
HAL Id: hal-02147300
https://hal.science/hal-02147300v1

Submitted on 21 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ROHSA: Regularized Optimization for Hyper-Spectral
Analysis

Antoine Marchal, Marc-Antoine Miville-Deschênes, François Orieux, Nicolas
Gac, Charles Soussen, Marie-Jeanne Lesot, Adrien Revault d’Allonnes,

Quentin Salomé

To cite this version:
Antoine Marchal, Marc-Antoine Miville-Deschênes, François Orieux, Nicolas Gac, Charles Soussen,
et al.. ROHSA: Regularized Optimization for Hyper-Spectral Analysis. Astronomy & Astrophysics -
A&A, 2019, 626, pp.A101. �10.1051/0004-6361/201935335�. �hal-02147300�

https://hal.science/hal-02147300v1
https://hal.archives-ouvertes.fr


Astronomy
&Astrophysics

A&A 626, A101 (2019)
https://doi.org/10.1051/0004-6361/201935335
© A. Marchal et al. 2019

ROHSA: Regularized Optimization for Hyper-Spectral Analysis?

Application to phase separation of 21 cm data

Antoine Marchal1,2, Marc-Antoine Miville-Deschênes1, François Orieux2,3, Nicolas Gac3, Charles Soussen3,
Marie-Jeanne Lesot4, Adrien Revault d’Allonnes4, and Quentin Salomé5

1 AIM, CEA, CNRS, Université Paris-Saclay, Université Paris Diderot, Sorbonne Paris Cité, 91191 Gif-sur-Yvette, France
2 Institut d’Astrophysique Spatiale, CNRS UMR 8617, Université Paris-Sud 11, Batiment 121, 91405 Orsay, France

e-mail: antoine.marchal@ias.u-psud.fr
3 Laboratoire des Signaux et Systèmes (CNRS, CentraleSupélec, University of Paris-Sud), Université Paris-Saclay,

91192 Gif-sur-Yvette, France
4 LIP6, Université Pierre et Marie Curie-Paris 6, UMR7606, 4 Place Jussieu Paris cedex 05, 75252 Paris, France
5 Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, 58089 Morelia, Mexico

Received 21 February 2019 / Accepted 29 April 2019

ABSTRACT

Context. Extracting the multiphase structure of the neutral interstellar medium is key to understanding star formation in galaxies.
The radiative condensation of the diffuse warm neutral medium producing a thermally unstable lukewarm medium and a dense cold
medium is closely related to the initial step leading the atomic-to-molecular (HI-to-H2) transition and the formation of molecular
clouds. Up to now, the mapping of these phases out of 21 cm emission hyper-spectral cubes has remained elusive mostly due to the
velocity blending of individual cold structures present on a given line of sight. As a result, most of the current knowledge about the
HI phases rests on a small number of absorption measurements on lines of sight crossing radio sources.
Aims. The goal of this work is to develop a new algorithm to perform separation of diffuse sources in hyper-spectral data. Specifically
the algorithm was designed in order to address the velocity blending problem by taking advantage of the spatial coherence of the
individual sources. The main scientific driver of this effort was to extract the multiphase structure of the HI from 21 cm line emission
only, providing a means to map each phase separately, but the algorithm developed here should be generic enough to extract diffuse
structures in any hyper-spectral cube.
Methods. We developed a new Gaussian decomposition algorithm named ROHSA based on a multi-resolution process from coarse
to fine grid. ROHSA uses a regularized nonlinear least-square criterion to take into account the spatial coherence of the emission and
the multiphase nature of the gas simultaneously. In order to obtain a solution with spatially smooth parameters, the optimization
is performed on the whole data cube at once. The performances of ROHSA were tested on a synthetic observation computed from
numerical simulations of thermally bi-stable turbulence. We apply ROHSA to a 21 cm observation of a region of high Galactic latitude
from the GHIGLS survey and present our findings.
Results. The evaluation of ROHSA on synthetic 21 cm observations shows that it is able to recover the multiphase nature of the HI. For
each phase, the power spectra of the column density and centroid velocity are well recovered. More generally, this test reveals that a
Gaussian decomposition of HI emission is able to recover physically meaningful information about the underlying three-dimensional
fields (density, velocity, and temperature). The application on a real 21 cm observation of a field of high Galactic latitude produces
a picture of the multiphase HI, with isolated, filamentary, and narrow (σ ∼ 1−2 km s−1) structures, and broader (σ ∼ 4−10 km s−1),
diffuse, and space-filling components. The test-case field used here contains significant intermediate-velocity clouds that were well
mapped out by the algorithm. As ROHSA is designed to extract spatially coherent components, it performs well at projecting out the
noise.
Conclusions. In this paper we introduce ROHSA, a new algorithm that performs a separation of diffuse sources in hyper-spectral data
on the basis of a Gaussian decomposition. The algorithm makes no assumption about the nature of the sources, except that each one
has a similar line width. The tests we made shows that ROHSA is well suited to decomposing complex 21 cm line emission of regions
of high Galactic latitude, but its design is general enough that it could be applied to any hyper-spectral data type for which a Gaussian
model is relevant.

Key words. ISM: clouds – ISM: kinematics and dynamics – ISM: structure – methods: data analysis – methods: numerical –
methods: observational

1. Introduction

Star formation in galaxies is strongly linked to the phys-
ical processes that govern the evolution of the interstellar
medium (ISM). Stars form by gravitational collapse of dense
(n> 104 cm−3) and cold (T ∼ 10 K) structures in molecular
? ROHSA is available in free access via the following web page:
https://github.com/antoinemarchal/ROHSA

clouds but the process that leads to the formation of these over-
densities is still unclear. One key element seems to be related to
the efficiency of the formation of cold clouds of neutral hydrogen
(HI; Ostriker et al. 2010).

The current vision of the HI comes from an important legacy.
Early observations of the 21 cm line showed a significant dif-
ference between emission and absorption spectra. On lines of
sight crossing radio-sources, the HI appears in absorption with
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very narrow features (a few km s−1). In emission the 21 cm line
contains these narrow features on top of much boarder spectral
structures (10–20 km s−1). Clark (1965) was the first to suggest
that this might be the signature of a cloud-intercloud medium in
pressure equilibrium. Very rapidly Field (1965) and Field et al.
(1969) introduced the concept of thermal instability and laid out
the theoretical ground of a “two phase” HI model showing that,
at the pressure of the ISM, the heating and cooling processes
naturally lead to two thermally stable states: a dense cold neutral
medium (CNM – T ∼ 50 K, n∼ 50 cm−3) immersed in a dif-
fuse warm neutral medium (WNM – T ∼ 8000 K, n∼ 0.3 cm−3).
This vision was later complemented by Wolfire et al. (1995,
2003) considering updated heating (dominated by the photo-
electric effect on small dust grains) and cooling (dominated by
CII: 158 µm, OI: 63 µm, Lα and electron recombinations onto
positive charged grains) processes of the ISM.

This description of the diffuse neutral gas complemented
a parallel hypothesis that emerged in the 1950s (e.g., von
Weizsäcker 1951; von Hoerner 1951; Chandrasekhar & Münch
1952) and considered the ISM as a multi-scale turbulent
medium. In this case, the density and velocity structures are
the result of a highly dynamical and out-of-equilibrium medium.
In order to reconcile the “static/two-phase” and the “turbulent”
hypotheses, several studies have aimed at understanding the
production of the CNM in a turbulent and thermally unstable
flow using numerical simulations (e.g., Hennebelle & Pérault
1999; Koyama & Inutsuka 2002; Audit & Hennebelle 2005;
Hennebelle et al. 2008; Saury et al. 2014). In general, these
numerical studies show that the WNM has the properties of
a trans-sonic turbulent flow, while the CNM shows a much
more contrasted density structure, in accordance with the cloud-
intercloud picture. In addition, such studies indicate the presence
of a significant fraction of the mass being in the thermally unsta-
ble regime (i.e., with a temperature mid-way between the CNM
and WNM stable states). For instance, Saury et al. (2014) showed
that 30% of the HI is in the thermally unstable regime. Interest-
ingly, these latter authors also show that this lukewarm neutral
medium (LNM) is spatially located around the cold structures,
pointing at the transitional nature of this thermal state.

