = λj zj +
M∑

l=1

cj
2lzj z2lz2l−1 , j ∈ M (26)

For the non-oscillatory modes, the normal dynamics are the
same as expressed by (14).

In [16], [17], a 3rd-order NF transformation is proposed where
the terms DF2(w)h2(w) of (20) are not taken into account,
leading to coefficients given by:

h3j
pqr =

F3j
pqr

λp + λq + λr − λj
(27)
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Since some 3rd order terms are omitted, the accuracy of the
proposed normal dynamics is worse than the one based on co-
efficients given by (22).

Moreover, the considered normal dynamics are:

ẇj = λjwj (28)

and since all resonant terms in (28) are neglected, it fails to give
more information about the system stability than the linearized
small-signal stability analysis.

IV. NONLINEAR ANALYSIS BASED ON THE 3RD ORDER

NORMAL FORMS

NF methods can be used to quantify modal interactions and
to give information on the system stability. To evaluate the gain
obtained by the 3rd order method over the 2nd order method,
normal dynamics (23) and (24) have to be reconstructed with
the z coordinates as:

zj = wj +
n∑

p=1

n∑

q=1

n∑

r=1

h3j
pqrwpwqwr (29)

It can be seen from the reconstruction that zj is composed of
two sets. A first set with coefficients h3j

pqr that can be used to
quantify the 3rd order modal interactions [17] and a second set
where wj is influenced by cj

2l , making then possible to use it for
stability analysis [13], [33].

Based on the Normal Forms, h3j
pqr and cj

2l can be used to
deduce nonlinear indexes for quantifying the 3rd order modal
interactions and to give information on some nonlinear stability
margins.

A. 3rd Order Modal Interaction Index

As observed from (29), 3rd order oscillations are modeled
by h3j

pqrwpwqwr . Then, a third order Modal Interaction index
MI3j

pqr can be defined as:

MI3j
pqr =

|h3j
pqrw

0
pw0

q w0
r |

|w0
j |

(30)

which indicates the participation of the 3rd order modal interac-
tion with the frequency ωp + ωq + ωr in the mode j. ω0 are the
initial values of the variables at the moment of interest. Introduc-
ing MI3j

pqr leads to a clearer idea of how the system variables
interact with each others and a more precise identification of
the source of the oscillations. Those additional informations are
crucial, especially when some fundamental, 2nd and 3rd order
modal interactions exhibit the same oscillatory frequency. In
that case, it is difficult to identify the order of the modal inter-
actions using a FFT analysis. NF analysis offers then the same
services as time-domain simulations with signal processing, in
the sense that FFT can only identify the oscillatory frequencies
while NF analysis can also identify the source of these oscilla-
tory frequencies.

B. Stability Index

Since the stability of oscillatory modes in (2) is consistent
with (23) and (24), information on the stability can be obtained
without performing a time-domain simulation assessment.

For the non-oscillatory modes, ẇj = λjwj , the stability is
determined by inspecting λj . For the oscillatory modes where
j ∈ M , the normal dynamics are:

ẇj = λjwj +
M∑

l=1

cj
2lwjw2lw2l−1 , (31)

=

(

λj +
M∑

l=1

cj
2l |w2l |2

)

wj (32)

with |w2l | the magnitude of w2l .
A stability interaction index can then be defined as:

SIIj
2l = cj

2l |w0
2l |2 , j ∈ M (33)

and, remarking that

λj +
M∑

l=1

cj
2l |w0

2l |2 = σj + real

(
M∑

l=1

SIIj
2l

)

+j(ωj +imag(SIIj
2l))

(34)

it is shown that the real part of SII gives an indication on
the stability of the system and the imaginary part of SII is in
relation with the frequency shift of the mode.

C. Nonlinear Modal Persistence Index

The nonlinear indexes MI3 proposed in a previous section
indicate the nonlinear interactions at the moment when the dis-
turbance is cleared. To quantify the 3rd order modal interaction
in the overall dynamics, a persistence index is defined to indi-
cate how long a nonlinear interaction will influence the domi-
nant modes. Similar to (23) and (24) in [12], Tr3 is the ratio of
the time constant associated to a combination of modes over a
dominant mode.

