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LOCAL APPROXIMATION OF THE MAXIMUM CUT
IN REGULAR GRAPHS

ÉTIENNE BAMAS AND LOUIS ESPERET

Abstract. This paper is devoted to the distributed complexity of finding an approximation of the
maximum cut (MaxCut) in graphs. A classical algorithm consists in letting each vertex choose
its side of the cut uniformly at random. This does not require any communication and achieves an
approximation ratio of at least 1

2
in expectation. When the graph is d-regular and triangle-free,

a slightly better approximation ratio can be achieved with a randomized algorithm running in a
single round. Here, we investigate the round complexity of deterministic distributed algorithms for
MaxCut in regular graphs. We first prove that if G is d-regular, with d even and fixed, no deter-
ministic algorithm running in a constant number of rounds can achieve a constant approximation
ratio. We then give a simple one-round deterministic algorithm achieving an approximation ratio
of 1

d
for d-regular graphs when d is odd. We show that this is best possible in several ways, and

in particular no deterministic algorithm with approximation ratio 1
d
+ ε (with ε > 0) can run in a

constant number of rounds. We also prove results of a similar flavour for the MaxDiCut problem
in regular oriented graphs, where we want to maximize the number of arcs oriented from the left
part to the right part of the cut.
Keywords. Maximum Cut, Approximation algorithm, Distributed algorithm, Regular graphs.

1. Introduction

Although the maximum cut problem (MaxCut) is fundamental in combinatorial optimization,
it has not been intensively studied from the perspective of distributed algorithms. The folklore
algorithm consisting in choosing uniformly at random one side of the cut for each vertex of a graph
G can however be seen as a distributed randomized algorithm with no rounds of communication.
By the linearity of expectation, this algorithm gives a cut (a bipartition of the vertex set) of size
at least m/2 in expectation, where m is the number of edges of G. Here, by the size of the cut,
we mean the number of edges connecting the two parts of the bipartiton. Since every cut in G
contains at most m edges, this algorithm has approximation ratio at least 1

2 in expectation, which
means that the size of the cut given by the algorithm is at least 1

2 of the size of the maximum cut
in expectation.

A natural question is whether a better approximation ratio can be obtained if more rounds of
communications are allowed. This question was answered positively by Shearer [28] in the case of
triangle-free d-regular graphs. A d-regular graph is a graph in which every vertex has degree d.
In the case of triangle-free d-regular graphs, Shearer gave a simple randomized algorithm finding
a cut of size at least m · (12 + 0.177√

d
) in expectation, and thus achieving an approximation ratio of

(12 + 0.177√
d

) in expectation. Shearer’s algorithm uses a single round of communication, messages
consisting of a single bit, and at most 3 random bits per vertex. This was recently improved by
Hirvonen, Rybicki, Schmid and Suomela [16], who obtained a simpler algorithm finding a cut of size
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at least m ·
(
1
2 + 0.28125√

d

)
in expectation. Their algorithm uses a single round of communication,

messages consisting of a single bit, and a single random bit per vertex.
The case where d is small and the girth (length of a shortest cycle) is large has also been con-

sidered: for 3-regular graphs, Kardoš, Král’ and Volec [17] showed that when the girth is at least
637789, there exists a randomized distributed algorithm that outputs a cut of average size at least
0.88672m in at most 318894 rounds (the important value here is the size of the cut). This was
improved by Lyons [20], who proved a lower bound of 0.89m for cubic graphs of girth at least 655.
The best known lower bound for cubic graphs of large girth, 0.90m, was proved by Gamarnik and
Li [10], using a result of Csóka, Gerencsér, Harangi, and Virág [5]. The bound of Lyons [20] holds
for any d-regular graphs of large enough (but constant) girth: such graphs have a cut of size at
least m · (12 + 2

π
√
d
) ≈ m · (12 + 0.637√

d
). On the other hand, Dembo, Montanari and Sen [7] showed

that in random d-regular graphs, the maximum cut has size m · (12 + 0.763+o(1)√
d

) + o(m) with high
probability, proving a conjecture of [10]. The existence of this constant ≈ 0.763 is also connected to
a conjecture of Hatami, Lovász and Szegedy [15] on limits of sparse graphs (see also the conclusion
of [26] where the conjecture is strongly disproved for maximum independent sets, improving on an
earlier result of [11]).

All the results mentioned above (except the result of Gamarnik and Li [10])1 can be translated
into algorithms working in the CONGEST model in a constant number of rounds. In this model, each
node of the graph corresponds to a processor with infinite computational power and has a unique ID
(each ID is an integer between 1 and poly(n), where n denotes the number of vertices in the graph).
Nodes can communicate with their neighbors in the graph in synchronous rounds until each node
outputs 0 or 1, corresponding to its side in the cut. In the CONGEST model, each message sent by
a node to a neighbor has size O(log n), while in some of the algorithms above, the messages have
size at most 1. Let us call CONGEST(B) the variant of the CONGEST model in which messages are
restricted to have size at most B (instead of O(log n)), and let us say that an algorithm is local in a
model if it runs in a constant number of rounds in this model. In particular the results of [16, 17, 28]
mentioned above can be translated into local algorithms in the CONGEST(O(1)) model, while the
results of [5, 20] can be translated into local algorithms in the CONGEST model.

Note that some of our lower bounds are also valid in the less restricted LOCAL model where the
size of each message is not limited. In the following, we will make it clear if this applies. On the
other hand, all our algorithms can be implemented in the PO model (anonymous network with port
numbering and orientations), whose assumptions are significantly weaker than the CONGEST model
(see [14] for some results on local algorithms in PO and CONGEST).

We now review recent results on distributed approximation of MaxCut. On the deterministic
side, Censor-Hillel, Levy, and Shachnai [3] designed a deterministic 1

2 -approximation that runs
in Õ (∆ + log∗ n) rounds in the CONGEST model on any graph of maximum degree at most ∆.
More recently, Kawarabayashi and Schwartzman [18] improved the complexity for constant factor
approximation by providing a deterministic

(
1
2 − ε

)
-approximation that runs inO(log∗ n) rounds (for

any ε > 0), in the CONGEST model. However, no deterministic local approximation for MaxCut
(i.e. running in a constant number of rounds) in the CONGEST model is known.

1Their algorithm has two phases: The first consists in finding a large bipartite induced subgraph (this can be
done in a constant number of rounds), and the second phase greedily assigns each remaining vertex to the side of
the bipartition where it has fewer neighbors (it is unlikely that this greedy procedure can be performed in a constant
number of rounds, and at least Theorem 2.2 shows that it cannot be performed in a constant number of rounds when
there are no restrictions on the girth).
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There is a similar gap between randomized and deterministic approximations for the maxi-
mum directed cut problem. Censor-Hillel, Levy, and Shachnai [3] provided a deterministic algo-
rithm running in O(∆ + log∗ n) rounds that guarantees a 1

3 -approximation as well as a random-
ized 1

2 -approximation with the same round complexity. The round complexities were improved by
Kawarabayashi and Schwartzman [18] who provided a deterministic

(
1
3 − ε

)
-approximation running

in O(log∗ n) rounds as well as a randomized
(
1
2 − ε

)
-approximation in O(ε−1) rounds. All these

results are stated in the CONGEST model. Similarly, no deterministic local algorithm is known to
achieve a constant factor approximation for this problem.