From an observational standpoint, studies combining 21 cm
absorption and emission data have clearly revealed the presence
of HI at intermediate/unstable temperatures, typically between
500 and 5000 K (e.g., Heiles & Troland 2003a; Kanekar et al.
2003; Roy et al. 2013a,b; Murray et al. 2015, 2018a). Based on
a coherent modeling of emission and absorption spectra, Heiles
& Troland (2003b), Murray et al. (2015, 2018a) estimated that
about 30% of the HI is in the cold CNM phase, 20% in the ther-
mally unstable regime, and 50% in the WNM. Nevertheless the
fraction of the HI in each phase remains uncertain and large vari-
ations are observed: the fraction of the mass in the CNM ranges
from ∼1% to more than 50% (Murray et al. 2018a).

The nature of these variations and how they relate to the
dynamical conditions of the gas remains largely unexplored from
the observational point of view. One main hurdle in getting
access to this information is the fact that our knowledge of the
multiphase nature of the HI relies on 21 cm absorption measure-
ments that are limited to lines of sight crossing radio sources.
By nature, this way of observing prevents us from mapping the
HI phases. To go further, and really compare with numerical sim-
ulations that are currently under-constrained by observation, it is
mandatory to map the column density structure of each phase
and study the spatial variations of their centroid velocity and
velocity dispersion. This calls for methods that can extract the
information of each HI phase from fully sampled 21 cm emission

data only. Huge efforts have been made to map the 21 cm emis-
sion of the Galactic HI (recent examples are Taylor et al. 2003;
Kalberla et al. 2005; Stil et al. 2006; McClure-Griffiths et al.
2009; Winkel et al. 2016; Peek et al. 2018) and a large amount
of data is now available. The information about the multiphase
and multi-scale nature of the HI contained in these large hyper-
spectral data cubes has remained elusive due to the difficulty in
separating the emission from the different phases on each line
of sight. In this paper we propose a new method to map out the
contribution of each phase to the 21 cm emission. The method
is based on a decomposition of the 21 cm emission line with
Gaussian profiles and constraints that favors spatially coherent
parameters.

The paper is organized as follows. In Sect. 2, we describe
the methodology used to develop our Gaussian decomposition
algorithm. An evaluation of numerical simulation is presented
in Sect. 3. In Sect. 4 we present an application to observations.
The discussion and summary are presented Sects. 5 and 6.

2. Methodology

2.1. Gaussian decomposition of the 21 cm emission

Very early on after its detection, the 21 cm line was observed
to be well described by a sum of a small number of Gaussian
components. This was found to be true for the least confused
absorption spectra (Muller 1957, 1959; Clark 1965) but also
for emission spectra observed away from the Galactic plane
(Heeschen 1955). Very few spectra at high Galactic latitudes do
not comply with that rule, whatever the angular resolution of
the data. Recently, Kalberla & Haud (2018) showed that more
than 60% of the spectra over the whole sky can be described
by the sum of seven Gaussian components or less. In the two
decades after the detection of the 21 cm line, many studies
used the Gaussian decomposition to infer physical parameters
from the data (Matthews 1957; Davis 1957; Muller 1957, 1959;
Dieter 1964, 1965; Lindblad 1966; Takakubo & van Woerden
1966; Mebold 1972). The fact that a small number of Gaussian
components is needed to describe the signal was seen as a con-
venient way to describe the emission profiles with a small set of
parameters (Takakubo & van Woerden 1966). It is also a very
strong element in favor of the Gaussian function as a significant
descriptor of the underlying physics.

Takakubo (1967) showed that the width of the 21 cm emis-
sion line could be grouped in three components (σ≤ 3 km s−1;
3<σ< 7 km s−1; σ≥ 7 km s−1), a result confirmed later on
(Mebold 1972; Haud & Kalberla 2007; Kalberla & Haud 2018).
Takakubo (1967) also showed that the narrow 21 cm features are
well correlated with Ca+ K line absorption measurements. These
latter authors concluded that the narrow component, also seen
in 21 cm absorption spectra, is likely to be isolated cold clouds
(CNM) in the Solar neighborhood. They also showed that the
spatial distribution of the centroid velocity, velocity width, and
column density of the large feature is compatible with a warm
(WNM) and diffuse disk that follows Galactic rotation. The sec-
ond group of Gaussians, with a width (σ) of between 3 and
7 km s−1, is generally attributed to gas in the thermally unsta-
ble range, but a fraction of them could be caused by blending of
narrow features.

The exact mass fraction of gas in each phase (CNM, LNM,
and WNM) is still a matter of debate. In addition, because this
knowledge is based on absorption measurements, there is very
little information about the structure of these phases on the sky.
Being able to separate the different phases on each line of sight
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would allow us to study the structure and kinematics of the cold
phase and its relationship with the more diffuse gas. In theory,
one could expect that Gaussian decomposition of the emission
spectra could provide such mapping.

2.2. Limitation of the Gaussian model

There are many pitfalls in the description of the 21 cm emission
spectra as a sum of Gaussian components: velocity blending,
ambiguities of the number of components, nonGaussian profiles,
noise peaks, plurality of solutions. Another important limitation
is the effect of optical depth of the 21 cm line that modifies
the shape of the line. More generally, the main opposition to
Gaussian decomposition of emission spectra is that any spectrum
can be decomposed that way provided that enough Gaussians are
used. If that is the case, how can one be sure that the Gaussian
representation provides some real physical information about the
emitting gas? For instance, two spatially disconnected cold struc-
tures present on the same line of sight could appear at the same
projected velocity. In this case their respective emission profiles
would be confused. This velocity blending affects both the emis-
sion and absorption spectra; it is present in the data, and more so
at lower Galactic latitudes where the length of the line of sight is
larger and the number of HI structures increases.

This line of reasoning led Dickey & Lockman (1990) to
advise against using Gaussian decomposition to analyze 21 cm
spectra. Later on, it continued to be used (Verschuur & Schmelz
1989; Verschuur & Magnani 1994; Poppel et al. 1994; Haud
2000; Verschuur 2004; Begum et al. 2010; Martin et al. 2015;
Kalberla & Haud 2018) but overall there was a loss of interest,
except for the analysis of absorption spectra. Indeed by com-
paring nearby absorption and emission spectra one can recover
the effect of optical depth on the 21 cm emission. In addition,
absorption measurements are only sensitive to cold gas, limiting
the velocity blending problem. For these reasons, the Gaussian
decomposition continued to be used in this context (Dickey et al.
2003; Kanekar et al. 2003), and especially after the seminal work
of Heiles & Troland (2003b) who developed a dedicated for-
malism which has been used in several other studies since (e.g.
Stanimirović & Heiles 2005; Begum et al. 2010; Stanimirović
et al. 2014; Lee et al. 2015; Murray et al. 2014, 2015, 2018b).
Indeed, key information about the nature of the HI came from
the joint Gaussian decomposition of emission and absorption
spectra.

2.3. Development of a new approach

Following what has been done for the comparison of emission
and absorption spectra where the Gaussian decomposition is
considered valid, we would like to argue that a similar decompo-
sition could be envisaged for emission data only, at least at high
Galactic latitudes where the effect of optical depth of the 21 cm
line has been shown to be negligible (Murray et al. 2018b).

