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ABSTRACT2

Our understanding of the deep carbon cycle has witnessed amazing advances in the last3
decade, including the discovery of tetrahedrally coordinated high pressure (P ) carbonate phases.4
However, little is known about the physical properties of their molten counterpart at moderate5
depths, while their properties at lower mantle conditions remain unexplored. Here, we report6
the structure and density of FeCO3 melts and glasses from 44 GPa to 110 GPa by means of in7
situ x-ray synchrotron diffraction, and ex situ Raman and x-ray Raman spectroscopies. Carbon is8
fully transformed to 4-fold coordination, a bond change recoverable at ambient P . While low P9
melts react with silica, resulting in the formation of silico-carbonate glasses, high P melts are10
not contaminated but still quench as glasses. Carbonate melts are therefore polymerized, highly11
viscous and poorly reacting with silicates in the lower mantle, in stark opposition with their low P12
properties.13
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1 INTRODUCTION

Although the lower mantle is mostly a reducing environment with the presence of reduced Fe (Frost et al.,15
2004; Smith et al., 2016), significant amount of subducted carbonates are estimated to be preserved (Litasov16
and Shatskiy, 2018). Transition to 4-fold carbon was first predicted for crystalline CaCO3 (Oganov et al.,17
2006; Arapan et al., 2007). This transition strongly depends on the carbonate composition, occuring for18
CaCO3 above 105 GPa (Lobanov et al., 2017), 80 GPa for MgCO3 (Oganov et al., 2008; Boulard et al.,19
2011), and 50 GPa for FeCO3 (Liu et al., 2015), while intermediate CaCO3-MgCO3-FeCO3 compositions20
form a single tetrahedral carbonate phase (Merlini et al., 2017) unlike silicates. This transition induces21

1

In review



Sanloup et al. High Pressure Carbonate Melts

polymerization such as sheets or 3-membered rings for MgCO3 (Oganov et al., 2008), and chains for22
CaCO3 (Oganov et al., 2006). In contrast, our knowledge of carbonate melts structure at depth is scarce and23
limited to upper mantle pressures. The melting curves of CaCO3, Na2CO3, and FeCO3 have been measured24
over most of the upper mantle regime (Li et al., 2017; Kang et al., 2015), and viscosity measurements up25
to 6 GPa span several compositions (K2Ca(CO3)2 and K2Mg(CO3)2 by Dobson et al. 1996, CaCO3 and26
natural dolomite by Kono et al. 2014, Na2CO3 by Stagno et al. 2018). Structural data instead have only27
been collected on molten CaCO3 below 10 GPa (Hudspeth et al., 2018) while theoretical investigations of28
the properties of carbonate melts cover a larger P -range but are also limited to the carbon 3-fold stability29
field (Vuilleumier et al., 2014; Zhang and Liu , 2015; Du et al., 2018; Desmaele et al., 2019). One main30
question is therefore how this 3-fold to 4-fold transition translates in the molten state, and what are the31
consequences on the physical and chemical properties of carbonate melts? Of particular interest is the32
mobility and reactivity of carbonate melts in the lower mantle, knowing that these properties underpin the33
key role played by carbonate melts in mantle geodynamics through lubrication of plate tectonics, cratonic34
roots (Foley, 2008) and ascending plumes (Litasov et al., 2013).35

The role of Fe in the deep carbon cycle is emphasized by the predominance of Fe-rich ferropericlase in36
diamond inclusions from the lower mantle (Kaminsky, 2012). The lowest transition P from 3-fold to 4-fold37
C in FeCO3 amongst carbonates justifies its choice as the first composition to investigate. Not only this38
transition occurs at less challenging experimental conditions, but it might be driven by Fe high spin to low39
spin transition at 40.4 GPa (Weis et al., 2017), a consequence of which being the large enrichment in Fe of40
(Mg,Fe)-carbonates coexisting with bridgmanite to almost pure FeCO3 (Lobanov et al., 2015). Besides,41
high Fe concentration stabilizes (Ca,Mg,Fe)IVCO3 with respect to single cation 3-fold carbonates at mid42
mantle conditions (30-50 GPa) (Solomatova and Asimow, 2018). Formation of Fe-carbonates in the lower43
mantle might also result from carbonation of Fe-oxides ((Mg,Fe)O, FeOOH) with CO2 (Boulard et al.,44
2012, 2018). Last but not least, FeCO3 is a technical choice as it can be laser heated, which is required to45
reach lower mantle conditions without the need for additional laser coupler.46