1.1. Our results. Our work focuses on bridging the gap between extremely efficient randomized
local algorithms and slower deterministic algorithms for MaxCut. It should be noted that there are
generic tools to derandomize distributed algorithms (see [4, 12] for recent results in this direction)
but existing techniques mainly apply to locally checkable problems (problem for which a solution
can be checked locally), which is not the case for (approximations of) MaxCut.

In Section 2 we show that any deterministic algorithm that guarantees a constant factor ap-
proximation for MaxCut on the class of bipartite d-regular graphs when d is a (constant) even
integer requires Ω(log∗ n) rounds, which matches the complexity of the algorithm of Kawarabayashi
and Schwartzman [18] mentioned above. When d is odd, we show that one cannot achieve an ap-
proximation ratio better than 1

d in a constant number of rounds. Our proofs use an elementary
graph construction and then apply Ramsey’s theorem [27]. Both of these arguments are not new
in distributed algorithms: our construction is inspired by Linial’s seminal paper [19] that provides
a lower bound on the round complexity of coloring cycles and by a more recent paper by Åstrand,
Polishchuk, Rybicki, Suomela, and Uitto [1] which applies Ramsey’s theorem in a similar setting
to prove that there is no deterministic and local constant factor approximation for the maximum
matching problem. Note that similar arguments were also used by Czygrinow, Hanckowiak, and
Wawrzyniak [6] to prove lower bounds for the approximation of maximum independent sets in cy-
cles. Our results hold for any d-regular graph (d is not necessarily equal to 2), so some additional
work needs to be done compared to the simple case of cycles.

In Section 3, we show that this barrier of 1
d when d is odd is sharp: we first remark that a result of

Naor and Stockmeyer [24] on weak 2-coloring of graphs directly gives a deterministic local algorithm
that guarantees a 1

d -approximation. We then provide a much simpler and faster deterministic local
algorithm achieving the same approximation ratio. It runs in a single round with messages of size
O(log n) and we show that this cannot be improved.

For the Maximum Directed Cut problem in d-regular graphs, we prove that a similar situation
occurs. If d is even, a constant factor approximation cannot be achieved in o(log∗ n) rounds, and
if d is odd, no (2d + ε)-approximation can be achieved in o(log∗ n) rounds (for any ε > 0). On
the other hand, if d is odd, a ( 2

d+1/d)-factor approximation can be achieved in 0 rounds, and a
( 2
d+1/d−3/d2+O(d−3)

)-factor approximation can be achieved in 2 rounds. Note that there is a small
gap between the lower bounds and the upper bound of 2

d , and we explain some obstacles towards
closing the gap.

Our results imply that while finding a constant factor approximation for the (directed) maximum
cut problem in regular graphs of even degree does not require any communication for randomized
distributed algorithm (i.e. it can be solved in 0 rounds), for deterministic algorithms an unbounded
number of rounds is needed in this case. Note that this separation is not possible for locally checkable
problems (see Theorem 3 in [4]). The (perhaps) surprising aspect is that in the case of regular graphs
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of odd degree, the problem can be solved by a deterministic algorithm without communication (if
some orientation is given).

Note that another example of a non locally checkable problem with such a separation between
the randomized and deterministic complexities was given in [12]. Their problem consists in marking
(1 + o(1))

√
n vertices of an n-cycle; the randomized version can also be solved in 0 rounds, while

the deterministic version needs Ω(
√
n) rounds.

1.2. Definitions. A cut in a graph G is a bipartition (A,B) of its vertex set V (G). We usually
refer to A and B as the left side and the right side of the cut, respectively. The size of a cut (A,B)
is the number of edges with one end in A and the other in B. The MaxCut problem in a graph G
consists in finding a cut in G whose size is maximum.

Given an oriented graph G, a directed cut is again a bipartition (A,B) of the vertex set of G,
and the size of the directed cut (A,B) is the number of arcs with their tail in A and their head in
B. The MaxDiCut problem in an oriented graph G consists in finding a directed cut in G whose
size is maximum.

Our results in this paper mainly concern d-regular graph, i.e. graphs in which each vertex has
degree d. When we refer to an oriented d-regular graph G, we mean that the underlying unoriented
graph is d-regular (the out-degrees can be arbitrary).

For an integer k > 1, the tower function twrk is the function defined as twr1(x) = x and
twrk(x) = 2twrk−1(x) for k > 2. The iterated logarithm of an integer n, denoted by log∗ n is defined
as 0 if n 6 1, and as 1 + log∗(log n) otherwise (here and everywhere else in the paper, log denotes
the base 2 logarithm). The following can be easily derived by induction on k.

Claim 1.1. For any k, n > 1:

log∗(twrk(n)) = k − 1 + log∗(n)

2. Deterministic constant factor approximation in regular graphs

As mentioned in the introduction of this paper, Kawarabayashi and Schwartzman [18] provided a
deterministic approximation algorithm running in O(log∗ n) rounds for both problems studied here.
In this section, we show using simple arguments based on bounds on Ramsey numbers that their
bound is best possible.

Let [N ] = {1, . . . , N}. The q-color Ramsey number rk(n; q) is the minimum N such that in
any q-coloring of the k-element subsets of [N ], there is an n-element subset S of [N ] such that all
k-element subsets of S have the same color (see [23] for a recent survey on Ramsey numbers).

Theorem 2.1 ([9, 8]). There exists c > 0 such that for any positive integers q, k, and n, we have
rk(n; q) 6 twrk(c · n · q log q).

We will also need two simple constructions of d-regular bipartite graphs.
First we assume that d is even. We consider a cycle C of size n > 2d, with n even, and then add an

edge between each pair of vertices that are at distance exactly i in C for every i ∈ {3, 5, 7, . . . , d− 1}.
This graph, which we denote by Cdn, is certainly bipartite (the bipartition corresponds to the vertices
at even distance from some arbitrary vertex in C, and the vertices at odd distance from this vertex).
See figure 1 for an example of this graph. By a slight abuse of notation, we say that two (or more)
vertices of Cdn are consecutive if they are consecutive in C. Similarly, when we refer to the clockwise
order around Cdn, we indeed refer to the clockwise order around C.
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Assume now that d is odd. We take two disjoint copies of Cd−1n and assume that the vertices of
the cycle C in the first copy are u1, u2, . . . , un, in clockwise order, and the vertices of the cycle C in
the second copy are v1, v2, . . . , vn in clockwise order. We then connect ui and vi by an edge, for any
1 6 i 6 n (and we say it what follows that ui and vi are matched). This graph, which we denote
by Dd

2n, is clearly bipartite and d-regular, see Figure 2 for an example.

Figure 1. C4
12 Figure 2. D5

24

We are now ready to state the main result of this section.