The fact that physical information could be obtained using
a Gaussian decomposition of absorption data reveals the fact
that thermal broadening has a significant effect in shaping the
line profile, or in other words, that the dynamics of each
HI phase is typical of sub- or trans-sonic turbulence. When the
amplitude of turbulent and thermal motions are commensurate,
the line appears smooth and can be represented by a small
number of Gaussian components (Miville-Deschênes et al.
2003). If the HI at high Galactic latitude is indeed represented
by a two-phase medium with small, cold, and trans-sonic
structures immersed in a relatively low-Mach-number and warm

diffuse phase, the Gaussian representation could bear significant
physical information.

The perspective of mapping the phases of the HI is so impor-
tant that we ventured to explore new ways of decomposing the
emission spectra that could be applicable to the high Galac-
tic sky. The main difficulty is the effect of velocity blending
for cold structures. As mentioned by Takakubo & van Woerden
(1966), there will always be cases where a given spectrum can
be fitted with a smaller number of components than its neigh-
bors, if two or more components have similar central velocity
and velocity dispersion. One way to avoid this confusion is to
look for solutions that have a spatial continuity, or that have
a slow spatial variation. Poppel et al. (1994), Haud (2000),
Martin et al. (2015) and Miville-Deschênes et al. (2017b) have
implemented Gaussian decomposition methods that use some
information about their neighbors in order to favor spatially
coherent solutions. Formally nevertheless, these algorithms do
not force solutions to be spatially coherent; they simply provide
initial guesses to the fit of a single spectrum based on the most
likely solutions found in some surrounding area. The optimiza-
tion is not bound to this initial guess and it can always converge
to another solution that would break the spatial smoothness of
the parameter space.

The novelty of the algorithm we present here is that it is
the first one that imposes the spatial coherence in the determi-
nation of the parameters. In order to do that, all the spectra of
the emission cube are fitted at the same time. To make sure that
the recovered parameters are spatially smooth, specific regular-
ization terms are added to the cost function with non-negativity
constraints on the amplitude. This algorithm, called ROHSA, is
described below.

2.4. ROHSA

ROHSA performs a regression analysis using a regularized non-
linear least-square criterion. We formulate in this section the
Gaussian model used as well as the energy terms added to
the cost function to take into account the spatial coherence of
the emission and the multiphase nature of the gas simultane-
ously. The quasi-Newton algorithm, L-BFGS-B, used to perform
the optimization is then briefly described. Finally, we formulate
the algorithm performed by ROHSA based on a multi-resolution
process from coarse to fine grid.

2.4.1. Model

The data are the measured brightness temperature TB(vz, r) at a
given projected velocity vz across sky coordinates r. The pro-
posed model T̃B

(
vz, θ(r)

)
is a sum of N Gaussian G

(
vz, θn(r)

)
T̃B

(
vz, θ(r)

)
=

N∑
n = 1

G
(
vz, θn(r)

)
, (1)

with θ(r) =
(
θ1(r), . . . , θn(r)

)
and where

G
(
vz, θn(r)

)
= an(r) exp

− (
vz − µn(r)

)2

2σn(r)2

 (2)

is parametrized by θn =
(
an,µn,σn

)
with an ≥ 0 being the

amplitude, µn the position, and σn the standard deviation 2D
maps of the nth Gaussian profile across the plan of sky. The
residual is

L
(
vz, θ(r)

)
= T̃B

(
vz, θ(r)

) − TB(vz, r). (3)
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The estimated parameters θ̂ are defined as the minimizer of a
cost function that includes the sum of the squares of the residual,

Q(θ) =
1
2

∥∥∥L
(
vz, θ

)∥∥∥2
Σ

=
1
2

∑
vz,r

(
L
(
vz, θ(r)

)
Σ(r)

)2

, (4)

where Σ is the standard deviation 2D map of the noise assumed
without spatial correlation. In practice this term is estimated
using a sequence of empty velocity channels of TB(vz, r).

For each of the N Gaussians, we want to obtain a spatially
coherent solution, meaning that for each parameter, the values
have to be close for neighboring lines of sight. This can be done
by penalizing the small-scale spatial fluctuations of each param-
eter, measured by the energy at high spatial frequencies. The
considered high-pass filter is the second-order differences, that
is the Laplacian filtering, defined by the 2D convolution kernel,

d =

 0 −1 0
−1 4 −1
0 −1 0

 . (5)

The following regularization term, itself containing energy
terms, is added to the cost function given in Eq. (4),

R(θ) =
1
2

N∑
n = 1

λa‖Dan‖22 + λµ‖Dµn‖22 + λσ‖Dσn‖22, (6)

where D is a matrix performing the 2D convolution using the
kernel d and λa, λµ, and λσ are hyper-parameters than tune the
balance between the different terms.

These terms ensure a positive spatial correlation of the model
parameters for neighboring pixels. However, each term is free
to have large variation across the field at larger scale. Since σn
contains information about the gas thermodynamics, we design
an additional term in the cost function to group Gaussians with
similar σn. This is implemented in order to favor any solution
that would produce components ascribable to each of the phases
(WNM, LNM or CNM). In order to do that we add another term,
λ′σ‖σn − mn‖22, which constrains σn to be close to an unknown
scalar value mn. The full regularization term is then

R(θ,m) =
1
2

N∑
n=1

λa‖Dan‖22 + λµ‖Dµn‖22 + λσ‖Dσn‖22

+ λ′σ‖σn − mn‖22, (7)

with m = (m1, . . . ,mN) and an ≥ 0, ∀ n ∈ [1, . . . ,N]. The last two
terms in Eq. (7), representative of a joined constraint imposed
on σn, allow us to interpret a posteriori and simultaneously the
morphology and the thermodynamical state of each component
extracted from the data. The full cost function is then

J(θ,m) = Q(θ) + R(θ,m). (8)

2.4.2. Optimization algorithm

Unlike Q(θ), each energy term proposed in Eq. (6) involves linear
dependences on the parameter θ. The cost function in Eq. (8)
is therefore a regularized nonlinear least-square criterion. The
minimizer,

[θ̂, m̂] = argmin
θ,m

J(θ,m), wrt. an ≥ 0, ∀ n ∈ [1, . . . ,N], (9)

Algorithm 1 ROHSA based on a multi-resolution process from
coarse to fine grid where 〈TB〉i is the averaged data at i scale.
Require: TB(vz, r), θ(0), m(0) = 0, N, λa, λµ, λσ, λ′σ

1: for i = 1 to I do
2:

[
θ(i),m(i)

]
← argmin

θ,m
J
(
θ(i−1); m(i−1), 〈TB〉i

)
.

3: end for
return θ(I), m(I)

has no closed form expression and is not directly tractable
because of the complexity of the model T̃B and the size of the
unknown and data. The proposed solution relies instead on an
iterative optimization algorithm that uses the gradient

∇J(θ,m) =

[∇L(θ) × L(θ)
0

]
+

[∇θR(θ,m)
∇mR(θ,m)

]
, (10)

which is tractable since it involves the residual, the Jacobian of
the residual ∇L(θ), and 2D convolutions with the kernel d for D
and Dt. The gradient ∇Rt(θ,m) = [∇θRt(θ,m),∇mRt(θ,m)] and
∇J(θ) are detailed in Appendix A.

For the optimization, RHOSA relies on L-BFGS-B (for
Limited-memory Broyden-Fletcher-Goldfarb-Shanno with
Bounds), a quasi-Newton iterative algorithm described by Zhu
et al. (1997) which allows for the positivity constraints of the
amplitudes to be taken into account. In this algorithm, after an
initialization θ(0), the solution is approached iteratively by

θ(k+1) = θ(k) − α(k)H−1
(k)∇J

(
θ(k),m(k)

)
, (11)

where H−1∇J (θ,m) is approximated with the L-BFGS formula.
The iterations are repeated until one of the two following cri-
teria is met: (1) the total number of evaluations of J(θ,m) and
∇J(θ,m) exceeds a maximum number of iterations defined by
the user; (2) the projected gradient is sufficiently small (i.e., |proj
∇J(θ,m)|/(1+|J(θ,m)|) < 10−10).