2 MATERIAL AND METHODS

Materials and chemical analyses47

The starting natural crystalline siderite sample (mineralogical collection at Sorbonne Université) was48
loaded in the sample chamber laser-drilled in a rhenium gasket as approximately 20 µm-thick platelet49
between two equally thick platelets of compressed SiO2 powder. The SiO2 platelets act as thermal insulators50
and P -transmitting medium. Only one sample was used per P point (Fig.1) to avoid repeated laser-heatings,51
and preserve the chemical integrity of the sample. Six samples could be recovered after the experiments,52
embedded in epoxy and polished for analysis. Samples 8, 9 and 15 were carbon-coated for SEM imaging53
(Fig.2), samples 8 and 15 were then repolished and gold-coated along with samples 13, 14 and 20 for54
electron microprobe analysis using a CAMECA SX-FIVE analyzer (EMPA) at the Camparis centre of55
Sorbonne Université (Table 1), using the following operating conditions: 15 keV, 10 nA. We used a56
defocussed beam size of 10 µm to get an average composition at the laser-heated spot.57

P -T conditions58

We used diamond-anvil cells and a double-sided infra-red laser focussed down to 20 µm to generate high59
T and P . For each P point, targeted power was increased in 2 W increments from 20 to 50 W of power on60
each laser depending on P until complete melting of the sample. Melting was identified by disappearance61
of diffraction peaks apart from SiO2 peaks, and by the appearance of diffuse scattering. As we used the62
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off-axis heating system to avoid using carbon mirrors that would add to the x-ray background signal and63
compromise processing of the scattered signal, T could not be measured by pyrometric techniques. FeCO364
melting curve has only been measured up to 20 GPa (Kang et al., 2015), where it reaches 1865 K. The65
stishovite to CaCl2 SiO2 transition has been investigated up to 90 GPa (Fischer et al., 2018), this constrains66
T to a maximum of 2300 K at 79 GPa and 2500 K at 83 GPa as CaCl2 is the observed SiO2 structure for67
the three highest P runs, while stishovite is observed below. We therefore consider that x-ray diffraction68
patterns were collected on molten FeCO3 within the 2000 K- 2500 K interval except for the highest P69
point that is only constrained to below 3500 K from extrapolation of the stishovite-CaCl2 Clapeyron slope70
(Fischer et al., 2018). P is measured at room T using fluorescence of a ruby sphere added in the sample71
chamber (Mao et al., 1986) and SiO2 equations of state (Andrault et al., 1998; Nishihara et al., 2005)72
for quenched samples, and using only SiO2 equations of state for molten samples with error bars on P73
including the effect of a 2000 K-2500 K T -range, and up to 3500 K for the 110 GPa data point.74