Theorem 2.2. Let d > 2 be a fixed integer.
• If d is even, then any deterministic algorithm in the LOCAL model that guarantees a constant
factor approximation for MaxCut on the class of bipartite d-regular n-vertex graphs runs
in Ω(log∗ n) rounds.
• If d is odd, then for any ε > 0, any deterministic

(
1
d + ε

)
-approximation algorithm in the LO-

CAL model for MaxCut on the class of bipartite d-regular n-vertex graphs runs in Ω(log∗ n)
rounds.

Note that since the LOCAL model is less restrictive than the CONGEST model, this theorem is
also valid in the CONGEST model.

Proof. We prove the two cases of the theorem separately starting with d even:
Let d be an even integer and assume that there exists a local deterministic algorithm A running

in T rounds and guaranteeing a 1
a -approximation for some fixed a > 1, with T to be defined later.

Note that since A runs in T rounds, the output of a vertex v in Cdn only depends on the IDs of
the vertices at distance at most T from v in Cdn, and thus at distance at most (d − 1)T of v in C
(more precisely, since the subgraph induced by each ball of a given radius is the same, the output
of a vertex only depends on the sequence of the IDs of its neighbors at distance (d − 1)T in C, in
clockwise order).

Consider a subset U = {u1, . . . , u`} of [n], with u1 < . . . < u`, and assume that ` consecutive
vertices of Cdn (in clockwise order) have IDs u1, u2, . . . , u`, in this order. In what follows, we identify
each vertex of Cdn with its ID. We now set r = 2(d − 1)T + 1, and start by proving the following
claim (recall that 1/a is the approximation ratio of A):

Claim 2.3. If ` > 4adT , at least `d
2

(
1− 1

2a

)
edges of Cdn have both endpoints in Ũ ={

u(r−1)/2+1, . . . , u`−(r−1)/2
}
.
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Proof. Count the edges by the length of the jump they make around the cycle C. For a jump of size
k, there are more than `− (r − 1)− 2k such edges. Summing for k odd from 1 to d− 1 we obtain
at least

`d

2
− d(r − 1)

2
− d2

2

edges that have both endpoints in Ũ . When ` > 4adT > 2a(r − 1− d), this is at least `d
2

(
1− 1

2a

)
,

which proves the claim. �

Consider some r-element subset S = {a1, a2, . . . , ar} of [n], with a1 < a2 < · · · < ar. We assign
the IDs a1, a2, . . . , ar (in this order) to r consecutive vertices of Cdn, in clockwise order, and look at
the output of the vertex with ID a(r+1)/2 (call it v) given by the algorithm A. Note that this output
only depends on (a1, a2, . . . , ar). If v joins the left side of the cut (according to A), we color the set
S with color 0 and otherwise with color 1.

Consider again a subset U = {u1, . . . , u`} of [n], with u1 < . . . < u`, and assume that ` consecutive
vertices of Cdn (in clockwise order) have IDs u1, u2, . . . , u`. It follows from the definition of Ũ that
if v ∈ Ũ , all the vertices at distance at most T from v in Cdn are in U . This implies that if all
r-elements subsets of U are assigned the same color in the coloring defined above, all the vertices
of Ũ choose the same side of the cut.

We can now apply Theorem 2.1 with r as defined above and ` = d4adT e satisfying the condition
of Claim 2.3. Let N = rr(`; 2) 6 twrr(c`) be given by Theorem 2.1. We now let n be the
smallest even integer which is greater than 2aN and consider Cdn. Observe that by Claim 1.1,
log∗ n = O(log∗N) = O(r + log∗(c`)) = O(dT + log∗(dT )) = O(dT ). Since d is a fixed constant, it
follows that we have T = Ω(log∗ n), as desired.

By Theorem 2.1, there is an `-element subset U1 of [n] such that all r-elements subsets of U1

have the same color. As long as there are more than N remaining labels, we repeatedly apply
Theorem 2.1 and thus find disjoint `-element subsets U1, U2, . . . , Uk of [n], with the same property
(for each Ui, all r-elements subsets of Ui have the same color), until [n] −

⋃k
i=1 Ui contains fewer

than N elements. We write each set Ui as
{
ui1, . . . , u

i
`

}
, with ui1 < · · · < ui`.

Finally, we assign these IDs to consecutive vertices in clockwise order around Cdn:

u11, . . . , u
1
` , u

2
1, . . . , u

2
` , . . . , u

k
1, . . . , u

k
`

By Claim 2.3, the subgraph induced by each Ũi contains at least md
2

(
1− 1

2a

)
edges for all 1 6 i 6

k, and it follows from Theorem 2.1 and our coloring of the r-elements sets that for each 1 6 i 6 k,
all vertices in Ũi choose the same side of the cut.

Since k > n−N
` , by running algorithm A on this particular labelling of Cdn, at least

n−N
`

`d

2

(
1− 1

2a

)
=

(
1− 1

2a

)
d

2
(n−N) >

nd

2

(
1− 1

2a

)2

>
nd

2

(
1− 1

a

)
edges are not in the cut (the last inequality uses the fact that 1/a 6 1). Thus, there are strictly
less than nd

2a edges in the cut. Since Cdn is bipartite and d-regular, the optimal cut contains nd
2

edges (i.e. all the edges are in the cut). This proves that A cannot be a 1
a -approximation, yielding

a contradiction.

Assume now that d is odd and that an algorithm B achieves a
(
1
d + ε

)
-approximation for some

ε > 0 in T rounds. We proceed as before except that instead of considering vertices one by one, we
consider pairs of vertices ui, vi that are matched in the construction of Dd

2n, the graph that will be
used here. Similarly as before, a matched pair (ui, vi) cannot see more than T (d − 1) labels away.
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Set r = 4T (d − 1) + 4, and consider r/2 consecutive vertices (in clockwise order) u1, . . . , ur/2 on
the outer cycle of Dd

2n. For each 1 6 i 6 r/2, let vi be the neighbor of ui on the inner cycle. This
implies that v1, . . . , vr/2 are consecutive (in clockwise order) on the inner cycle.

Fix an arbitrary r-element subset {a1, . . . , ar}, with a1 < a2 < . . . < ar. For each 1 6 i 6 r/2
assign the ID ai to ui and the ID ar/2+i to vi. Since the sides of the cut chosen by ur/4 and its
neighbor vr/4 are entirely determined by the set {a1, . . . , ar}, we can color each set {a1, . . . , ar} with
the pair (x, y) ∈ {0, 1}2 such that ur/4 chooses side x and vr/4 chooses side y (again we associate
the left side of the cut with 0, and the right side of the cut with 1).