Due to its nonlinearity, the least-square criterion J(θ,m)
described in Eq. (8) is likely to include local minimizers. There-
fore, the L-BFGS-B algorithm used by ROHSA is also likely to
converge toward one of these local minima, making the solution
highly dependent on the initialization θ(I)

(0). In order to overcome
this difficulty, we based the design of ROHSA on an iterative
multi-resolution process from coarse to fine grid (described
in the following section) to automatically choose θ(I)

(0) and to
converge towards a satisfactory local minimum.

2.4.3. ROHSA algorithm

ROHSA is based on an iterative algorithm using a multi-resolution
process from coarse to fine grid presented in Algorithm 1. The
number of iterations I depends on the size of the fine grid S
and is defined by the relation 2I = S . For example, a grid of
size S 2 = 2562 requires I = 8 iterations. Each iteration is made of
three steps.
1. Data are averaged at scale i as

〈TB〉i =
1
Ki

∑
k∈Vi

TB(vz, rk), (12)

where Vi defines the neighborhood at scale i, as described in
Fig. 1, and Ki is the number of positions in that neighborhood.
For i = 1, all the spatial information is compressed into a single
spectrum: 〈TB〉1 = 〈TB(vz, r)〉.
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Fig. 1. Graphic visualization of neighborhoods V2 and V3 used to
obtain the spatially averaged data versions 〈TB〉2 and 〈TB〉3.

2. The parameters θ(i) and m(i) are estimated on that spatially
averaged data version 〈TB〉i by minimizing the cost function
given in Eq. (8).
The minimization (line 2 of Algorithm 1) is made using L-
BFGS, described in the previous section. We note that for scale
i = 1, there is no spatial information 〈TB〉1 and the result does not
depend on the regularization.
3. Parameters θ(i) are spatially interpolated at nearest neighbor-
hood to serve as initialization for the next scale i + 1.

The free hyper-parameters λA, λµ, λσ, λ′σ remain constant
during the iterations.

3. Evaluation on numerical simulation

To evaluate the performance of ROHSA, we applied it to synthetic
21 cm observations computed from a numerical simulation of
thermally bi-stable turbulence flow. This allowed us to directly
compare the solution given by ROHSA to the properties of the gas
present in the simulation. That direct comparison with numeri-
cal reality is an essential test to evaluate the performances of a
source-separation algorithm like ROHSA.

3.1. Numerical simulation

To test ROHSA we used the hydrodynamical simulation of ther-
mally bi-stable turbulence performed by Saury et al. (2014).
We used their 1024N01 simulation (10243 pixels and a physical
size of the box of 40 pc) characterized by (1) an initial den-
sity n0 = 0.1 cm−3, (2) a large-scale velocity vS = 12.5 km s−1 and
(3) a spectral weight ζ = 0.2. The initial density corresponds to
the typical density of the WNM before condensation, the large-
scale velocity represents the amplitude given to the field that
generates large-scale turbulent motions in the box, and finally
the spectral weight controls the modes of the turbulent mixing
(here a majority of compressible modes). The Mach number of
this simulation has been evaluated to be around M= 0.85 for
T > 200 K.

In order to explore the performances of ROHSA we use only
a subset of this simulation. We concentrate our analysis on a
region of 256× 256× 1024 pixels with a moderate CNM fraction
in order to limit the effect of HI self-absorption (see Sect. 3.2.3).

3.2. 21 cm line synthetic observations

The synthetic 21 cm observations were computed using the
formalism described by Miville-Deschênes & Martin (2007).

3.2.1. Distribution of velocity fluctuations

In the 3D spatial space, the neutral hydrogen can be described by
three 3D fields: the temperature T (x), the density ρ(x), and the

z-component of the turbulent velocity field vz(x). Here the 3D
spatial positions are denoted by the vector x while the 2D vector
expressing the line-of-sight is denoted by r. The z-axis is taken
along the line of sight.

Information about the velocity field is inevitably lost because
of the projection along z-axis. This makes this description of
HI a nonexhaustive one. For each position x, we assume that
the velocity dispersion of a given cell is dominated by thermal
motions. This is a fair approximation as the turbulent velocity
dispersion at the cell size (0.04 pc) is σturb ∼ 0.3 km s−1, which is
smaller than the thermal broadening everywhere in the simula-
tion: the smallest thermal broadening for the coldest gas found in
the simulation (T = 20 K) is σtherm = 0.4 km −1. The distribution
function of the z-component of the velocity vz(x) of a given cell
is then given by φvz (x), a Maxwellian shifted by vz(x),

φνz (x)dv′z =
1√

2π∆(x)
× exp

(
− (v′z − vz(x))2

2∆2(x)

)
dv′z, (13)

where ∆(x) =
√

kBT (x)/mH, which is the thermal broadening
of the 21 cm line, mH is the hydrogen atom mass, and kB the
Boltzmann constant.

3.2.2. Brightness temperature: general case

The general case for the computation of the 21 cm brightness
temperature TB(vz, r) is based on the following radiative transfer
equation.

TB(vz, r) =
∑

z

T (r, z)
[
1 − e−τ(vz,r,z)

]
e−

∑
z′<z τ(vz,r,z′), (14)

where τ(vz, r, z) is the optical depth of the 21 cm line defined as

τ(vz, r, z) =
1
C
ρ(r, z) φνz (r, z)

T (r, z)
dz, (15)

and C = 1.82243 × 1018 cm−2 (K km s−1)−1. In this representa-
tion, a gas cell at position z′ absorbs emission from the cell
located behind it along the line of sight, i.e., at z > z′.

3.2.3. Optically thin limit

In the optically thin limit, in cases where the self-absorption is
negligible (i.e., τ(vz, r, z)� 1 everywhere), the 21 cm brightness
temperature is proportional to the density ρ:

T thin
B (vz, r) dv′z = B(r) ⊗ 1

C

∫ H

0
dz ρ(r, z) φvz (r, z) dv′z, (16)

where H is the depth of the cloud and ⊗ the spatial convolution.
Here we consider the case that includes spatial smoothing by a
telescope beam B(r).

The integrated column density N thin
HI (r) and the centroid

velocity 〈vz(r)〉 of the 21 cm line can be obtained directly by
integrating T thin

B (vz, r) along the velocity axis:

N thin
HI (r) = C

∫ +∞

−∞
TB(vz, r) dvz, (17)

and

〈vz(r)〉=
∫ +∞
−∞ vz TB(vz, r) dvz∫ +∞
−∞ TB(vz, r)dvz

. (18)
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Fig. 2. Integrated column density NHI (optically thin approximation) of
the 21 cm synthetic observation computed from the thermally bi-stable
numerical simulation of Saury et al. (2014).

3.2.4. Synthetic observation

We computed the synthetic position-position-velocity (PPV)
data cube in the general case using Eq. (14). Each spectrum
has an effective velocity resolution of 0.8 km s−1 and covers
−40< vz < 40 km s−1. We considered the beam B(r) of the instru-
ment by convolving the synthetic PPV cube with a Gaussian
kernel characterized by standard deviations of two pixels along
the spatial axis. We then added a homogeneous Gaussian noise
of 0.05 K to each spectrum.

In order to mimic observation, integrated column density
maps shown in the rest of the paper are computed using the
optically thin limit presented in Eq. (17). The integrated column
density map of the synthetic PPV cube is shown in Fig. 2.

3.3. Results

ROHSA was then applied to decompose the synthetic observation
computed in Sect. 3.2. In this section we discuss the choice of the
free parameters of ROHSA, the global properties of the Gaussian
sample, and the properties of individual components identified
by the decomposition. Subsequently, the mapping of a three-
phase coherent model is presented with direct comparisons to
the phases extracted directly from the simulation.

3.3.1. Choosing the free parameters of ROHSA

ROHSA has six free parameters : the number of Gaussian compo-
nents N, four hyper-parameters λi and, the maximum number of
iterations of the LBFGS algorithm.