Tr3 =

Time constant for combination of modes (λp + λq + λr )
Time constant for dominant mode (λj )

(35)

A small Tr3 indicates a significant presence of a mode com-
bination. For example, if Tr3 = 1, it means that a nonlinear
interaction decays at the same speed as a dominant mode. If
Tr3 is very low, it means that the influence of a mode combina-
tion (p, q, r) quickly vanishes compared to the dominant mode.
A relatively high value of the product SII × Tr3,MI3 × Tr3
tends to reveal the presence of a persistent modal interaction.

D. Stability Assessment

As indicated by (31), it is both the eigenvalues λj and the sta-
bility indexes SIIj

2l that give information concerning the sys-
tem stability. Although λj keeps constant,

∑M
l=1 cj

2l |w2l |2wj

decays as time runs. For example, if SIIj
2l is large, but

SIIj
2l × Tr3j

j (2l)(2l−1) is small, the 3rd-order terms may sta-
bilize the system at the beginning of the transient but a long-
term instability can exist. Therefore, the time constant associ-
ated to SIIj

2l must be taken into account when assessing the
overall stability. An index of stability assessment can then be
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TABLE I
LIST OF THE MNFS PRESENTED IN THIS WORK

Method Taylor’s NF Normal nth order Related
series Trans. Form NF Terms Equation

2-2-1 2nd order order 2 order 1 / (14)
3-2-3S 3rd order order 2 order 3 S (26)
3-3-1 3rd order order 3 order 1 / (28)
3-3-3 3rd order order 3 order 3 / (23)(24)

defined as:

SIj = σj +
M∑

l=1

real(SIIj
2l) × Tr3j

j (2l−1)(2l) , j ∈ M (36)

with σ being the real value of an eigenvalue (λj = σj + jωj ). It
immediately follows from this definition that, if SIj > 0 third
order terms will have a destabilizing effect and, if SIj < 0 third
order terms will have a stabilizing effect. If SIj = 0, the system
may stay in limit cycles, or switch between the stable and the
unstable phase. Different cases should be discussed and further
investigations should be made.

Compared to [13], this approach has a larger range as it takes
into account the persistence time of a mode interaction and it is
appropriate for cases where σj = 0.

V. CASE-STUDY

A. Summary Analysis of the Different Methods Reviewed and
Proposed in the Work

The methods presented in this work can be compared on four
basic features. Each method is then labeled using three digits
and one optional letter where:

1) The first digit gives the order of the Taylor’s expansion of
the system’s dynamic;

2) The second digit gives the order of the Normal Form
transformation used;

3) The third digit gives the order of the considered normal
dynamics;

4) The optional letter indicates the fact that some terms have
not been taken into account in the normal dynamics (S for
Simplified)

Table I lists the four MNFs presented and compared in this
work. In all the chosen test systems, the variables are in per
units, while the rotor angles are measured in rad, considering
the scaling problem [35].

B. The IEEE 4-Machine Test System

The chosen test system to assess the advantages of the pro-
posed method is a well known IEEE standard system, the
Kundur’s 2–area 4–machine system shown in Fig. 1. It is a clas-
sical system suitable for the analysis of modal oscillations for
the validation of small-signal analysis [1] and for the validation
of 2nd order Normal Form analysis [12].

The generators are modeled using a two-axis fourth-order
model and a thyristor exciter with a Transient Gain Reduction.
Loads L1 and L2 are modeled as constant impedances and no

Fig. 1. IEEE 4 machine test system: 2-area 4-generator.

Power System Stabilizer (PSS) are used. To make the system
robust, each area is equipped with large capacitor banks to avoid
a voltage collapse. The data for the system and the selected case
are provided in the Appendix section. The full numerical time
domain simulation is used to assess the performance of the
MNFs in approximating the nonlinear system dynamics, based
on the well validated demo power PSS in Matlab 2015a.

The oscillatory modes for the selected cases are listed
in Tables II and III with the associated pseudo frequency,
time-constant and dominate states. It gives a clear picture of
the physical property of the system dynamics by small-signal
analysis. Some stable real modes are not listed for the sake of
compactness.