By exactly the same argument as in Claim 2.3, we can take ` even and large enough so that at
least `(d−1)

2

(
1− α

2

)
edges are not in the cut in both copies of Cd−1n , for any fixed α. By Theorem 2.1

(with q = 4), there is an integer N = rr(2`; 2) such that for all n > N , there is a 2`-element subset
U1 = {a1, . . . , a2`} of [2n] with a1 < · · · < a2` such that all r-element subsets X of U1 have the
same color. We take n > N

α even and repeatedly apply Theorem 2.1 as before, obtaining 2`-element
subsets U1, U2, . . . , Uk. We then assign the elements of each Ui to consecutive vertices in clockwise
order in Dd

2n (the ` smaller elements of Ui are assigned to the vertices of the outer cycle, and
the ` larger elements are assigned to their corresponding neighbors in the inner cycle). As before,
the fact that all r-elements subsets of Ui have the same color implies that on the portion of Dd

2n

corresponding to Ui, all the vertices of the outer cycle (except at the boundary) choose the same
side x of the cut, and all the vertices of the inner cycle (except at the boundary) choose the same
side y of the cut (but x and y might be different).

This ensures that on each copy of Cd−1n , at least
2n−N

2`

m(d− 1)

2

(
1− α

2

)
>
n(d− 1)

2

(
1− α

2

)
− n(d− 1)

2

(
1− α

2

) α
2
>
n(d− 1)

2
(1− α)

edges are not in the cut after running algorithm B. It follows that in Dd
2n, at least n(d− 1)(1− α)

edges are not in the cut. Since Dd
2n is bipartite and contains exactly nd edges, this shows there are

less than n+ n(d− 1)α edges in the cut, which is a (1d + (d− 1)α)-fraction. Setting α = ε
d−1 , this

fraction is less than 1
d + ε, which is a contradiction. �

A direct consequence of our theorem is the following corollary that matches the round complexity
obtained by Kawarabayashi and Schwartzman [18]:

Corollary 2.4. Deterministic constant factor approximation on general graphs for MaxCut in the
LOCAL model requires Ω(log∗ n) rounds.

2.1. Directed cut. In this section, we consider the similar problem MaxDiCut where edges are
oriented and we only count the edges going from the left side of the cut to the right side. We can
prove similar bounds on the quality of the solution one can hope to achieve by simply orienting our
lower bound graphs Cdn and Dd

2n: we will define
−→
Cdn as the same graph as Cdn where we orient all the

edges in clockwise order. Similarly,
−−→
Dd

2n is obtained from Dd
2n by orienting all the edges in clockwise

order on both the inner and outer cycle, and all the edges in the remaining perfect matching from
the outer cycle to the inner cycle. We can again apply Ramsey’s theorem as in the proof of Theorem
2.2 to obtain the following result :

Theorem 2.5. Let d > 0 be a fixed integer.
• If d is even, any deterministic algorithm that guarantees a constant factor approximation for

MaxDiCut on the class of d-regular bipartite n-vertex oriented graphs requires Ω(log∗ n)
rounds in the LOCAL model.



8 ÉTIENNE BAMAS AND LOUIS ESPERET

• If d is odd, then for any ε > 0, any deterministic
(
2
d + ε

)
-approximation of MaxDiCut

on the class of d-regular bipartite n-vertex oriented graphs requires Ω(log∗ n) rounds in the
LOCAL model.

We note a slight difference with Theorem 2.2 in the case where d is odd. In Theorem 2.5 the
approximation ratio is only bounded by 2

d , instead
1
d . This happens because with our definition of

−−→
Dd

2n, one can check that the optimal directed cut is of size nd
4 = m

2 instead of m in the undirected
case.

3. Matching the approximation ratio when d is odd

3.1. Weak-coloring. In a landmark paper, Naor and Stockmeyer [24] addressed the issue of what
can or cannot be computed locally. In particular, they proved one result that is relevant in our case.

A weak coloring of a graph is a coloring of its vertices such that each vertex has at least one
neighbor with a different color. Observe that a weak coloring using only 2 colors is a 1

d -approximation
of the MaxCut problem when the graph is d-regular. Let Od be the class of graphs of maximum
degree d where the degree of every vertex is odd. Naor and Stockmeyer proved the following theorem.

Theorem 3.1 ([24]). There is a constant b such that, for every d, there is a deterministic algorithm
with round complexity log∗ d+ b in the CONGEST model that solves the weak 2-coloring problem in
the class Od.

As discussed above, this result directly implies that one can produce a local deterministic 1
d -

approximation of the MaxCut problem on d-regular graphs. However, the result given here is
much stronger than what we are looking for as in this case every vertex has at least one incident
edge in the cut. A natural question is whether a faster algorithm (of round complexity that does
not depend on d) exists for the MaxCut problem on d-regular graphs with d odd. In the next
section, we prove that such an algorithm exists.

3.2. A simpler and faster algorithm. Consider the following algorithm: every vertex v collects
the list of IDs of its neighbors, then v chooses its side of the cut depending on whether the median
value of this list is higher or lower than its own ID. We call this algorithm the median algorithm. It
runs in a single round and we prove the following theorem:

Theorem 3.2. When the input is a d-regular graph on n vertices, with d odd, the median algorithm
finds in 1 round a 1

d -approximation for the MaxCut problem in the CONGEST model.

We will actually give two different proofs of this result (i.e. Theorem 3.2 will be a direct conse-
quence of Theorem 3.3, which we proved next, but also of Theorem 3.8, which will be proved in
Section 3.3).

Theorem 3.3. When the input is a d-regular graph on n vertices, with d odd, the median algorithm
outputs in 1 round (in the CONGEST model) a cut of size at least n

2 + (d−1)(d+1)
4 .

Proof. Let G = (V,E) be a d-regular graph. In the proof, we say that a vertex is colored 0 or 1 by
the median algorithm if it is assigned to the left side or the right side of the cut (respectively). We
define the boundary of a subgraph of G as the set of edges of G that have exactly one endpoint in
this subgraph. For every subset A ⊂ V we denote by G[A] the subgraph induced by A and ∂A the
boundary of G[A].

We now orient each edge of G from the vertex of lower ID to the vertex of higher ID: it can be
observed that the median algorithm assigns color 0 to vertices that have more outgoing edges than
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ingoing edges and side 1 when it is the opposite. We also note that this orientation is acyclic, which
is the key property that will be used in this proof.

A monochromatic component is a connected component of the subgraph of G induced by one of
two sides of the cut. We now prove the following two simple claims.

Claim 3.4. After running the median algorithm, any subset A of a monochromatic component
contains a vertex with at most d−1

2 neighbors in A.

Assume for the sake of contradiction that any vertex of A has at least d+1
2 neighbors in A.

Since the orientation of G[A] is acyclic, there must be a sink and a source. It follows that one
has outdegree at least d+1

2 , and the other has indegree at least d+1
2 . By definition of the median

algorithm, the source and the sink must be on different sides of the cut, which contradicts the fact
that A is monochromatic. This concludes the proof of Claim 3.4.

Claim 3.5. After running the median algorithm, for every monochromatic component A of size k,
∂A contains at least k + (d−1)(d+1)

4 edges if k > d+1
2 , and at least d+1

2 · k edges otherwise.