The most important parameter is N. This has to be suffi-
ciently high to ensure a complete encoding of the signal, that
is, to ensure that the residual is dominated by noise. As we dis-
cuss in Sect. 3.3.3, a given number of Gaussian components
does not imply that all components are used to describe the sig-
nal along every line of sight. Components are allowed to have
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Fig. 3. Evolution of the cost function J(θ(r),m) as a function of the
number of iterations performed by ROHSA on the synthetic observation
computed in Sect. 3.2.

an amplitude of zero at any position. This is especially relevant
for components encoding cold features. Since the CNM clouds
occupy a small fraction of the total volume (see also Sect. 3.3.3),
we expect the associated amplitude fields to have a large frac-
tion close to zero. This is ensured by the energy term ‖σn −mn‖22
which minimizes the variance of the dispersion velocity of each
component. Amplitudes are brought to zero if there is no need
for a Gaussian to describe the signal at some location, instead
of encoding another phase like the WNM for example. Avoiding
phase mixing allows for overfitting to be prevented.

As with N, different values of the hyper-parameters λa, λµ,
λσ, λ′σ can be tested to obtain a satisfactory solution. If the hyper-
parameters are null (i.e., no regularization) the signal could be
fully encoded, but no spatial coherence will appear in the solu-
tion θ(I). On the other hand, if the hyper-parameters are too high,
the solution will tend towards a solution that could be too spa-
tially coherent, or even flat, wiping out small-scale fluctuations
and providing a bad fit to the data. A spatially coherent solution
that describes the data well with the smallest value of N is a good
criterion to select the values of the hyper-parameters.

The last criterion set by the user is the maximum number
of iterations of the LBFGS algorithm computing Eq. (11); see
Sect. 2.4.2. That parameter must be large enough to ensure the
convergence of the solution. The convergence of ROHSA from a
numerical perspective is presented in Fig. 3, which shows the
evolution of the cost function J(θ(r),m) for 730 iterations.

The decomposition of the synthetic observations presented
in this section converges to a satisfactory solution with N = 8,
λa = 10 000, λµ = 10 000, λσ = 10 000, and λ′σ = 1000. As pre-
viously recommended, these values are empirically found to
converge towards a noise-dominated residual and a signal that
is encoded with a minimum number of Gaussian components.
To illustrate this, Fig. 4 shows the normalized probability dis-
tribution function of the relative difference (NHI – ÑHI)/NHI
between the solution ÑHI inferred with ROHSA and the data NHI
for different values of N.

As an a posterior assessment, the skewness µ3 of the resid-
ual is shown to quantify the quality of the encoding. As the
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Fig. 4. Normalized probability distribution function of the relative
difference (NHI – ÑHI)/NHI between the solution ÑHI inferred with
ROHSA and the data NHI for different numbers of Gaussian components
N = [1, 3, 5, 7, 8]. The norm of the skewness |µ3| is shown in the legend
to quantify the quality of the encoding.

emission is only positive and noise has a symmetric distribu-
tion centered on zero, the skewness of the residual can be used
as a way to evaluate if the emission is well estimated or if the
algorithm has over-fitted the data and included some noise in the
solution. A positive skewness is usually an indication that some
emission is left in the residual. If the model has not enough free-
dom to encode the emission fully; more components are needed
or the regularization terms should be lowered. On the other hand,
a negative skewness indicates that the decomposition is over-
fitting the data; positive noise fluctuations are included in the
model leaving more negative noise fluctuations than positive
ones in the residual. This is usually an indication that the regu-
larization coefficients (λi) should be larger to increase the spatial
smoothness of the solution. A skewness of the residual close to
zero is an indication of a valid solution, one that is not distorted
by the regularization and that does not overfit the signal. For
the case of the synthetic observations presented here, N = 8 fully
encodes the signal with a relatively low skewness |µ3| = 0.04.

The computation time of ROHSA depends on the maximum
number of iterations, the dimension of the PPV cube, and the
number of Gaussian components. For each step of the multi-
resolution process from coarse to fine grid, the computation time
used by ROHSA for this particular case (purple line) is presented
in Appendix B with a lower number of Gaussian components for
the sake of comparison. The evaluation performed here requires
nearly two hours of computation time on a single CPU, which
makes it difficult to explore a large range of hyper-parameters
and number of Gaussian components. To overcome this diffi-
culty, a GPU implementation of ROHSA is under development.

3.3.2. Global properties of the Gaussian sample

ROHSA recovered the total emission of the synthetic observation
with a relative variation of 0.3%. An example of the Gaussian
decomposition for a representative 4× 4 mosaic of the simula-
tion is shown Fig. 5. The spatial coherence of the solution can

be seen over the mosaic with a smooth variation of the ampli-
tude, the central velocity, and the velocity dispersion of each
Gaussian. It is already possible to distinguish in those spectra
the convergence of the decomposition toward different velocity
dispersions, that is, different temperatures/phases of the gas due
to the energy term λ′σ‖σn − mn‖22. To have a clear view of these
different components, let us take a look at the probability dis-
tribution function σ weighted by the fraction of total emission
of each Gaussian

√
2πanσn/

∑
r NHI(r) presented in Fig. 6. This

diagram shows the amount of gas in a given range of velocity
dispersion (i.e., indirectly a certain range of temperature). It is
clear that ROHSA, in this case, converges toward a three-phase
model with typical velocity dispersion close to the expected val-
ues in the CNM (σ < 2 km s−1), LNM (σ∼ 6 km s−1), and WNM
(σ∼ 8 km s−1). We see that a similar behavior is also present
in the application to an observation of high Galactic latitude
presented in Sect. 4. We note also that since eight Gaussian com-
ponents have been used by ROHSA, some phases are encoded by
several components. Association of the different components to
characterize a three-phase model is presented in Sect. 3.3.4.

3.3.3. Properties of individual components

Integrated column density maps of each component obtained
with ROHSA for N = 8 Gaussian are presented in Fig. 7. For each
component Gn, the mean velocity 〈µn〉 and mean velocity disper-
sion 〈σn〉 averaged over the field are presented in Table 1. The
surface filling factor appears to vary considerably between the
eight components. The components with low values of 〈σn〉 are
sparsely present, while the component with the largest velocity
dispersion is present everywhere on the field.

We recall that the numerical simulations used here were
designed to reproduce the WNM–CNM condensation process of
the HI through the thermal instability. The factor 100 difference
in density between the two phases, and the fact that the mass
fraction in each one is about 50%, implies that the cold phase fills
only a few percent of the volume (Saury et al. 2014). This trans-
lates directly in the column density maps recovered by ROHSA;
the narrow components, corresponding to colder structures, fill
only a fraction of the projected field of view, while the larger
component is present everywhere.

The eight velocity fields and velocity dispersion fields are
presented in Figs. 8 and 9, respectively. At some location of
the fields, when there is no need for a Gaussian to describe the
signal over several pixels, the amplitude goes to zero. The cor-
responding velocity and velocity dispersion fields then have no
reason to fluctuate. It turns out that where an goes to zero, µn and
σn are flat. This explains the apparent variation of spatial reso-
lution as seen for example in Fig. 8 (bottom right). We notice
that the first component G1 (top left) and the second component
G2 (top right), encoding the WNM and the LNM, respectively,
are defined everywhere, meaning that µ1 and σ1 also have fluc-
tuations everywhere. The implications of this are discussed in
Sect. 5.

