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Abstract

Our goal is to establish a mathematical framework suitable for the descrip-
tion of geographical distances related to movement in space and produced
by transport means. We propose to root the idea of effort – or disutility –
minimisation into the definition of geographical distance and its mathematical
formalisation. This objective is non-trivial to achieve because of the issue of
possible triangle inequality violation due mainly to the need for break in any
movement. This issue translates into additivity problems that may disturb
the order of proximities in geographical spaces, and undermine their basic ge-
ometrical properties. In order to address this issue, we introduce the concept
of contextual distances that, in parallel to pure geometric movement, considers
a context where resources used to move are accounted for, that it be time,
money or other relevant quantities.

We show that contextual distances follow some of the properties of metrics.
In particular contextual distance respects the triangle inequality. This result
paves the way for its use within the context of spatial analysis in geography.

1



1 Introduction
Distance is a central concept for both geography and geometry. In geography, our
focus, distance is generated by the necessary separation of geographic entities: all
geographic objects can’t occupy the same place (Isnard et al. 1981). If the “central
problem of geography is to place interacting objects as near to each other as possible
when the definition of distance is chosen which minimizes movement” (Bunge 1962,
p. 200), then distance definition is a critical task for the geographer. Three modes
of management of geographic distances, at least since the neolithic period, have
been observed: co-presence, mobility and telecommunication (Lévy 2009). Hence
transport is essential for understanding geographical distances.

Our intention is to establish a mathematical framework suitable for the descrip-
tion of geographical distances related to movement in space and produced by trans-
port means.

A related problem is the cartography of time-distances (Shepard 1962; Marchand
1973; Kruskal and Wish 1978; Hyman and Mayhew 2004; Axhausen et al. 2008;
Shimizu and Inoue 2009; Ficzere, Ultmann, and Török 2014; Dusek and Szalkai
2017). Contributions in this field develop practical solutions that minimize or control
the stress of the cartographic representation, but do not introduce new mathemat-
ical definitions of distances. Other efforts of developing mathematical description
of geographical spaces, like for instance the mathematical framework developed by
(Harvey J Miller 2005) for time geography, involve specific sub-domains of geography
and do not engage a new definition of distance.

The set of approaches the closest to our intention have concentrated on the devel-
opment of a mathematical distance framework suitable for the computation of travel
costs, in the context of spatial economy (Smith 1989; Huriot, Smith, and Thisse
1989). Our own focus, on the geometry of geographical distances, differs in the sense
that it cares more for geographical and cartographic issues while also considering
spatial economy costs.

In dealing with movement in geographical space we need to consider metrics but
also networks. Hence our starting point is a description of path.

2 Path optimization and metrics
Let us first introduce a suitably general formal framework, borrowed from graph
theory, to construct a classical distance from travel costs, to be later expanded to
take more information into account. We shall rely on “paths” and cost optimization,
much as in (Huriot, Smith, and Thisse 1989), but we shall give a more abstract
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representation of these paths in order for this model to better fit several common
situations to be found in geographical spaces. First, this model shall be usable to
describe both continuous spaces and discrete spaces; e.g. road trips can be described
by continuous paths on the physical space, or by discrete paths on the graph defined
by the road network. Second, this model shall be suitable to include plane flights,
for which continuous paths are ill-suited: at any time of the flight, the path takes as
value a mid-air point that is not a viable location: one only travels through such a
point, which is never a destination. Not including such points in the space forbids
the use of continuous paths, while adding them creates artificial locations that are
the starting or ending point of no trip.

2.1 Networks and cost functions
Let 𝑋 be a set, called the space. An element in 𝑋 shall be called a location, and in
the modeling process one should only include in 𝑋 those places where people could
go to or get from; in particular, 𝑋 might not represent the whole of the “physical
space” that is being modeled.

A network on 𝑋 is a set 𝑁 together with two functions 𝑠, 𝑒 : 𝑁 → 𝑋; elements
of 𝑁 are called arcs, and given an arc 𝛼 the locations 𝑠(𝛼) and 𝑒(𝛼) are called its
starting point and endpoint respectively. In the modeling process, one should include
in 𝑁 either all possible travels, or a set of elementary travels that will be enough to
recover all of them by concatenation (see next paragraph). It is possible to define
several arcs that correspond to the same displacement in the physical space, in order
to account for other differences (e.g. traveling along a given fixed road by car, or on
foot, or by bike could be modeled by defining three distinct arcs).