The cases analyzed in this section were selected to highlight
information provided by the 3rd order Normal Form analy-
sis. The selected system operating conditions for the study is
a highly stressed case where the system is close to the volt-
age collapse, characterized by a tie line flow of 420MW from
Area1 to Area2. To consider the emergence of renewable energy
based generators, some modifications are made compared to the
conventional small-signal and 2nd-order-based NF analysis that
have been already conducted on the same test case. The powers
generated by generators G1 and G2 in Area1 are unbalanced
to consider the production of energy from distant renewable
energy based generators in large areas.

Two cases are considered:
Case 1: This case represents a poorly damped situation, where

the damping ratio of the inter-area mode is only 5.9%
and the system is at its limit of stability according to
a linear analysis. A three phase short-circuited fault is
applied at Bus 7 and after 0.41 s, line B and line C
are tripped. The exciter gain Ka is set as 150 for all
generators.

Case 2: This case represents a situation where the damp-
ing ratio of two oscillatory modes is negative
(modes (5, 6) and (7, 8), as indicated in Table III). The
negative damping is introduced by changing the gain of
the 4 thyristor exciters by a higher value (Ka = 240).
A three phase short-circuited fault is applied at Bus 7
and after 0.10s, line B and line C are tripped.

The transient analysis of the overall system based on the
NF analysis is presented in the next section, where G1 and G2
exhibit predominant electromechanical oscillations.
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TABLE II
OSCILLATORY MODES: CASE 1

Mode Eigenvalue Pseudo-Freq Damping Time Constant Dominant
# (Hz) Ratio (%) t = 1

ζ ω n
States

5, 6 −3.46 ± j93.2 14.8 3.17 0.289 E
′
q 1 , E

′
q 2 , E

′
q 3 , E

′
q 4

7, 8 −5.94 ± j88.3 14.0 6.71 0.168 Control unit G2
9, 10 −18.1 ± j62.8 9.99 27.7 0.055 Control unit (G3, G4)
11, 12 −17.3 ± j64.5 10.3 25.9 0.057 Control unit G1
13, 14 −1.51 ± j6.73 1.07 21.9 0.662 Local, Area 2(δ1 , δ2 , ω1 , ω2 )
15, 16 −1.69 ± j6.51 1.03 25.1 0.593 Local, Area 1(δ1 , δ2 , ω1 , ω2 )
17, 18 −0.135 ± j2.28 0.36 5.9 7.41 Inter–area (δ1 , δ2 , δ3 , δ4 )

TABLE III
OSCILLATORY MODES: CASE 2

Mode Eigenvalue Pseudo-Freq Damping Time Constant Dominant
# (Hz) Ratio (%) t = 1

ζ ω n
States

5, 6 3.61 ± j107.9 17.2 −3.34 −0.277 E
′
q 1 , E

′
q 2 , E

′
q 3 , E

′
q 4

7, 8 1.73 ± j104.1 16.6 −1.66 −5.79 Control unit G2
9, 10 −11.4 ± j77.8 12.4 14.5 0.088 Control unit (G3, G4)
11, 12 −10.3 ± j79.9 12.7 12.8 0.097 Control unit G1
13, 14 −1.56 ± j6.64 1.05 22.9 0.641 Local, Area 2(δ1 , δ2 , ω1 , ω2 )
15, 16 −1.72 ± j6.44 1.02 25.8 0.581 Local, Area 1(δ1 , δ2 , ω1 , ω2 )
17, 18 −0.132 ± j2.23 0.36 5.92 7.55 Inter–area (δ1 , δ2 , δ3 , δ4 )

Fig. 2. Comparison of different NF approximations: Case 1.

C. Case 1-2: Benefits of Using 3rd Order Approximation for
Modal Interactions and Stability Analysis

When the system is close to its limits of stability as de-
picted by Case 1, Fig. 2 shows that the linear analysis gives
wrong predictions concerning the dynamic behavior of the
system. 2nd-order and 3rd-order Normal Form approximations
can both better model the system dynamic response than the
Linear Method.