3.3.4. Mapping the three-phase neutral ISM

In order to compare the result of the decomposition with the real-
ity given by the numerical simulations, we grouped the eight
components into three fields corresponding to the WNM, the
LNM, and the CNM. The comparison with the numerical sim-
ulations requires that we identify ranges in temperature that
demarcate these three phases. As with most numerical simula-
tions that include the classical heating and cooling processes
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Fig. 5. Example of the Gaussian decomposition obtained by ROHSA for a random 4× 4 mosaic of the synthetic observation. The original signal is
shown in blue and the total brightness temperature encoded by ROHSA is shown in black. The other lines show the individual Gaussian components.
The spatial coherence of the solution can be seen over the mosaic with a smooth variation of the amplitude, the central velocity and the dispersion
velocity of each component.

of the ISM (Wolfire et al. 1995), the simulation of Saury et al.
(2014) we use here shows a continuum of temperature, with
no clear separation and with a significant fraction of the gas
present at temperatures corresponding to the thermally unstable
regime (see their Figs. 14 and 15). To facilitate the comparison
with previous studies, we decided to use the canonical values
Tk lim,CNM/LNM = 500 K and Tk lim,LNM/WNM = 5000 K (Heiles &
Troland 2003b) to separate the simulation in three components.
The integrated column density maps associated to each phase are
computed following the methodology described in Sect. 3.2.

The comparison between the integrated column density maps
recovered with ROHSA and those inferred directly from the sim-
ulation is presented Fig. 10. The intensity and the morphology
of each phase is well recovered. It is nevertheless possible to see
some leakages between the phases, in particular between WNM
and LNM. This is due partly to the poorly defined temperature
thresholds used to separate the phases. It is also due to small con-
fusions during the Gaussian decomposition where the intensity,
the dispersion velocity, and velocity centroid of each component
in the PPV space are close to each other. In other words, for sim-
ilar central velocities, the scales of fluctuations on the velocity

axis characterizing each component are too close to one another
(see Figs. 5 and 6).

One way to evaluate the quality of the reconstruction is to
compare the statistical properties of the cloud and inter-cloud
components. Three different fields are used: the integrated col-
umn density field of the cloud medium (CNM), the integrated
column density field of the inter-cloud medium (LNM + WNM),
and, because it is fully sampled in the plan of sky, the centroid
velocity field of the inter-cloud medium. Figure 11 presents the
integrated column density field and the centroid velocity field,
computed using Eq. (18), of the inter-cloud medium obtained
combining the LNM and the WNM inferred with ROHSA and
those obtained directly from the simulation.

In order to compare the estimates from ROHSA to the ones
obtained from the simulation, we compute the spatial power
spectrum (SPS) of each image. The SPSs of the integrated col-
umn density of the cloud and inter-cloud medium are presented
Fig. 12 and the SPS of the centroid velocity field of the inter-
cloud medium is presented in Fig. 13. In each case, the statistics
recovered by ROHSA is consistent with the numerical simulation
over all scales. The shape of these power spectra is interesting in

A101, page 8 of 19

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935335&pdf_id=0


A. Marchal et al.: ROHSA: Regularized Optimization for Hyper-Spectral Analysis

0 2 4 6 8 10
 [km s 1]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

PD
F 

[fr
ac

tio
n 

of
 to

ta
l e

m
iss

io
n]

Fig. 6. Probability distribution function σ weighted by the fraction of
total emission of each Gaussian

√
2πanσn/

∑
r NHI(r) of the simulated

field. ROHSA converges toward three distinguishable phases associated
to the WNM, LNM, and CNM.

Table 1. Mean velocity 〈µn〉 and mean velocity dispersion 〈σn〉 of the
eight Gaussian components Gn inferred by ROHSA on the 21 cm synthetic
observation of the numerical simulation described in Sect. 3.2.

G1 G2 G3 G4 G5 G6 G7 G8

〈µn〉 (km s−1) 0.2 −1.7 0.5 2.3 −0.1 5.0 −3.7 −2.5
〈σn〉 (km s−1) 8.2 6.1 0.5 0.6 1.5 1.5 1.8 0.9

itself; the inter-cloud medium is featureless with an almost con-
stant power law, as the cloud phase is more structured, with a
break at about 20 pixels, showing a typical scale linked to the
condensation process. Interestingly, ROHSA is able to capture all
these features very well.

4. Application on high-latitude HI gas

After validating the identification of the HI phases on numerical
simulations, in this section we present the application of ROHSA
on a 21 cm observation of a region with high Galactic latitude.

4.1. North ecliptic pole

To avoid the complication of low-latitude observations, where
the 21 cm emission is significantly affected by velocity crowd-
ing and self-absorption, we chose to apply RHOSA to one of the
high Galactic latitude fields of the GHIGLS1 survey (Martin
et al. 2015). We chose the North ecliptic pole (NEP) field,
a 12◦ × 12◦ region centered on l = 96◦.40, b = 30◦.03 observed
with the Green Bank Telescope, providing a 9′.55 spatial reso-
lution. The HI spectra have an effective velocity resolution of
0.807 km s−1 and cover −200 < v (km s−1) < 50. The integrated
column density map computed using Eq. (17) is shown in Fig. 14
and a mosaic of representative emission spectra is shown in
Fig. 15.

1 http://www.cita.utoronto.ca/GHIGLS/

50 60 70 80 90 100 110 0 20 40 60 80

0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35

0 10 20 30 40 50 60 0 10 20 30 40 50 60

0 10 20 30 40 50
NHI / [1018 cm 2]

0 5 10 15 20 25 30 35
NHI / [1018 cm 2]

Fig. 7. Integrated column density maps (left: G1, G3, G5, G7); (right:
G2, G4, G6, G8) obtained by ROHSA on the synthetic observation com-
puted in Sect. 3.2. Mean velocity 〈µn〉 and mean velocity dispersion 〈σn〉
are presented in Table 1. The surface filling factor varies considerably
between components, depending on their 〈σn〉 value.

As Fig. 15 shows, high-latitude spectra of HI are more
complex that the synthetic observations computed from the
numerical simulations of Saury et al. (2014). This is caused by a
combination of the longer line of sight in the observation (about
200 pc at b = 30◦ compared to the 40 pc box of the simulation)
and to the presence of nonlocal velocity components. The 21 cm
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Fig. 8. Centroid velocity fields µ (left: µ1, µ3, µ5, µ7); (right: µ2, µ4,
µ6, µ8) obtained by ROHSA using the synthetic observation computed in
Sect. 3.2.

emission in NEP indeed exhibits significant emission in the inter-
mediate velocity cloud (IVC) and high velocity cloud (HVC)
ranges. In this paper we do not consider the velocity channels
with HVC emission; we focus on the phase separation of the
local velocity cloud (LVC) and IVC components.

The LVC range between −20 and +20 km s−1 shows relatively
smooth emission profiles, with a narrow peak around −3 km s−1

on top of a broader feature (see Fig. 15). The latter is rather

8.1 8.2 8.2 8.2 8.2 8.2 8.3 5.9 6.0 6.0 6.1 6.1

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
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Fig. 9. Dispersion velocity fields σ (left: σ1, σ3, σ5, σ7); (right: σ2, σ4,
σ6, σ8) obtained by ROHSA using the synthetic observation computed in
Sect. 3.2.

smooth but when inspected in detail it shows faint spectral struc-
tures on all scales along the velocity axis. The sensitivity of
the GHIGLS data is such that these fluctuations of the emis-
sion profiles are not due to noise. In fact, they can be followed
from one spectrum to the next quite easily. These fluctuations
of the emission spectra at scales of a few kilometres per second
reveal the presence of CNM and LNM features on a range of
velocities.
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Fig. 10. Left: integrated column density maps of the three-phase model
extracted by ROHSA. Right: integrated column density maps of the three-
phase model inferred directly from the simulation using the canonical
values Tk lim,CNM/LNM = 500 and Tk lim,LNM/WNM = 5000 K. The phases
WNM, LNM, and CNM are presented from top to bottom.

This field was selected because of its representative 21 cm
emission for Galactic latitudes of b∼ 30◦. The emission features
are not particularly complex, nor are they especially simple. In
addition, a first Gaussian decomposition of NEP 21 cm data was
performed by Martin et al. (2015) which provides an interest-
ing point of comparison. Unlike ROHSA, Martin et al. (2015)
used a method similar to the one described by Haud (2000)
that considers only the term ‖L(vz, r, θ(r))‖22 in the parameter
optimization. We highlight some qualitative comparisons in the
following sections.