Given a network 𝑁 on a space 𝑋, a path 𝛾 from 𝑝 ∈ 𝑋 to 𝑞 ∈ 𝑋 is a finite word
with letters in 𝑁 (i.e. an ordered tuple of arbitrary length, written 𝛾 = 𝛼1𝛼2 · · · 𝛼𝑘 for
some 𝑘 ∈ N and some 𝛼𝑖 ∈ 𝑁), such that 𝑠(𝛼1) = 𝑝, 𝑒(𝛼𝑘) = 𝑞 and 𝑒(𝛼𝑖) = 𝑠(𝛼𝑖+1)
for all 𝑖 ∈ {1, 2, . . . , 𝑘 − 1}. We also include as paths the trivial paths ∅𝑝 for each
𝑝 ∈ 𝑋, which start and end at 𝑝 and are empty words (this necessitate to include
the point 𝑝 in the data describing the path, which is unnecessary for non-empty
paths). Given two paths 𝛾 = 𝛼1 . . . 𝛼𝑘 and 𝜂 = 𝛽1 . . . 𝛽ℓ such that 𝑒(𝛼𝑘) = 𝑠(𝛽1),
we define their concatenation as the path 𝛾 * 𝜂 := 𝛼1 . . . 𝛼𝑘𝛽1 . . . 𝛽ℓ. A path is thus
a concatenation of arcs, and represents a travel possibly made of a combination of
elementary travels. The set of paths shall be denoted by 𝑁*, and we shall write
𝛾 : 𝑝 → 𝑞 to express that 𝛾 is a path from 𝑝 to 𝑞. Note that despite the notation,
𝑁* depends on 𝑠, 𝑒 as much as it depends on 𝑁 .

A length function on a network 𝑁 is simply a function ℓ : 𝑁 → (0, +∞) (we
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could have included the value 0, but this would have made the introduction of an
additional adjective necessary). We immediately extend the function ℓ to a function
defined on 𝑁*, still denoted by ℓ, by

ℓ(𝛼1 . . . 𝛼𝑘) =
𝑘∑︁

𝑖=1
ℓ(𝛼𝑖) (1)

with the usual convention that an empty sum is zero, i.e. ℓ(∅𝑝) = 0 for all 𝑝 ∈ 𝑋.
(Another equivalent way to formalize the same framework would be to consider a
function ℓ : 𝑁* → [0, +∞) asked to be additive, i.e. ℓ(𝛾 * 𝜂) = ℓ(𝛾) + ℓ(𝜂) for all
paths 𝛾, 𝜂, and positive on non-trivial paths). The distance on 𝑋 defined by (𝑁, ℓ)
is then set as

𝑑(𝑝, 𝑞) = inf
𝛾:𝑝→𝑞

ℓ(𝛾).

Note that this is not necessarily a metric unless we make additional assumptions; it
can even be infinite, whenever there are no paths from 𝑝 to 𝑞.

The term length function should be taken with a grain of salt: ℓ could be about
any effort or disutility function (length, travel time, cost, etc.) In some cases, it could
be argued that disutility should be allowed to be sub-additive; the reader can check
that most of the properties below would not be altered by this relaxation, with the
exception of Symmetry in 2.5 that would need an additional assumption on the cost
function. In any case, sub-additive disutility can always be modelled in the present
framework by adding an arc for each travel combination that allows for some savings.

2.2 When is the distance induced by a length function, a
metric?

We will now explore assumptions that ensure the various axioms defining a met-
ric. The most troublesome is distinguishability, more precisely that different points
should be at positive distance one from another. The following example shows what
could go wrong.

Example 2.1. Take 𝑋 = {𝑝, 𝑞}, 𝑁 = {𝛼𝑖 : 𝑖 ≥ 1} with 𝑠(𝛼𝑖) = 𝑝, 𝑒(𝛼𝑖) = 𝑞,
and ℓ(𝛼𝑖) = 1/𝑖 (we could enlarge 𝑁 to get symmetry and finiteness of 𝑁 but this
would mostly obscure the point). Then we have an infinite sequence of paths (each
consisting of only one arc, 𝛼𝑖) from 𝑝 to 𝑞, of length 1/𝑖. Since this goes to zero as 𝑖
goes to infinity, we get 𝑑(𝑝1, 𝑝2) = 0.