Let A be a monochromatic component of V of size k. Following Claim 3.4, one can order the
vertices v1, . . . , vk of A such that for all 1 6 i 6 k, vi has at most d−1

2 neighbors in {vi+1, . . . , vk}.
If k > d+1

2 , it follows that there are at most d−1
2 · k −

(d−1)(d+1)
8 edges in G[A]. But G is d-regular,

therefore we have in this case:

|∂A|+ 2
(
d−1
2 · k −

(d−1)(d+1)
8

)
> d · k

which implies |∂A| > k + (d−1)(d+1)
4 .

If k 6 d+1
2 , G[A] contains at most

(
k
2

)
6 k · d−14 edges, and a similar computation shows that

|∂A| > k(d− d−1
2 ) > k · d+1

2 . This concludes the proof of Claim 3.5.

Finally, let X be the larger side of the cut output by the median algorithm, i.e. |X| > n
2 . Observe

that the boundary ∂X is the union of the boundaries of the connected components of G[X] (since
there are no edges between two such components). If at least one of these components has size
at least d+1

2 , then it follows from Claim 3.5 that |∂X| > n
2 + (d−1)(d+1)

4 , as desired. Otherwise all
connected components of G[X] have size at most d−1

2 , and it follows from Claim 3.5 that |∂X| >
n
2 ·

d+1
2 = n

2 + d−1
2 ·

n
2 >

n
2 + (d−1)(d+1)

4 , since n > d+ 1 (recall that G is d-regular, and thus contains
at least d+ 1 vertices). This concludes the proof of Theorem 3.3. �

Since a d-regular graph has dn
2 edges, we conclude that the median algorithm gives a 1

d -
approximation for the maximum cut when d is odd, which proves Theorem 3.2.

Figure 3 gives an example of labelling of Dd
2n for which the median algorithm gives a cut of size

n
2 + (d− 2)2 + 1. This shows that our analysis of the median algorithm in Theorem 3.2 is close to
being best possible.

Another interesting aspect of Theorem 3.3 is that it shows that in (the second item of) The-
orem 2.2, it is crucial that d is a fixed constant (independent of n). Indeed, if d = Ω(

√
n), then

n
2 + (d−1)(d+1)

4 > (1+Ω(1))n2 and thus the median algorithm achieves a 1+ε
d -approximation, for some

ε > 0. This is impossible when d is a constant, as shown by Theorem 2.2.

The median algorithm is based on finding an (acyclic) orientation of the input graph. Here, we
do it by simply orienting the edges from the end with lower ID to the end with higher ID. This
costs a single round of communication, with messages of size log n (since vertices have to send their
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Figure 3. Extremal labelling of D5
24 for the median algorithm

ID to their neighbors). It follows that in the more restricted CONGEST(b) model, where messages
have size at most b, our algorithm takes logn

b rounds (here and in the remainder, we omit floors and
ceilings whenever they are not necessary in the discussion). In particular, if only messages of size 1
are allowed, our algorithm takes log n rounds.

A natural question is whether this can be improved. We now argue that it cannot be improved
in general if the algorithm is based on some orientation in the graph. Consider the case where G
contains an isolated edge uv (two adjacent vertices u, v of degree 1 in G) and we want to construct
some orientation of G (and in particular of the edge uv) in the CONGEST(1) model (that is with
messages of size 1). It seems that the argument below is not original, but we have not been able to
find a written source.

Observe that at each round of communication, the message sent by each of u, v only depends on
its ID and the bits received from its neighbor at previous steps. At the first round, at least half of
the IDs (call this set S1) would send the same bit, say b1, to their neighbor. At the next round,
at least half of the IDs of S1, upon receiving b1, would sent the same bit to their neighbor, say b2.
We continue this process by constructing sets Si and bits bi for any 1 6 i < log n as above (except
that for the final round, we define bi as the bit output by the vertices, instead of the bit sent to the
neighbor). If we use less than log n rounds of communication, we can find two distinct IDs in the
last set Si such that if we assign these IDs to u and v, these two vertices will output the same bit
bi, and therefore they will not be able to deterministically agree on an orientation of the edge uv.
Actually the result holds even if randomization is allowed and we want u and v to agree on some
orientation of the edge uv with high probability.

This remark leads us to a similar result for approximating MaxCut in regular graphs. We prove
the following:

Theorem 3.6. Let Dd =
{
Dd

2n, n > 0
}
for d odd. Any deterministic constant factor approximation

of MaxCut on the class Dd requires at least (1− o(1)) log n rounds in the CONGEST(1) model.
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Proof. Assume that an algorithm A achieves a 1
a -approximation (a > 0) on the class of d-regular

graphs in at most (1− α) log n rounds (with α > 0).
Assume first that we have a bipartite d-regular withm edges and consisting of ` = n1−α connected

components of size k = nα, labelled C1, C2, . . . , C`, and in which each vertex has the same “view”
at distance log n (i.e. the balls of radius log n centered in each of the vertices are isomorphic).
We argue, in the same way as above, that we can choose n

2(1−α) logn
= nα = k labels such that

during (1 − α) log n rounds, every vertex in C1 outputs the same bit. More precisely, for each
round 1 6 i 6 (1 − α) log n, each vertex of C1 outputs the same bit bi. We proceed similarly for
C2, . . . , C`′ with `′ = `(1 − 1

2a): this is possible since before labelling Ci (i 6 `′) there are at least
n− k`′ = n

2a = Ω(n) available labels.
Hence, we give a labelling of C1, . . . , C`′ such that during (1−α) log n rounds (and in particular,

at the end of the algorithm), all the vertices in each given connected component output the same
bit. In particular no edge of C1, . . . , C`′ appears in the cut, which implies that at most m

2a edges
appear in the cut. Since every component is bipartite, the maximum cut contains m edges, which
contradicts the hypothesis that A achieves a 1

a -approximation.

We then show that this proof can be adapted to the case of Cdn or Dd
2n (depending on the parity

of d). Partition the graph into sets of vertices that appear consecutively in the clockwise order
around the cycle(s): C1, . . . , C` (each of size nα). As before, we can label C1, . . . , C`′ such that
during (1− α) log n rounds, the output bit of every vertex of Ci is the same (for every 1 6 i 6 `′).
When A runs on the graph, a small perturbation of the output bit may appear on the boundary of
each Ci, therefore the output bit of vertices near the boundary is not guaranteed to be the same
anymore. However, this does not hurt us since we run the algorithm for O(log n) rounds therefore
the perturbation can reach at most d log n vertices in every Ci. Therefore, in each Ci at least
nα−O(log n) vertices have the same output during (1−α) log n rounds (and in particular, the same
output at the end of the algorithm). This implies there are at least `′(nα−O(log n)) = n(1− 1

2a)−o(n)
vertices that have the same output as their neighbors at the end of the algorithm. It follows that
the cut output by the algorithm has size at most m

2a + o(m), while the maximum cut has size m,
which contradicts the definition our initial assumption that that A achieves a 1

a -approximation. �

Note that the randomized, high probability version of Theorem 3.6 does not hold. More pre-
cisely, we can show that the trivial randomized 1

2 -approximation indeed produces a constant factor
approximation with high probability on the class of regular graphs in the CONGEST(0) model. This
is certainly a classic result but we have not been able to find it in the literature.