75

X-ray diffraction methods76

We collected in situ high P -T x-ray diffraction data in laser-heated diamond anvil cells at the extreme77
conditions beamline P02.2 at the PETRAIII synchrotron. We used symmetric diamond-anvil cells equipped78
with 70◦ opening Boehler-Almax seats in order to access a wider q-range up to 10 Å−1, and reduce the79
diamond Compton contribution as Boehler-Almax anvils are only 1.5 mm thick. The x-ray monochromatic80
beam (42.7 keV) was focussed down to a size of 4 × 6 µm2, allowing high spatial resolution in direct81
space. To limit iron migration away from the laser heating spot due to Soret effect, the laser shutters were82
opened only once the targeted power was reached, and held open for 10 s during which 10 x-ray diffraction83
patterns of 1 s acquisition time were recorded on a Perkin-Elmer 2-D detector. 2-D patterns were integrated84
using the Fit2D software (Hammersley et al., 1996). In order to isolate the scattered intensity from the85
molten FeCO3 only, each sample was removed from the gasket, and the gasket put back in place to collect86
x-ray data on the empty cell. Obtained patterns were then scaled vertically to match the baseline of x-ray87
patterns collected on the starting crystalline sample under P (Sanloup and de Grouchy, 2018). This last88
step ensures that any P effect on the background is corrected for. Amongst eight successful runs (Table 1)89
for which full melting was observed, intensity from molten FeCO3 could only be processed for the highest90
P run for which the sample vs SiO2 platelets thickness ratio was slightly higher, the scattered intensity91
being too weak for the lower P points. All glass patterns could be processed. The x-ray diffracted intensity92
data are converted into the structure factor, S(q) (Fig.?? and Fig.4), using the Ashcroft-Langreth formalism.93
The radial distribution function g(r) (Fig.3B), that describes ion-ion contributions in real space, is obtained94
by Fourier transforming of S(q),95

g(r) =
1

2π2rn

∫ ∞
0

qS(q) sin(qr) dq (1)

where n = ρNA
M , NA is the Avogadro number, M the mean atomic molar mass, and ρ the density.96

Density measurements97

The method to derive density from x-ray diffraction data on melts compressed in diamond-anvil cell98
experiments (Eggert et al., 2002; Sanloup et al., 2013) consists in minimizing the oscillations in g(r) where99
there should not be any signal, i.e. below the minimum interatomic distance (r < 0.95 Å here). This method100
requires that the background, essentially the Compton signal from the diamond anvils that dominates the101
total diffracted intensity, is perfectly subtracted.102
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As the C-O contribution is distinct on g(r) of quenched glasses up to 83 GPa, we also ran consistency103
checks by fixing the C-O coordination number to 4 as indicated by x-ray Raman spectra (cf Results section),104
and simulating the C-O contribution using the obtained density values against a gaussian with the following105
equation:106

g(r) =
1

nS∞

A

σ
√

2π
exp

(
−(r − d)2

2σ2

)
(2)

where107

S∞ =
ΣpK

2
p

Z2
tot

(3)

and108

A =
CN∫

4πr2

σ
√

2π
exp

(
−(r − d)2

2σ2

)
dr

(4)

withKp, the effective atomic number (Eggert et al., 2002), Ztot the total atomic number of the compositional109
unit (e.g. FeCO3), CN the C-O coordination number fixed to 4, d the C-O inter-atomic distance, and σ a110
parameter depending on structural disorder, σ = k

√
d where k is an adjustable parameter (Hosemann and111

Bagchi, 1962) with a value of 0.11 here. The C-O contribution to g(r) thus calculated adequately fits the112
experimental ion-ion contribution (dashed lines on Fig.3B), hence comforting the obtained density values.113

X-ray Raman and Raman methods114

Raman and x-ray Raman spectra were collected at ambient conditions on glassy FeCO3 recovered from115
x-ray diffraction experiments and from additional laser-heated diamond anvil cell synthesis respectively.116
X-ray Raman data were collected at an incident energy of 9.7 keV at the C K-edge on beamline ID20 of117
the European Synchrotron Radiation Facility (ESRF), beamsize was 15×15 µm2. The large-solid-angle118
x-ray scattering spectrometer (Huotari et al., 2017) was set up with 24 Si(660) analyzer crystals for an119
average momentum transfer of 7.3± 0.2 Å−1 and an overall energy resolution of 0.7 eV. All experimental120
data were analyzed using the XRStools software package (Sahle et al., 2015). The integrated intensity of121
each spectrum was normalized over a 35 eV energy range. Glassy FeCO3 spheres had been previously122
synthesized at 59 GPa using the same P02.2 laser heating system in PetraIII as for x-ray diffraction123
experiments. LiF was used instead of SiO2 as a P -transmitting medium to avoid any contamination of124
the x-ray Raman signal by oxygen from SiO2 as measurements at the O K-edge were initially planned125
but signal was to weak for data to be processed. Despite its higher melting curve than siderite (Boehler126
et al., 1997), LiF salt could not be used for the x-ray diffraction experiments due to its continuous powder127
diffracted signal that prevents a qualitative analysis of the diffuse scattering signal from molten FeCO3.128
Raman spectra were collected on glassy FeCO3 recovered from x-ray diffraction experiments using 633129
nm wavelength in order to preserve the samples, using more energetic lower wavelengths resulted in130
dissociation of the sample and detection of hematite signal.131