The proposed third-order approximation, called 3-3-3, is su-
perior over the other methods since it makes possible to model
the interactions of oscillatory of non-oscillatory modes up to

Fig. 3. FFT Analysis of different NF approximations: Case 1.

order 3, contributing to a better modeling of the frequency vari-
ation of the oscillations as recently formulated in [36] and [37].

Concerning Case 2, the system is such that the linear analysis
leads to the computation of two oscillatory modes with a neg-
ative damping (See modes (5,6) and (7,8) given by Table III).
According to the conventional small-signal stability analysis,
the overall system is then considered as unstable. However, as
shown in Fig. 4, the system’s nonlinearities contribute to the
overall stability of the system [13]. The comparison of the dif-
ferent NF approximations shows that only methods keeping
3rd-order terms in the normal dynamics are able to predict the
stability of the system (3-2-3S and proposed 3-3-3 approxima-
tions).
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Fig. 4. Comparison of different NF approximations: Case 2.

TABLE IV
INITIAL CONDITIONS

j y0 z0221 z0331 z0333

5 5.14 + j2.93 3.89 + j2.38 3.88 + j2.38 0.3105 + j0.3263
7 −6.36 − j2.73 −3.24 − j0.95i −3.24 − j0.95 −0.36 − j2.49
9 −1.35 − j1.39 0.48 − j3.14 0.58 − j2.3 0.75 − j1.59
11 −9.84 − j4.25 −6.07 − j4.58 −6.27 − j4.58 −0.54 − j3.84
13 −0.25 − j0.21 −0.27 − j0.08 −0.226 − j0.085 −0.20 − 0.22i
15 0.32 + j0.10 0.04 − 0.0012i 0.05 − j0.0012 0.072 − j0.05
17 0.87 + j2.52 0.82 + j2.16 0.84 + j2.10 1.70 + j1.31i

D. Nonlinear Analysis Based on Normal Forms

It has been validated by the time-domain simulation in
the previous section that the normal dynamics well approxi-
mate the system dynamics. In this section, the MNF is used to
make quantitative analyses of the system dynamics with using
the nonlinear indexes.

1) Initial Condition and Magnitude at Fundamental Fre-
quency: The initial conditions in the Jordan form (y0) and for
methods 2-2-1 (z0221), 3-3-1 (z0331) and 3-3-3 (z0333) are
listed in Table IV. It has to be noticed that method 3-2-3S has
the same initial conditions as method 2-2-1, i.e. z0323 = z0221.

From the initial condition, it can be seen that the magnitude
of the ratio of y0

17 , z022117 , z033117 , z033317 over z033317 is
respectively equals to 124%, 107.8%, 107.7% and 100%, which
approximately matches the ratios at the fundamental frequency
of the different curves in Fig. 3.

2) Distribution of the Frequency Spectrum: Comparing re-
sults of Table V with data extracted on Fig. 3, it is seen that: 1)
MI317

17,17,17 = 0.11 = 11% approximately matches the magni-
tude ratio of the 3rd order component at approximately 1 Hz;

2) ignoring DF2h2, h3j
pqr is small and leads to a too modest pre-

diction of the 3rd order interaction MI3j
pqr = 0.056 = 5.6%.

A deeper analysis can be made using NF methods compared
to FFT analysis. For example, MI317

17,26,27 = 0.45 indicates

TABLE V
3RD ORDER COEFFICIENTS FOR MODE (17, 18)

p, q, r (DF 2h2)j
p q r F 3j

p q r h3j
p q r

(17, 17, 17) 0.046 − j0.118 0.029 + j0.034 0.017 − j0.019

MI3j
p q r h317

17 ,17 ,17 MI3j
p q r T r3

0.1220 0.0068 + j0.008 0.0560 0.33

TABLE VI
RESONANT TERMS ASSOCIATED WITH MODE (17, 18)

j SIIj
18 λj + λ2 l + λ2 l−1 T r3

5 −1.30 − j2.59 −3.73 + j93.2 0.93
7 0.48 + j0.96 −6.21 + j88.3 0.96
9 0.0117 + j0.17 −18.37 + j62.8 0.98
11 −0.51 − j1.52 −17.57 + j64.5 0.98
13 0.074 − j0.25 −1.78 + j6.73 0.85
15 0.89 + j0.532 −1.96 + j6.51 0.86
17 0.12 − j0.678 −0.405 + j2.28 0.33