Theorem 3.7 (folklore). For any ε > 0, the folklore algorithm produces a 1−ε
2 -approximation with

high probability on the class of n-vertex graphs with degrees bounded by a constant, and m = Ω(n) =
Ω(1/ε2) edges (and in particular in the class of d-regular graphs of sufficiently large size).

Proof. Let G = (V,E) be a graph of maximum degree d containing m edges. By Vizing’s Theorem,
G has a (d + 1)-edge-coloring, i.e. a partition of its edge-set into d + 1 matchings M1, . . . ,Md+1.
Assume that |M1| > · · · > |Md+1|, and discard all the matchings Mi such that |Mi| 6 ε′m/d,
for some ε′ > 0 whose value will be fixed later in the proof. Note that the remaining matchings
M1, . . . ,Mk satisfy |

⋃k
i=1Mi| > (1− ε′)m. Recall that the folklore algorithm assigns each vertex to

one of the two sides of the cut, uniformly at random. Note that for each matching Mi, and for any
two edges e, f ∈Mi, the events that e and f are in the cut are independent.

We now recall the following Chernoff bound (see e.g. Chapter 5 in [21]): For any 0 6 t 6 np,
P(|BIN(n, p)− np| > t) 6 2 exp(−t2/3np), where BIN(n, p) denotes the binomial distribution with
parameters n and p. Thus, for each 1 6 i 6 k, it follows that with probability at least 1 − n−2,
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at least 1
2 |Mi| − c

√
|Mi| edges of Mi are in the cut output by the algorithm, for some absolute

constant c > 0. Using the Union bound, with probability at least 1 − 1/n the cut output by the
algorithm contains at least

k∑
i=1

(12 |Mi| − c
√
|Mi|) > m

2 (1− ε′)− c ·
√
k ·

√√√√ k∑
i=1

|Mi| > m
2 (1− ε′)− c · d ·

√
m = m

2 (1− ε′ − 2cd√
m

)

edges. Setting ε′ = ε − 2cd√
m

yields the desired result (recall that m = Ω(1/ε2) and thus such an
ε′ > 0 exists). �

3.3. Directed cuts. Given a bipartition (V1, V2) of an oriented graph G, the set of arcs oriented
from V1 to V2 (the directed cut from V1 to V2) is denoted by

−→
E (V1, V2). The maximum cardinality

of a directed cut in G is denoted by maxdicut(G).
Let G be an oriented graph. For each vertex v, we define the deficit of v as δ(v) = d+(v)−d−(v),

where d+(v) and d−(v) denote the out-degree and in-degree of v, respectively. We define the sign of
a vertex v as the sign of δ(v), and we say that that a vertex is positive or negative accordingly. The
set of positive vertices is denoted by V + and the set of negative vertices is denoted by V −. Note
that if all the vertices of G have odd degree (in particular if G is d-regular with d odd), then every
vertex is positive or negative and this case V +, V − form a bipartition of the vertex set V of G.

Note that the median algorithm described in the previous subsection can be rephrased as: find
an acyclic orientation of G and then choose the cut (V +, V −) with respect to this orientation. Our
second proof of Theorem 3.2 will be a direct consequence of the following general result (which
proves that not only the cut, but also the directed cut between V + and V − has size at least n/2,
and that the original orientation does not need to be acyclic).

Theorem 3.8. Let G be an n-vertex oriented d-regular graph with d odd, and let V + and V − be
defined as above. Then the directed cut

−→
E (V +, V −) contains at least max{n2 ,

2
d+1/d ·maxdicut(G)}

arcs.

Proof. We write CUT = |
−→
E (V +, V −)| and OPT = maxdicut(G), and set D =

∑
v∈V + d+(v) +∑

v∈V − d
−(v) > n · d+1

2 . Observe that D counts the number of arcs of G[V +] and G[V −] once, while
the arcs of

−→
E (V +, V −) are counted twice. Since G contains dn/2 arcs, it follows that

(1) CUT > D − dn

2
>
n

2
.

This proves that the directed cut output by the algorithm has size at least n
2 , which readily

implies Theorem 3.2.

We now consider an optimal directed cut
−→
E (V1, V2) of G (i.e. a directed cut of cardinality OPT =

maxdicut(G)), and define M as the set of vertices (V1 ∩ V −) ∪ (V2 ∩ V +) (see Figure 4 for an
illustration). Note that each arc of

−→
E (V1, V2) which is not incident to a vertex ofM is also an arc of

−→
E (V +, V −). Since the vertices of V1 ∩V − have out-degree at most d−1

2 and the vertices of V2 ∩V +

have in-degree at most d−1
2 , we have

(2) CUT > OPT− d− 1

2
· |M |.

Now observe that
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V + V −

V1

V2

M

d+ > d− d− > d+

d+ > d− d− > d+

Figure 4. Sets V +, V −, V1, V2, and M .

2|
−→
E (V1, V2)| 6

∑
v∈V +\M

d+(v) +
∑

v∈V −\M

d−(v) +
∑

v∈V −∩M

d+(v) +
∑

v∈V +∩M

d−(v)

= D +
∑

v∈V −∩M

(d+(v)− d−(v)) +
∑

v∈V +∩M

(d−(v)− d+(v)) 6 D − |M |.

This implies

(3) 2 ·OPT 6 D − |M |.
It follows from (2) that |M | > 2

d−1(OPT− CUT), which we can plug into (3) to obtain:
2d
d−1 OPT 6 D + 2

d−1 CUT.

It directly follows from (1) that D 6 CUT + dn
2 6 (d+ 1) CUT and plugging it into the previous

inequality, we obtain:

2d
d−1 OPT 6 (d+ 1 + 2

d−1) CUT = d2+1
d−1 CUT,

and finally:

CUT

OPT
>

2d

d2 + 1
=

2

d+ 1/d
,

as desired. �

From now on, we call the 0-round algorithm resulting from Theorem 3.8 the oriented median
algorithm. The factor 2

d+1/d might seem a little surprising, but it turns out to be sharp, in the
following sense: there are d-regular oriented graphs for which the oriented median algorithm outputs
a cut of size precisely 2

d+1/dOPT. To see this, take n to be a multiple of 4d, and take 4 sets of
vertices A,B,C,D as in Figure 5. Each set is an independent set, and its size is n times the fraction
indicated in the figure (for instance A and B both contain d+1

4d · n vertices). The arc labelled 1
2

between A and B indicates that we add 1
2 · n arcs joining A to B, and similarly for the arcs joining

A and D, and the arcs joining B and C). It can be checked that the number of arcs incident to each
set is precisely d times the size of the set, so the graph can be made d-regular (and we can make
sure that the out-degree of each vertex is equal to the average out-degree of its part, for instance the
vertices of A have out-degree 4d

d+1 ·(
(d−1)2

8d + 1
2) = d+1

2 , so they lie in V +). It can also be checked that
the directed cut output by the algorithm,

−→
E (A ∪D,B ∪ C), has cardinality n/2 (the arcs joining

A to B), while the optimal directed cut
−→
E (A ∪ C,B ∪D) contains d2+1

2d ·
n
2 = d+1/d

2 · n2 arcs.
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A B

CD

d+1
4d

d+1
4d

d−1
4d

d−1
4d

1
2

(d−1)2

8d
(d−1)2

8d
d2−1
8d

d2−1
8d

V +

V −

V −

V +

Figure 5. An example showing the sharpness of the analysis of Theorem 3.8

So the problem does not come from the analysis of the algorithm, but rather from the algorithm
itself, which is unable to detect the kind of structure depicted in Figure 5.

