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Abstract—In this work, we are interested in unmixing complex mix-
tures based on Nuclear Magnetic Resonance spectroscopy spectra. More
precisely, we propose to solve a 2D blind source separation problem
where signals (spectra) are highly sparse. The separation is formulated
as a nonnegative matrix factorization problem that is solved using a
block coordinate proximal gradient algorithm involving various sparse
regularizations. An application to 2D NMR HSQC experience is presented
and shows the good performances of the proposed method.

I. PROBLEM STATEMENT

Blind source separation (BSS) consists in separating a set of
source signals from a set of mixture measurements with a limited
information on sources or on mixtures. In this work, we focus on
BSS problem given as follow

X = AS + N ≈ AS (1)

where X ∈ RM×L corresponds to the measurements defined as
a linear mixture of N unknown sources S ∈ RN×L through a
mixing matrix A ∈ RM×N in the presence of some acquisition
noise N ∈ RM×L. The BSS problem (1) is an inverse ill-posed
problem which suffers from scale and order indeterminacies. The aim
of this work is to solve the BSS problem in the case of 2D nuclear
magnetic resonance (NMR) spectroscopy data where sources S are
characterized with a hight level of sparsity as shown in Figure 1(a)
and Figure 3. The crowded sparse spectra presenting an important
spectral overlap and poor resolution increase the difficulty of the
analysis step.

A commonly used strategy consists in formulating the problem
under a variational approach thus giving rise to an optimization
problem to be solved w.r.t. A and S of the form

minimize
A,S

1

2
‖X− AS‖2F + λAΨA(A, S) + λSΨS(A, S) (2)

where ΨA (resp. ΨS) encodes the prior information on A (resp. S).
ΨA is usually defined as the indicator function ι+ of the nonnegative
set while ΨS should not only ensure the nonnegativity but also
promote the sparsity of the solution. λA and λS are the regularization
parameters of A and S respectively. The choice of ΨS presents the
main locks of our problem.

II. PROPOSED SPARSITY-BASED REGULARIZATIONS

The most popular regularization function used in the case of sparse
signals recovery is the `1 norm given by

(∀Z = (zi)1≤i≤L ∈ RL) `1(Z) =
∑
i

|zi|. (3)

For years, the `1 norm was used as an efficient convex function to
measure the sparsity level. However, some recent works [1], [2], [3]
proposed new regularization functions to enforce sparsity based on
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entropies. On the one hand, in [1] and [2], a new combination between
the `1 norm and Shannon entropy defined as

(∀Z ∈ RL, zi > 0) Ψ1(Z) =
∑
i

zi log(zi) + zi (4)

was shown to be a good choice to estimate signals in mass spec-
troscopy application.

On the other hand, a generalized entropy function proposed in [3]
and defined as

(∀Z ∈ RL, p > 0) Ψ2(Z) = −
∑
i

|zi|p

‖Z‖pp
log

(
|zi|p

‖Z‖pp

)
(5)

was used for sparse signal recovery and was shown to be more
effective than the `1 norm. Note that the effectiveness of these
functions was shown considering inverse ill-posed problems involving
a known mixing matrix. In the present work, we propose to use such
sparsity promoting regularizations in the BSS context, by integrating
them into a proximal framework.

Problem (2) is solved using the Block Coordinate Variable Metric
Forward-Backward (BC-VMFB) algorithm [4]. It requires to compute
the partials gradients of 1

2
‖X−AS‖2F w.r.t. A and S and the proximity

operators (associated with a Symmetric Positive Definite matrix) [5]
of ΨA and ΨS (Table I).

Inputs: X, ≥ 0, ε > 0
Initialization: A0, S0

For k = 0, 1, . . .
Ak+1 = argmin

A

1
2
‖X− ASk‖2F + ΨA(A)

Sk+1 = argmin
S

1
2
‖X− Ak+1S‖2F + ΨS(S)

If ‖Ak+1Sk+1 − X‖2 ≤ ε : Â = Ak+1 and Ŝ = Sk+1

Outputs: Â, Ŝ

III. APPLICATION TO 2D NMR HSQC EXPERIENCE

We process here 2D Heteronuclear single quantum coherence
(HSQC) data where mixtures X of size (5 × 1024 × 2048) are
generated from HSQC sources S with size (4 × 1024 × 2048). We
apply the proposed algorithm to estimate the 4 sources from the 5
mixtures and we test different regularization functions ΨS (`1, Ψ1

and Ψ2). To evaluate the quality of estimated sources S, we use the
SIR, SDR and SAR metrics [6] expressed in dB. Moreover, we use
the Moreau-Amari index [7] to evaluate the estimation of the mixing
matrix A. Figures 1(b), (c) and (d) show that the three regularizations
ensure a good estimation of the 2D HSQC sources. Moreover,
according to Table II, the `1 norm (Eq. (3)) and the generalized
entropy (Eq. (5)) seem to be the most efficient functions with slightly
increased performances. Note that fixed regularization parameters λS

are used for each regularization function. Future works will address
the adaptation of λS for each source according to its sparsity level. In
addition, we will investigate on the combination between generalized
entropy and `1 norm with multiresolution transforms and new sparse
NMF algorithms [9].
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Figure 1. 2D HSQC data (4 sources: Limonene (red), Nerol (blue), α-Terpinolene (green) and β-Caryophyllene (magenta)): (a) original sources with size
(4 × 1024 × 2048), (b) estimated sources using `1 norm, (c) estimated sources using Ψ1, (d) estimated sources using Ψ2.
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Figure 2. Zoom on the most important terpene zone [1300 : 1850, 700 : 1000]: (a) original sources, (b) estimated sources using `1 norm, (c) estimated
sources using Ψ1, (d) estimated sources using Ψ2.

Figure 3. 3D representation of Figure 2 (a)

ΨS Proximal operator of ΨS

`1 (Eq. (3)) Computed [8]
Ψ1 (Eq. (4)) Computed [1]
Ψ2 (Eq. (5)) Approximated algorithm [3]

Table I
PROXIMITY OPERATORS OF DIFFERENT REGULARIZATION FUNCTIONS.
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