TABLE VII
STABILITY INDEXES OF MODE (5, 6), (7, 8)

2l − 1 SII5
2 l T r3 real(SII) × T r35

5 −53.54 − j109.77 0.33 −17.6682
9 −3.37 − j6.34 −0.18 −0.63
13 −3.06 − j7.56 7.50 −22.95
15 −6.5 − j11.7 22.50 −146.25
17 −1.60 − j4.15 1.08 −1.72

SI5 = 3.61-17.6682 − 0.63 + 22.95 − 146.25 − 1.72 = −185.6082

2l − 1 SII7
2 l T r3 real(SII) × T r37

5 −105.3 − j221.7 0.2 −21.06
9 −5.0 − j8.94 0.0821 −0.41
13 −3.21 − j8.81 1.24 −3.99
15 −4.57 − j8.67 1.01 −4.62
17 0.29 + j1.31 1.1801 0.34

SI7 = 1.73 − 21.06 − 0.41 − 3.99 − 4.62 + 0.34 = −28.01

a strong nonlinear interaction, however, since Tr = 6.7341 ×
10−4 and MI3 × Tr = 3.03 × 10−4 such a short duration will
be difficult to be captured by FFT analysis.

3) Frequency Shift of the Fundamental Component: It can
be also noted that there is a shift in the fundamental frequency.
As already mentioned, it is indicated by the imaginary part of
index SIIj

2l . Among all those coefficients, coefficients SIIj
18

are predominant and Tr3 indicates a long-time influence as
listed in Table VI. Although the real part of SIIj

18 is too small
to contribute to the stability compared to λj , its imaginary part
indicates that the there is a frequency shift added to the eigen-
frequency.

This analysis corroborates with the analysis of the frequency
spectrum in Fig. 3. If there are no resonant terms in the nor-
mal forms, the fundamental frequency of the system oscillatory
dynamics will be exactly as ωj .

4) Stability Assessment: Seen from Table VII, the nonlinear
interactions can enhance (e.g MI35

5,5,6) or weaken the stability

(e.g MI3j
7,17,18). Only taking into account of one specific MI3

without considering its time pertinence will lead to a wrong
prediction. In this sense, the stability assessment proposed by
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Fig. 5. 16-Machine 5-area test system [38].

method 3-3-3 is more rigorous and comprehensive than method
3-2-3. As SI5 � 0, SI7 � 0, modes (5, 6) and (7, 8) are es-
sentially stable, as validated by the time domain analysis shown
in Fig. 4.

The proposed nonlinear stability indicators make possible to
better use the power transfer capability of the power grid. For
example, in the studied case, the high-gain exciter can improve
the system response to a fault, which is not shown using the
conventional eigen-analysis.

E. Applicability to Larger Networks With More Complex
Power System Models

For larger networks with more complex models, method
3-3-3 is more demanding since the modeling of modal interac-
tions is more complex, such as for the case of the New England
New York 16 machine 5 area system [38], whose typology is
shown in Fig. 5. It is composed of five geographical regions
out of which NETS and NYPS are represented by a group
of generators whereas, the power imported from each of the
three other neighboring areas are approximated by equivalent
generator models (G14 to G16). G13 also represents a small
sub-area within NYPS. Generators G1 to G8 and G10 to G12
have DC excitation systems (DC4B); G9 has a fast static excita-
tion (ST1A), while the rest of the generators (G13 to G16) have
manual excitation as they are area equivalents instead of being
physical generators [38]. The realistic parameters and well val-
idated Simulink models can be found in [38], [39], where the
generators are modeled with the sub-transient models with four
equivalent rotor coils. There are 15 pairs of electromechanical
modes, among which there are 4 inter-area modes. This system
is unstable when no PSS or only one PSS is installed [38].