To overcome this issue and close the gap with the 2
d bound, one might be tempted to consider

local improvements. In the following, a vertex will be stable if it has at least one neighbor on the
other side of the cut. Otherwise it will be unstable. We now consider the following simple algorithm:
at every round, every unstable vertex changes side. The algorithm stops when all vertices are stable.
As we can see, the running time (and even the termination) of this algorithm is highly dependent on
the starting point: for instance if all vertices start on the same side of the cut, then the algorithm
never ends. When we perform one round of this algorithm, we say that we perform a flip (as this
algorithm can be seen as a variant of the well known FLIP algorithm that is further discussed in
the conclusion).

Even though this algorithm may never end, we will prove shortly that if we take as starting point
the cut given by the oriented median algorithm (that gives a 2

d+1/d -approximation in 0 rounds) and
perform 2 flips, we then improve slightly on the approximation ratio of 2

d+1/d .
We first explain some useful properties of stability, as defined above.

Claim 3.9. Once a vertex is stable, it remains stable after any number of flips.

Proof. Simply notice that if a vertex u is stable, then it has a neighbor v on the other side of the
cut and v must be stable too. If u or v become unstable then one of them becomes unstable while
the second one is on the other side of the cut, which is impossible. �

Claim 3.10. Once an edge is in the directed cut, it remains in the directed cut after any number
of flips.

Proof. Any edge in the directed cut joins two stable vertices, and thus remains in the cut after any
number of flips. �

We define CUTi to be the number of edges in the directed cut after i flips. We take the notation
defined in the proof of Theorem 3.8: V + and V − are the sets of vertices of positive and negative
deficit, respectively, CUT0 = CUT = |

−→
E (V +, V −)| is the size of the dicut given by the oriented

median algorithm (running in 0 rounds), OPT = maxdicut(G) is the size of the maximum dicut,
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D =
∑

v∈V + d+(v) +
∑

v∈V − d
−(v), and M is the set of vertices whose side differ in

−→
E (V +, V −)

and in some fixed maximum dicut (V1, V2).
By Claim 3.10, we have that CUTj > CUTi for any j > i. Using this, a simple modification of

the proof of Theorem 3.8 shows the following:

Claim 3.11. Assume we have the following inequalities for some α, β ∈ [0, 1]:

CUTj > OPT− d− 1

2
· |M |+ α · |M |

2 ·OPT 6 D − |M | − β · |M |
then

CUTj

OPT
> fd(α, β) :=

d− 2α+ β

d2/2− α · (d+ 1) + β + 1/2

The following claim immediately holds as well:

Claim 3.12. For any, d > 3, α, β ∈ [0, 1] such that α+ β > 0, fd(α, β) > fd(0, 0) = 2
d+1/d .

More precisely, for any y ∈ (0, 1),

inf
α,β∈[0,1],α+β>y

f3(α, β) = f3(0, y) =
3 + y

5 + y

and for any d > 5,

inf
α,β∈[0,1],α+β>y

fd(α, β) = fd(y, 0) =
d− 2y

d2/2− y(d+ 1) + 1/2

Proof. Notice that, for any d > 3, α, β ∈ (0, 1), ∂
∂αfd(α, β) = 4(d−1)(β+1)

(d2−2α·(d+1)+2β+1)2
> 0 and

∂
∂β fd(α, β) = 2(d−1)(d−2α+1)

(d2−2α·(d+1)+2β+1)2
> 0. This immediately proves the first claim.

For the second claim, by previous calculations we can set β = y − α and compute:
d

dα
fd(α, y − α) = − 2(d− 1)(d− 2y − 3)

(d2 − 2α(d+ 2) + 2y + 1)2

Clearly, if d > 3, then the minimum is reached for α = y and β = 0. And if d = 3 then the minimum
is reached for α = 0 and β = y. �

Knowing these claims, we now prove that CUT2/OPT is greater than some fd(α, β) with α+β >
0. To show this, we need to prove refined versions of inequalities (2) and (3).

Recall the proof of inequality (2) (CUT0 > OPT − d−1
2 · |M |): Start with some optimum cut

and remove the edges of the cut leaving M ∩ V − and the edges entering M ∩ V +. By definition we
remove at most d−1

2 · |M | edges, which implies (2).
Let E0 be the set of edges with one end in V − and the other in M ∩ V +, or with one end in

M∩V − and the other in V +, or between two vertices ofM∩V +, or between two vertices ofM∩V +.
We claim that

(4) CUT0 > OPT− d− 1

2
· |M |+ |E0|.

To see this, observe that the only edges of E0 that are in the optimum cut are the edges going
from M ∩ V − to M ∩ V +, and these are counted twice on our computation. The remaining edges
of E0 are counted once in d−1

2 · |M | or CUT0 but not in OPT.

We denote the stable and unstable vertices (with respect to CUT0) by S0 and U0, respectively.
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Let E1 be the set of edges directed from V + ∩ S0 to V + ∩ U0, or from V − ∩ U0 to V − ∩ S0.
Observe that each such edge is added to the cut after one flip and thus

(5) CUT1 > OPT− d− 1

2
· |M |+ |E0|+ |E1|.

Let U1 be the set of vertices that are unstable after 1 flip. Consider by symmetry the subset U r1
of U1 that lie on the right side of the cut. These vertices were in V + (i.e. on the left side of the
cut) before the first flip. Since each vertex of V + has deficit at least 1, the sum of the deficits of
the vertices of U r1 is at least |U r1 | and thus the number of edges leaving U r1 is at least |U r1 |. After
one flip, by definition of U1, all these edges are directed toward stable vertices on the right side of
the cut. It follows that after a second flip, all these edges join the cut, and thus

(6) CUT2 > OPT− d− 1

2
· |M |+ |E0|+ |E1|+ |U1|.

We now focus on finding a refined version of inequality (3) (which states that 2 ·OPT 6 D−|M |).
Let F0 be the set of edges between two vertices of V + \M , or between two vertices of V − \M . Note
that each edge of F0 is counted in D but does not appear in OPT, thus we obtain

(7) 2 ·OPT 6 D − |M | − |F0|.
If we denote by M∗ the set of vertices of M with deficit larger than 1 in absolute value (in other

words, with deficit at least 3 or at most −3), the two main inequalities can be slightly refined as

(8) 2 ·OPT 6 D − |M | − |F0| − |M∗|.

(9) CUT2 > OPT− d− 1

2
· |M |+ |E0|+ |E1|+ |U1|+ |M∗|.