3 RESULTS

All samples are systematically quenched as a glass. Chemical integrity of FeCO3 molten spheres is observed132
for runs conducted above 40 GPa, apart from a marginal fraction at the glass-SiO2 interface in one sample133
showing enrichment of the P -transmitting medium in Fe and C. Instead, the lowest P samples, i.e. 11 GPa134
and 15 GPa, have reacted with the SiO2 P -transmitting medium. This is shown by SEM imaging (Fig.2)135
and EMPA analysis on sample 8 (Table 1). High P carbonate melts are thus much less reactive than low P136
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melts. This might not contradict the observed reactivity of high P crystalline MgCO3 with SiO2 (Seto et al.,137
2008; Maeda et al., 2017) due to the much longer heating durations (20-240 minutes against 10 seconds138
heating duration in this work); alternatively, Fe stabilizing effect on high P carbonates could be at stake.139
We observe no disproportionation of Fe as was reported in the crystalline state in some studies (Boulard140
et al., 2011; Cerantola et al., 2017) but not in others (Liu et al., 2015). This might be due to different P -T141
paths followed, i.e. flash heating here instead of continuous T increase (Boulard et al., 2011; Cerantola142
et al., 2017).143

A striking characteristic of glassy FeCO3 is its strong first sharp diffraction peak (FSDP) that persists in144
the structure factor up to the highest P investigated (Fig.3A), indicative of a strong medium-range order.145
This is in stark contrast to silicate glasses that lose their medium-range order with increased P (Sato and146
Funamori, 2008), but consistent with ab initio calculations on carbon-bearing silicate melts reporting147
P -induced polymerisation of carbonate species into dimers and with the silicate network (Ghosh et al.,148
2017; Solomatova and Asimow, 2019). A second noticeable feature is the decrease of the contribution149
at 4 Å−1 attributed in molten carbonates to the O-O bond (Wilding et al., 2016). On radial distribution150
functions, g(r) (Fig.3B), the C-O contribution is clearly visible at 1.2-1.3 Å with none or little overlap151
with the second contribution (Fe-O and O-O) at ∼2 Å in the glass, and with some overlap in the melt. No152
significant structural changes are observed between molten and quenched glassy state at 110 GPa, apart153
from a generally lower intensity in the melt due to the high T and consequent higher degree of disorder.154
For g(r), this weaker intensity translates into broader C-O and Fe-O/O-O contributions in the molten state.155
For glasses quenched at 11 GPa and 15 GPa, the x-ray structure factor, S(q), is intermediate between that156
of pure SiO2 glass (Sato and Funamori, 2008) and high-P FeCO3 glasses (Fig.4). SEM image of sample 8157
(15 GPa, Fig.2) shows heterogeneities in the quenched glass, which indicates that the x-ray structure factor158
likely averages at least two types of glass structure and therefore data cannot be interpreted quantitatively.159