When placing PSSs on G1 to G12 (the maximum number
of possible PSSs) all the local modes are damped, and 3 inter-
modes are poorly damped. No more information is available
from the linear analysis to damp the inter-area modes [38].
When a three-phase fault is applied to G13 and cleared in 0.25s,
the machines exhibit nonlinear inter-area oscillations and finally

Fig. 6. FFT analysis of generator rotor angles when G1 to G12 are equipped
with PSSs.

TABLE VIII
INTER-AREA MODES OF THE 16 MACHINE 5 AREA SYSTEM WITH PSSS

PRESENT ON G6 AND G9

Mode 1 2 3 4

Damping ratio 3.35% 0.55% 1.58% 2.76%
Frequency (Hz) 0.7788 0.6073 0.5226 0.3929

Fig. 7. FFT analysis of generator rotor angles when only on G6 and G9 are
equipped with PSSs.

damp out to a steady-state equilibrium in 50s, as shown by the
frequency spectrum in Fig. 6. As all the local-modes are well
damped, the components at frequency higher than 1 Hz are
expected as nonlinear interactions.

When placing PSSs only on G6 and G9 (the minimum num-
ber of PSSs to ensure the stability of the system) all inter-area
modes are poorly damped as listed in Table VIII. When there is a
three-phase short circuit fault applied near the end of G13, gener-
ators in all the 5 areas exhibit poorly damped electromechanical
oscillations and finally damp out to a steady-state equilibrium
in a large time. Since the linear participation factor of G13 is
[0.0075 0.7997 0.0214 0.6871] on the inter-area modes 1-
4, only Mode 2 and Mode 4 will be effectively excited while
Mode 1 and Mode 3 are trivially excited. However, as observed
from the frequency spectrum in Fig. 7, there are significant com-
ponents at 0.5 Hz (G14, the fundamental frequency of Mode 3),
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TABLE IX
SEARCH FOR INITIAL CONDITIONS IN THE NF COORDINATES

Method Case 1 Case 2

Iterations Resolution Iterations Resolutions

3-3-3 12 1.294e-12 17 1.954e-6
2-2-1/3-2-3 3 1.799e-11 6 1.838e-06
3-3-1 7 1.187e-09 11 7.786e-09

TABLE X
PERFORMANCE EVALUATION OF THE STUDIED NF APPROXIMATIONS

Method Resolution Order of Modal Transient Applicability to
Interaction Stability 3rd Order Modes

Linear O(2) 1st Linear None
2-2-1 O(3) 2nd Linear None
3-2-3S O(3) 2nd Non-linear Oscillatory
3-3-1 O(3) 3rd Linear Non-oscillatory
3-3-3 O(5) 3rd Non-linear All

at 0.8 Hz (G15, the fundamental frequency of Mode 1), around
1.0 Hz (G6, G9, G13, G14, G15, the frequency is not corrobo-
rated with any inter-area mode). Therefore, SII and MI3 are
expected to give additional information to identify the modal
interactions.

In this case, method 3-3-3 may provide more information to:
1) reduce the number of PSSs; 2) damp the inter-area modes.
The siting of PSSs based on NF analysis is not the issue to be
dealt with in this paper, and it can be found in [28].

VI. FACTORS INFLUENCING NORMAL FORM ANALYSIS

A. Computational Burden

The essence of NF analysis is to calculate the nonlinear in-
dexes to predict the modal interactions and to give information
on the parameters influencing the system stability, which is
composed of two phases of computations:

1) the SEP Initialization in order to obtain the eigenmatrix λ

and matrices F2 and F3, which depends on the post-fault
SEP;

2) the Disturbance Initialization in order to obtain the ini-
tial points in the NF coordinates, which depend on the
disturbances the system experiences.

The values of nonlinear indexes depend both on the SEP and
the disturbances. Item 2 has been discussed in detail in [12],
[27] while Item 1 is somewhat neglected in the literature.

1) Search for the Initial Conditions: In this paper, the search
for the initial conditions is performed using the Newton-
Raphson (NR) method [40], the starting search point is y0 , and
it converges in several iterations, as shown in Table IX. This
is because the normal coefficients h2 and h3 are small in size.
When these coefficient are large in size (near strong resonance
case), the search for z0 , w0 can be extremely slow and even
fails to converge. A more robust algorithm is proposed in [27]
to circumvent some disadvantages of NR method, which can be
adopted also for the 3rd order NF methods.