4.2. Results

In order to decompose the 21 cm emission of the NEP field,
we used ROHSA with N = 12 Gaussian components and each
hyper-parameter has been set to 1000. As for the previous case,
these values have been chosen empirically following the same
methodology as described in Sect. 3.3.1, allowing us to converge
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Fig. 11. Synthetic observation of the integrated column density field
(top) and the centroid velocity field (bottom) associated to the inter-
cloud medium (WNM + LNM). Left: inferred with ROHSA. Right:
inferred directly from the simulation using all cells with Tk lim,LNM/WNM
>500 K. For statistical comparison, the spatial power spectra of each
one are shown in Figs. 12 and 13.
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Fig. 12. Spatial power spectrum of the column density. The inter-cloud
medium (WNM + LNM) is represented by the orange dotted line (sim-
ulation) and the red line (ROHSA). The CNM is shown as a cyan dotted
line (simulation) and blue line (ROHSA).
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Fig. 13. Spatial power spectrum of the centroid velocity field for the
inter-cloud medium (WNM + LNM). The orange dotted line indicates
the inter-cloud medium inferred directly from the simulation using all
cells with Tk lim,LNM/WNM > 500 K (bottom-right panel of Fig. 11). The
red line shows the inter-cloud medium inferred with ROHSA (bottom-left
panel of Fig. 11).

toward a noise-dominated residual with a minimum number of
Gaussian components. We note that the hyper-parameter val-
ues are not the same as for the first application presented in
Sect. 2. The complexity of the underlying signal structure and
its signal-to-noise ratio (S/N) are the main causes of these dif-
ferences. However, a detailed understanding of the behavior
of these hyper-parameters would require testing different val-
ues over a large number of observations. Such exploration is
currently complicated by computations limitations. A GPU ver-
sion of the code is under development to overcome this main
limitation.

The combination of 12 Gaussian components produces a
solution that recovers 99% of the total emission with spa-
tially coherent components. The total integrated column density
encoded by ROHSA and the residual between our model and the
data are shown in Fig. 14 (middle and right panels).

4.2.1. Global properties of the Gaussian sample

Like for the application on the synthetic observations, the Gaus-
sian parameters recovered for the NEP field have a strong spatial
coherence; ROHSA converges towards a solution with smooth
variations of the Gaussian parameters across the field. It turns
out that ROHSA converges toward a multiphase model with
Gaussian components of various widths, very similar to the
application to numerical simulations presented in Sect. 3.3 but
more complex due to the presence of an IVC component in the
data.

To have a global view of the thermal state of the gas as a
function of velocity, it is useful to look at the two-dimensional
dispersion-velocity diagram σ − v weighted by the fraction of
total emission of each Gaussian

√
2πanσn/

∑
r NHI(r) shown in

Fig. 16. This diagram shows isolated complexes of Gaussian
components in the σ − v space. This is a direct result of the

way the parameter optimization is done in ROHSA, with a regu-
larization term that favors the minimum variance of σ. Figure 16
highlights the fact that the 21 cm emission in NEP is mainly com-
posed of negative-velocity components. A clear trend is visible
in the velocity range −60 < v < 0 km s−1 with σ decreasing from
10 to 1 km s−1 going from negative to positive velocities. This
likely reflects the radiative condensation of warm intermediate
velocity clouds into the local velocity component of the neutral
ISM.

At this point it is interesting to compare the results of ROHSA
with the Gaussian decomposition of the same data performed by
Martin et al. (2015). The σ − v diagram of Martin et al. (2015,
see their Fig. 7) shows a continuous distribution with arches
that bridge together the LVC and IVC gas, an effect that is not
observed in our results. Similarly to what we have done here,
Martin et al. (2015) used numerical simulations to evaluate the
performances of their Gaussian decomposition algorithm. Their
tests revealed that such arches in the σ − v diagram are unphys-
ical; they are the result of LVC and IVC gas components that
overlap in velocity.

It is important to point out that both solutions provide
as good a representation of the same dataset. The significant
difference between the two solutions highlights the challenge
of extracting a physically meaningful representation of the data.
We recall that Martin et al. (2015) used an algorithm similar to
the ones used by Haud (2000); Miville-Deschênes et al. (2017a);
Kalberla & Haud (2018) where the spatial coherence of the
solution is not enforced through regularization terms in the cost
function. In these previous studies spatial coherence is attempted
by providing spatially coherent initial guesses. Each spectrum
is then fitted independently and no spatial coherence in the
solution is enforced. In practice, this method is rather effective
for relatively sparse emission data like CO (Miville-Deschênes
et al. 2017a), but in the case of the more confused 21 cm data it
produces parameter maps that are more affected by small-scale
noise due to the degeneracy of the solution.

A Gaussian decomposition algorithm that fits each spectrum
individually is easily fooled by components that overlap in veloc-
ity. In this specific case, such an algorithm would find a solution
with a smaller number of components but with larger values
of σ. The main innovation in ROHSA is that it is able to clus-
ter different phases even if they are close in velocity. The four
energy terms added to the cost function J(θ(r)) allow ROHSA
to find a spatially coherent solution while avoiding the mix of
components due to the high confusion present in the emission.

4.2.2. A cloud/inter-cloud medium vision of the North
ecliptic pole

Integrated column density maps, centroid velocity fields, and
dispersion velocity fields obtained with ROHSA are presented in
Figs. 17–19, respectively. Mean velocities 〈µn〉 and mean veloc-
ity dispersions 〈σn〉 of the 12 Gaussian components Gn are
presented in Table 2. In this section we focus on building a
coherent cloud/inter-cloud medium vision considering the local
component of the emission identified previously. Two of the four
components of the local gas, G7 and G9, are associated with the
CNM with 〈σ7〉= 1.6 km s−1 and 〈σ9〉= 1.9 km s−1. The other
components are used to build the inter-cloud medium. Integrated
column density fields and centroid velocity fields of the cloud
medium and inter-cloud medium are presented in Fig. 20.

As noted by Martin et al. (2015) in their two-phase decom-
position of the local component, filamentary structures are
observed in the narrow component. The associated velocity
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Fig. 14. Left: integrated column density NHI of the NEP field which is part of the GHIGLS survey. NHI was computed in the optically thin
approximation (see Eq. (17)). Middle: integrated column density ÑHI of NEP inferred with ROHSA. Right: residual ÑHI–NHI between the integrated
column density field inferred with ROHSA and the original integrated column density field computed with the data.
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Fig. 15. Example of the Gaussian decomposition obtained by ROHSA (colored line) for a random 4× 4 mosaic of NEP. The original signal is show
by the blue histogram and the total brightness temperature encoded by ROHSA is shown in black. The other lines detail the components of the
Gaussian model. The spatial coherence of the solution can be seen over the mosaic with a smooth variation of the amplitude, central velocity, and
velocity dispersion of each Gaussian component.
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Fig. 16. Two-dimensional probability distribution function σ-v weighted by the fraction of total emission of each Gaussian
√

2πanσn/
∑

r NHI(r)
of NEP. The NEP is mainly composed of negative intermediate velocity components.

Table 2. Mean velocity 〈µn〉 and mean velocity dispersion 〈σn〉 of the 12 Gaussian components Gn inferred by ROHSA in NEP.

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12

〈µn〉 (km s−1) −74.1 −53.9 −44.7 −35.0 −22.9 −12.6 −4.8 −1.3 0.2 10.9 40.8 75.9
〈σn〉 (km s−1) 9.7 6.2 3.5 5.1 5.3 4.7 1.6 6.3 1.9 7.5 12.5 9.3

dispersion fields (see Fig. 19, component G7 and G9) coherent
fluctuating values over a large part of the field. The core of
these filamentary structures appears narrower than the envelop
with velocity dispersion reaching about 0.87 km s−1 (the spectral
resolution) in their centers.