The x-ray Raman C K-edge spectrum of quenched FeCO3 glass shows no presence of sp2 3-fold160
carbon characterized by an intense π∗ peak at 290 eV (Fig.5, π∗ peak). Only the σ∗ peak of tetrahedrally161
coordinated carbon (Shieh et al., 2013) is visible (Fig.5, σ∗ peak). The totally missing π∗ peak is indicative162
of a fully sp3 state of carbon atoms in the siderite glass. P -induced coordination changes of major cations163
in silicate melts (e.g. Si, Al) were first reported from the study of glasses quenched from high P (Meade,164
Hemley and Mao, 1992; Yarger et al. , 1995), and later confirmed by in situ studies in the molten phase165
(Sanloup et al., 2013; Drewitt, 2015). However, the opposite, i.e. coordination change occurring only in166
the quenched glass, not in the high P melt, have not been reported nor been theoretically predicted. The167
3-fold to 4-fold transition therefore occurs in molten Fe-carbonates at P less or equal to 51 GPa. This168
transition is preserved upon quenching to the glassy state, and is recoverable at ambient conditions, opening169
the way to the synthesis of a new class of glassy materials. Two broad bands are observed in the Raman170
spectra (Fig.6), very different from those of the only two carbonate systems that quench as glasses at171
room P, MgCO3-K2CO3 and La(OH)3-Ca(OH)2-CaCO3-CaF2BaSO4 (Sharma and Simons, 1979), that are172
essential dominated by the strong CO2−

3 stretching mode at ∼1080 cm−1. Instead, present Raman spectra173
are reminiscent of those reported for calcium silicate glasses (Fig.6) albeit at higher Raman shift values for174
the broadest band (1200-1600 cm−1 for glassy FeCO3 vs 850-1100 cm−1 for calcium silicate glasses).175

Density values are reported in Fig.7 along with predictions for lower P melt properties (Kang et al.,176
2015), P -evolution of crystalline siderite, and with the Earth’s seismological PREM model (Dziewonski177
and Anderson, 1981). Density profile below 40 GPa is calculated using KT,0 value of 80.23 GPa (Kang178
et al., 2015), consistent with that reported for molten calcite (Hudspeth et al., 2018), and density at room179
P of 2500 kg·m−3 by assuming a similar density jump upon melting as for other carbonates for which180
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room P density is known. Comparison with PREM model shows that Fe-carbonate melts are buoyant at181
all depths. Density contrast between the high P polymerized melt or glass and extrapolated equation of182
state for low P melt is approximately 15%, i.e. similar to volume collapse reported upon transition from183
crystalline high spin siderite I to low spin siderite II (Liu et al., 2015). The volume collapse is smoothed184
out over a ∼ 30 GPa range in the molten state with, as a direct consequence, a steepening of the melting185
curve from 55 GPa on (Cerantola et al., 2017).186

4 DISCUSSION

The 3-fold to 4-fold transition occurs in molten Fe-carbonates at P less or equal to 53 GPa, compared187
to 50 GPa for crystalline FeCO3 (Liu et al., 2015), 80 GPa for MgCO3 (Oganov et al., 2008; Boulard188
et al., 2011), and 130 GPa for CaCO3 (Oganov et al., 2006; Arapan et al., 2007). A consequence of the189
effect of Fe on the 3-fold C to 4-fold C transition P is that crystalline Fe-poor (Ca,Mg,Fe)IIICO3 and190
Fe-enriched (Ca,Mg,Fe)IVCO3 melts could co-exist at depth. In the case of Si isotopes, fractionation191
between VISi bridgmanite and IVSi olivine structures is theoretically estimated to ∼ −1 h28Si at 2000 K192
(Huang et al., 2014). If this effect can be scaled to C simply using mass difference considerations, then193
a few h13C fractionation is expected, and could potentially explain isotopic differences between calcite194
inclusions from super-deep diamonds (Kaminsky et al., 2016). This effect might be sufficient to confer195
a mantle-like signature to deep diamonds grown from slab-derived carbonate melts while co-existing196
tetrahedral crystalline carbonate are expected to get lighter.197