2) SEP Initialization: If the power load changes, the SEP
initialization must be restarted. The calculation of the nonlinear
matrices F2 and F3 can be extremely tedious. The problem
is that matrices F2 and F3 are composed of complex values.
Using the same Matlab function to calculate matrices A, H2,
H3, Λ, F2 and F3 for the IEEE 4 machine case it leads to
differences from 200s to 2000s. Reducing the time needed to
multiply complex matrix can be a direction to optimize the
program.

Once the perturbation model around the SEP is established in
Jordan form, calculation of nonlinear indexes can be computed
in a short time.

B. Strong Resonance and Model Dependence

Validated using 4th order or higher order generator models,
the proposed method 3-3-3 also inherits the applicability to
systems modeled by 2nd order generator models as method
3-3-1 used in [30], and 3rd order generator as method 3-2-3
used in [13].

The technique works where methods 3-3-1 and 3-3-1 are
not applicable. For example, using classical models with zero
mechanical dampings, the eigenvalues will be pure imaginary,
i.e σj=0 . In this case, method 3-3-1 fails to be applied, since

h3j
j2l−12l = ∞, (Mode (2l-1, 2l) being a conjugate pair that

leads to a strong resonance).
In addition, as the eigenvalues are purely imaginary, the sta-

bility boundary proposed in [13], [33] [see (13) and (22)] will be
wrongly predicted, as the stability boundary will be calculated

as Rj =
√

− real(λj )
real(cj = 2 k

2 k )
= 0.

Method 3-3-3 is more complete, as it can make possible to pre-
dict both the importance of modal interactions and to proposes
nonlinear stability indexes for a broader ranges of implemented
models.

VII. CONCLUSION

A. Significance of the Proposed Research

With the nonlinear indexes, the proposed method 3-3-3 makes
possible to quantify the third-order modal interactions and offers
some pertinent information for stability analysis, providing a
better tool compared to the linear or other existing normal forms
methods. The indication given by the nonlinear indexes are
validated by time-domain simulation and FFT analysis. Besides,
this paper gives a good review of existing MNFs along with
a performance evaluation of the different NF approximations
studied in this work (see Table X).

B. Possible Applications of the Proposed 3-3-3 Method

Several potential applications of the method can be envisaged.
Among them, let cite methods to locate power system stabiliz-
ers, sensibility analysis based on the higher-order participation
factors to aid in the design of the power system structure and
controller parameters tuning and nonlinear stability analysis to
better predict the power transfer limits of the system.

tenailleau
Zone de texte 



2138 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 33, NO. 2, MARCH 2018

APPENDIX

TABLE XI
GENERATOR DATA IN PU ON MACHINE BASE

Parameter Value Parameter Value

Ra 0.0025 xl 0.002
xd 1.80 τ ′

d0 8.0
xq 1.70 τ ′

q 0 0.40

x′
d 0.3 τ ′′

d0 0.0

x′
q 0.3 τ ′′

d0 0.0

x′′
d 0.0 MV Abase 900

x′′
q 0.0 H 6.5

TABLE XII
POWER FLOW DATA FOR CASE 1, CASE 2 IN STEADY STATE AFTER THE FAULT

IS CLEARED: LOAD (CALCULATED BY MATLAB SIMPOWER)

Load Voltage Zshunt
Bus (pu/230kv)

B5 1.029∠19.75◦ P = 665.84MW , Q = −350.82Mvar
B6 0.987∠ − 47.37◦ P = 1443.38MW , Q = −350.02Mvar

Generator Bus Terminal Voltage P Q
Type (pu/20kv) (MW) (Mvar)

G1 P V 1.00∠14.02◦ 747.50 49.94
G2 swingbus 1.000∠0.0◦ 406.50 140.74
G3 P V 1.00∠ − 58.17◦ 539.25 113.99
G4 P V 1.00∠ − 66.11◦ 525.00 143.14
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