The broader component has an integrated column density
field with no particular structure like filaments (see Fig. 20, top-
right). Like for the numerical simulation, the sum of the broad
components is likely to represent a phase that fills a large fraction
of the volume, as would an inter-cloud medium. One interest-
ing aspect of the ROHSA decomposition is that it then allows
to extract the velocity field of this volume-filling component
(Fig. 20, bottom-right), enabling the characterization of the tur-
bulent cascade in a mixture of lukewarm phase and warm phase.

5. Discussion

Historically, a large number of studies used a Gaussian basis to
model 21 cm data. Different algorithms have been developed; all
of them are fitting each spectrum individually, with or without
information from the neighboring solutions to initialize the fit.
To further constrain the degeneracy of the fit, solutions with
the smallest number of Gaussian components have often been
favored (e.g., Lindner et al. 2015). Because of velocity blend-
ing, the solution with the smallest number of components is not
necessarily the best one. In some cases, narrow features overlap
in velocity, making it impossible to separate them if the envi-
ronment is not considered. Usually, this confusion breaks apart

a few beams away and more components can be recovered. The
fundamental idea behind ROHSA is that we are trying to extract
diffuse components that have column density, centroid veloc-
ity, and velocity dispersion with smooth spatial variations. The
optimization scheme has been designed with that concept at its
core. In order to achieve this, ROHSA fits the whole data cube
at once.

The application of ROHSA on both synthetic observations
from numerical simulations and observational data converges
naturally toward a multiphase model of the neutral ISM. The
ability of ROHSA to extract the multiphase nature of the neutral
ISM opens a totally new perspective on the study of the nature
of the condensation process acting in the ISM. It is clear from a
numerical point of view that the formation of cold clouds is the
result of the condensation of the warm and diffuse gas through
the thermal instability coupled with turbulence. From an obser-
vational point of view, spatial correlations between the different
phases can now be made in order to more precisely quantify how
the CNM emerges from this condensation process. This separa-
tion also opens the possibility to describe the properties of the
very specific multiphase turbulence of the HI. ROHSA appears to
be efficient at clustering different structures in PPV space, even
when there is a high level of confusion. In particular, the separa-
tion of the LVC and IVC is known to be particularly challenging
as the CNM and WNM of both components overlap significantly
in velocity (Martin et al. 2015). As shown in Fig. 16, ROHSA sig-
nificantly limits the “Arch effect” typical of this confusion (see
Sect. 4). Globally, the performance in ROHSA on regions of high

A101, page 14 of 19

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935335&pdf_id=0


A. Marchal et al.: ROHSA: Regularized Optimization for Hyper-Spectral Analysis
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Fig. 17. Integrated column density maps (left: G1, G4, G7, G10; middle: G2, G5, G8, G11; right: G3, G6, G9, G12) obtained by ROHSA applied on
NEP. Mean velocity 〈µn〉 and mean velocity dispersion 〈σn〉 are presented in Table 2.
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Fig. 18. Centroid velocity fields µ (left: µ1, µ4, µ7, µ10; middle: µ2, µ5, µ8, µ11; right: µ3, µ6, µ9, µ12) obtained by ROHSA applied on NEP.
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Fig. 19. Velocity dispersion maps σ (left: σ1, σ4, σ7, σ10; middle: σ2, σ5, σ8, σ11; right: σ3, σ6, σ9, σ12) obtained by ROHSA applied on NEP.
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Fig. 20. Left: CNM. Right: inter-cloud medium (WNM+LNM) in NEP
inferred with ROHSA. Top and bottom: column density and centroid
velocity fields, respectively.

Galactic latitude opens a large range of possibilities regarding
the study of infalling neutral clouds from the galactic halo.

We would also like to point out that no a priori information
about the number of phases present in the neutral ISM is pro-
vided to ROHSA. The algorithm rests only on the hypothesis of
the existence of components with similar line width through the
energy term λ′σ‖σn − mn‖22. In that respect, ROHSA is perfectly
adapted to decomposing hyper-spectral observations of any type,
not only 21 cm emission.

At this time the main limitations of ROHSA are computational.
First, as the whole PPV cube is fitted at once, the use of ROHSA is
limited to cubes that can fit in memory. Second, the current com-
putation time of ROHSA is not negligible (e.g., about two hours
on a single CPU for a 256× 256× 100 PPV cube with 8 Gaus-
sians). This limits the possibility to make a deep exploration
of the hyper-parameters λi. In particular it would be interest-
ing to explore various weights of the hyper-parameters for the
deduced quantities (a, µ and σ). It is expected that the amplitude
of the spatial variations of these quantities are not the same. For
instance, in a multi-phase medium like the HI, the density field
(represented by a) might vary more strongly on smaller scales
than the velocity field. This might require different values of λa
compared to λµ, λσ and λ′σ. A GPU version of the code is under
development that would allow such an exploration.

6. Summary

Here we present a new Gaussian decomposition algorithm
named ROHSA. Energy terms have been added to the classical
cost function to take into account the spatial coherence of the
emission and the multiphase nature of the gas simultaneously. In

order to identify a solution with spatially smooth parameters, the
fit is performed on the whole hyper-spectral cube at once.

The performance of ROHSA has been evaluated using a syn-
thetic 21 cm observation computed from a numerical simulation
of thermally bi-stable turbulence. It was then tested on a 21 cm
observation of a field of high Galactic latitude observed with the
GBT. The main conclusions are as follows.
1. ROHSA is able to naturally highlight the physics of any mul-

tiphase medium without a priori information regarding the
number of phases.

2. Evaluation on numerical simulation of thermally bi-stable
turbulence shows that the sum of Gaussian components is a
good approximation to model the multiphase nature of the
neutral ISM.

3. The multiphase model inferred with ROHSA provides a spa-
tially coherent vision of the integrated column density map,
the centroid velocity field, and the velocity dispersion field
of each component.

4. The power spectra of the integrated column density and
centroid velocity fields are well recovered with ROHSA. Sta-
tistical properties of turbulence in the multiphase neutral
ISM now become accessible.

5. The decomposition of a high-latitude HI gas observation
shows the wide range of applications enabled with ROHSA,
for instance to study the radiative condensation of the WNM
and the nature of the ISM at the disk-halo interface.
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Appendix A: Optimization algorithm

Terms used to compute the gradient ∇J(θ,m) of the cost function
J(θ,m) are detailed in this appendix. Incorporated are the Jaco-
bian of the residual ∇L(θ) and the gradients of the regularization
term ∇Rt(θ,m) = [∇θRt(θ,m),∇mRt(θ,m)]

∇L(vz, θ(r)) =
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(A.1)

∇θR(θ,m) =
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(A.2)

∇mR(θ,m) =
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Appendix B: Computation time

The computation time needed to perform the Gaussian decompo-
sition of the synthetic PPV cube presented in Sect. 3 is described
in Fig. B.1. The computation time depends on the number of
Gaussian components N, the size of the cube (number of spectra
and number of velocity channels), and the maximum number of
iterations used in the optimization.

For a given N, the computation time scales linearly with the
number of spectra and the number of velocity channels. There-
fore, as for each step of the multi-resolution process, from coarse
to fine grid, the size of the grid is multiplied by a factor of
four; the computation time also increases by a factor four at each
step. We note that each step has the same maximum number of
iterations (here 800) that also linearly impact the computation
time.

Finally, we observed that the computation time depends
nonlinearly on N, as seen in Fig. B.1.

Fig. B.1. Computation time used by one CPU to perform the Gaussian
decomposition of the simulated PPV cube used in Sect. 3, for N = 1,
2, 4, 6, and 8, as function of the size grid. The maximum number of
iterations in each case has been set to 800.
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