We are now ready to prove the following.

Theorem 3.13. Assume that d > 3 is odd. Then the 2-round algorithm consisting of the ori-
ented median algorithm followed by two flips provides a 2

d+1/d−3/d2+O(d−3)
-approximation for the

MaxDiCut problem in d-regular graphs.

Proof. We use the notation defined in this section. Let M1 be the set of vertices of M \M∗ (i.e.
the subset of vertices of M of deficit 1 in absolute value) that are not incident to any edge of E0 or
E1. In particular all the vertices of M1 are unstable, and their in-degrees and out-degrees are d−1

2

or d+1
2 .

Assume first that |M1| > x · |M |, with x = d2+d
d2+4d+1

. Note that for every v ∈M1, all the neighbors
of v are in V \M , on the same side of the cut as v (with respect to CUT0). Since v ∈M1 is unstable
and not incident to any edge of E1, all the in-neighbors of v are unstable as well. It follows that
|U0 \M | > d−1

2d |M1|. Let W be the subset of vertices w ∈ U0 \M that have a stable out-neighbor in
M (if w ∈ V +) or a stable in-neighbor in M (if w ∈ V −). Since stable vertices of M are in M \M1,
we have |W | 6 d−1

2 (|M | − |M1|), and thus

|U0 \M | − |W | > d−1
2d |M1| − d−1

2 |M |+
d−1
2 |M1|

> d2−1
2d |M1| − d−1

2 |M |
> 1

2d(x(d2 − 1)− d(d− 1))|M |
= (1− x)|M |

by definition of x. Note that each vertex u ∈ (U0 \M) \W is unstable, so all its neighbors are
on the same side as u. Consider by symmetry the case u ∈ V +. By definition, u has no stable
out-neighbor in M . If u has a stable in-neighbor v, then the edge uv is in E1. If u has a neighbor
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v 6∈ M , then the edge uv is in F0. If none of these cases occur, then all neighbors of u are in M ,
and are unstable. It follows that u is in U1, the set of vertices that are still unstable after 1 flip. It
follows that

(10) |E1|+ |F0|+ |U1| > 1
2(|U0 \M | − |W |) > 1

2(1− x)|M |.
Using inequalities (6) and (8) together with Claims 3.11 and 3.12, we obtain that CUT2/OPT >

fd(α, β) with α, β > 0 and α+ β > 1
2(1− x).

Assume now that |M1| < x · |M |. In this case, it means that at least (1−x) · |M | vertices v are in
M∗ (i.e. have deficit at least 3 in absolute value) or are incident to an edge of E0 or E1. It follows
that

(11) |M∗|+ |E0|+ |E1| > 1
2(1− x)|M |,

and thus CUT2/OPT > fd(α, β) with α, β > 0 and α+ β > 1
2(1− x).

In both cases we obtain CUT2/OPT > fd(α, β) with α, β > 0 and α+ β > 1
2(1− x) = 3d+1

2d2+8d+2
.

It follows from Claim 3.12, that CUT2/OPT > 2
d+1/d−3/d2+O(d−3)

. �

Theorem 3.13 proves that after 2 flips, we can slightly improve on the approximation ratio of
Theorem 3.8. A natural question is whether the same can be achieved after a single flip. The
construction of Figure 6, which is a refinement of the construction of Figure 5, shows that it is not
the case: if we apply the oriented median algorithm and then perform a single flip, the size of the
cut does not change (it remains 2

d+1/d OPT).

As

CD d−1
4d

d−1
4d

1
2

(d−1)2

8d

(d−1)2

8d
(d−1)3

8d(d+1)

Au

Bs

Bu

1
d+1

(d−1)2

4d(d+1)

d−1
2(d+1)

1
d+1

(d−1)2

4d(d+1)

(d−1)3

8d(d+1)

Figure 6. A refinement of the construction of Figure 5. The subscripts u and s
stand for unstable and stable, respectively.

4. Conclusion

4.1. FLIP. In Section 3, we have designed a very simple one-round algorithm approximating Max-
Cut in regular graphs (with odd degrees). Once a solution has been obtained, it might be tempting
to run a few more rounds of computation to see if the solution can be improved locally.

We have already seen a simple way to improve the quality of a solution (by moving the so-called
unstable vertices to the other side of the cut), but the notion of stability we used was specifically
designed to improve the approximation ratio in a small number of rounds. Another simple way to
locally improve a cut (in the sequential setting this time) is to take a vertex with more neighbors
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in its own part than in the other part, and change its side. If this is done until no such vertex
exists, the resulting cut is maximal, and in this case is a 1

2 -approximation of the maximum cut.
This operation, called FLIP, has been studied for a long time. When the edges are weighted, it
was proved by Poljak [25] that any sequence of FLIPs takes only polynomially many steps before
reaching a maximal cut in cubic graphs, while Monien and Tscheuschner [22] proved that there are
graphs of maximum degree 4 for which a sequence of FLIPs can take exponentially many steps to
reach a maximal cut. In the unweighted case however, since each flip improves the cut by at least
one, the maximum number of flips before reaching a maximal cut is bounded by the number edges
(which is linear in n in bounded degree graphs). In the distributed framework, it might be tempting
to consider running some rounds of the distributed FLIP dynamics: at each round, each vertex with
more neighbors in its own part than in the other part changes side. The graph Dd

2n constructed in
the previous sections shows that it might not be helpful at all: if all the vertices of the outer cycle
are in one side of the cut, and all the vertices of the inner cycle are on the other side of the cut,
then at each round, all the vertices of the graph would change side, not improving the solution.

It might be worth noting that in our application of the median algorithm, not all vertices of the
outer cycle of Dd

2n are on the same side of the cut (given the bad labelling of Figure 3): due to
some side-effects, roughly d vertices in the outer cycle are not on the same side of the cut as the
others, and similarly for the inner cycle. It can then be checked that if we run the distributed FLIP
dynamics in this instance, the solution does improve over time, but improving the approximation
ratio from 1

d to 1
d+ε requires Ω(εn) rounds, which is extremely unpractical. This has to be compared

with the lower bound of Theorem 2.2, which says that in order to achieve an approximation ratio
of 1

d + ε in general, one needs a number of rounds of the order of Ω(log∗ n).

4.2. Maximal cut. An interesting aspect of the Maximal cut problem defined in the previous
subsection is that it is an LCL problem (of locality 1): each vertex only needs to check that at least
half of its neighbors lie on the other side of the cut. This is in stark contrast with MaxCut, as we
have seen already. It was recently proved by Balliu, Hirvonen, Lenzen, Olivetti, and Suomela [2]
that any deterministic algorithm finding a maximal cut in d-regular graphs (d > 3) takes Ω(log n)
rounds and any randomized algorithm takes Ω(log log n) rounds in the LOCAL model. It would be
interesting to find algorithms matching these round complexities. Note that if we merely require
that each vertex has at least d/2−O(

√
d) neighbors on the other side of the cut, the problem can

be easily reduced to the distributed Lovász Local Lemma, and therefore solved efficiently.
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