Density of non-crystalline FeCO3 remains considerably lower than that of its crystalline counter parts,198
even at the highest investigated P , by approximately 15%. The situation is thus very different from that of199
molten and crystalline silicates which density converge at deep mantle conditions (Petitgirard et al., 2015;200
Sanloup, 2016), and such difference could be attributed to the very strong medium-range order preserved201
in tetrahedral high P carbonate melts while it is mostly collapsed by 5 GPa in silicate melts. That high P202
FeCO3 melts quench as glasses contrasts with the behaviour observed at lower P , and suggests an important203
increase of carbonate melt viscosity consistent with the observation of a very strong medium-range order. It204
is also opposite to the behaviour of molten basalt that systematically quenches as crystalline phases above205
11 GPa (Sanloup et al., 2013) and as a glass below. The strongly reduced chemical reactivity of high P206
FeCO3 melts with silica along with their glass-forming ability suggest that unlike at lower P , tetrahedral207
carbonate melts are not pervasive, which could contribute to the longevity of carbonates in the deep mantle208
where allowed by oxydizing conditions or slow reduction kinetics (Litasov and Shatskiy, 2018).209
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FIGURE CAPTIONS

Figure 1. Microphotograph of the sample after laser heating at 110 GPa. Single shot laser heating resulted
in the formation of a quasi-spherical pure carbonate glass that was removed from the gasket for EPMA
and/or SEM analyses.

Figure 2. SEM images of recovered samples. Low P sample 8 (a) shows pervasive contamination of
carbonate sample with SiO2 P -transmitting medium. High P samples 9 (b) and 15 (c) show that chemical
integrity of carbonate melt (homogeneous light gray zone) was preserved.
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Figure 3. Structure of non-crystalline FeCO3 at high pressures. (A) Structure factor, S(q), for all quenched
glasses (black) and the highest P melt (red). (B) Corresponding radial distribution functions, g(r). Dashed
lines are fits to the C-O contribution at 1.2-1.3 Å where there is no overlap with farther contributions.
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Figure 4. Structure factor, S(q), for low P reacted FeCO3+SiO2 glass (black), compared to SiO2 glass at
20 GPa (Sato and Funamori, 2008) (brown) and FeCO3 glass at 44 GPa (red). Low P sample 8 (15 GPa)
shows intermediate structure between SiO2 glass and high P FeCO3 glasses.
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Figure 5. X-ray Raman spectra collected at the carbon K-edge on crystalline siderite and high P -quenched
FeCO3 glasses at ambient conditions. The disappearance of the π∗ feature, which is solely related to the
three-fold coordinated carbon, is a spectroscopic evidence of a full four-fold coordination state in the glassy
structure of FeCO3.

Table 1. Run conditions, quenched products and their chemical composition in wt% obtained from EMPA.
One standard deviations are given in parentheses. Starting natural siderite sample also contained less than
0.1 wt% CaO and MnO.

# P melt/glass CO2 FeO MgO SiO2 Total
(GPa)

6 11.6/ – not recovered, reaction confirmed by XRD (Fig.4)
8 15/14 25.7(9.2) 42.2(5.8) 0.1(0.1) 24.2(6.7) 92.2
15 51/44 40.6(0.5) 58.9(9.3) 0.3(0.1) 0.3(0.2) 100.0
13 55/– 41.2(2.6) 54.4(1.3) 0.3(0.2) 2.0(1.9) 98.0
20 63/57 36.6(6.8) 57.7(1.3) 0.4(0.4) 0.7(0.8) 95.4
9 79/72 not analyzed, C-coated for SEM (Fig.2)
12 83/77 not recovered
14 110/108 37.8(8.7) 58.5(1.1) 0.2(0.1) 0.7(0.8) 97.3

sample for 59 not analyzed, only glass sphere preserved
x-ray Raman
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Figure 6. Raman spectra collected on high P -quenched FeCO3 glasses (runs 9 and 14) at ambient
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Figure 7. Density evolution of glassy, molten and cristalline siderite with pressure. Molten low P siderite
(plain curve), high P data on glass (black points) and the highest P melt (red point), crystalline equation of
state (dashed curve) includes the transition from high spin siderite I to low spin siderite II at 50 GPa (Liu
et al., 2015).
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