Example 2.2. Let us give a second example that feels less ad hoc. Take 𝑋 = [0, 1],
𝑁 = {𝛼𝑞

𝑝 : (𝑝, 𝑞) ∈ [0, 1] × [0, 1]} with 𝑠(𝛼𝑞
𝑝) = 𝑝, 𝑒(𝛼𝑞

𝑝) = 𝑞 (we have one arc for
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each possible pair of starting and ending points) and ℓ(𝛼𝑞
𝑝) = |𝑝 − 𝑞|2. Then for each

𝑛 ∈ N, the path
𝛾𝑛 := 𝛼

1/𝑛
0 𝛼

2/𝑛
1/𝑛 · · · 𝛼1

(𝑛−1)/𝑛

goes from 0 to 1 and has length ℓ(𝛾𝑛) = 𝑛 × (1/𝑛)2 = 1/𝑛. It follows 𝑑(0, 1) = 0.

(Note that in both examples, the distance can only be approximated by the
length of path, there are no given path linking the given points whose length is their
distance. This phenomenon can occur even in cases where all axioms of a metric
hold true.)

This leads us to the following definition:

Definition 2.3. We say that the length function is non-degenerate when there exist
a function 𝑚 : {(𝑝, 𝑞) : 𝑝, 𝑞 ∈ 𝑋, 𝑝 ̸= 𝑞} → (0, +∞) such that for all 𝑝 ̸= 𝑞 ∈ 𝑋 and
all 𝛾 : 𝑝 → 𝑞 we have ℓ(𝛾) > 𝑚(𝑝, 𝑞).

This is somewhat trivial as it is tuned to exactly ensure distinguishability, but
is still an operational definition as it leads one to find a lower bounding function
𝑏, which in most cases of interest shall be easy to either find or at least prove into
existence. There are two particularly simple cases ensuring non-degeneracy.

Proposition 2.4. Let 𝑋 be a space and 𝑁 be a network on 𝑋.

i. If for all 𝑝, 𝑞 ∈ 𝑋 the set {𝛾 : 𝑝 → 𝑞} of paths from 𝑝 to 𝑞 is finite, then every
length function is non-degenerate.

ii. Let ℓ be a length function such that for some 𝜀 > 0, for all arc 𝛼 it holds
ℓ(𝛼) ≥ 𝜀. Then ℓ is non-degenerate.

Proof. Note that a length function ℓ is assumed to be positive on each arc, and is
thus positive on each non-trivial path. When {𝛾 : 𝑝 → 𝑞} is finite, one can take
𝑚(𝑝, 𝑞) = min𝛾:𝑝→𝑞 ℓ(𝛾) which is positive as soon as 𝑝 ̸= 𝑞.

The second case actually assumes inf𝑁 ℓ ≥ 𝜀 > 0, which implies that each non-
trivial path has length at least 𝜀: one can then take 𝑚(𝑝, 𝑞) ≡ 𝜀.

Theorem 2.5. Let 𝑋 be a space endowed with a network 𝑁 and a length function
ℓ, and denote by 𝑑 the corresponding distance.

i. (Finitess) For all 𝑝, 𝑞 ∈ 𝑋, we have 𝑑(𝑝, 𝑞) < +∞ if and only if there exists
𝛾 : 𝑝 → 𝑞.

ii. (Symmetry) If for all arc 𝛼 there exist an arc 𝛼′ such that 𝑠(𝛼′) = 𝑒(𝛼),
𝑒(𝛼′) = 𝑠(𝛼) and ℓ(𝛼′) = ℓ(𝛼), then 𝑑(𝑝, 𝑞) = 𝑑(𝑞, 𝑝) for all 𝑝, 𝑞 ∈ 𝑋.

5



iii. (Triangular inequality) 𝑑(𝑝, 𝑟) ≤ 𝑑(𝑝, 𝑞) + 𝑑(𝑞, 𝑟) for all 𝑝, 𝑞, 𝑟 ∈ 𝑋.

iv. (Distinguishability) The property (𝑑(𝑝, 𝑞) = 0 if and only if 𝑝 = 𝑞) holds if and
only if ℓ is non-degenerate.

In particular, assuming that every pair of locations is linked by a path, that each
arc has a reverse arc of the same length (case of a symmetric network), and that
the length function is non-degenerate ensures that 𝑑 is a metric. While among the
three axioms defining a metric, the triangular inequality is probably the one most
discussed, we see as in (Huriot, Smith, and Thisse 1989) that it is the one that needs
the less hypotheses: it follows from the optimization of paths.

Proof. The first point follows from the fact that ℓ does not take the value ∞, so that
𝑑(𝑝, 𝑞) = +∞ if and only if the infimum defining it is over the empty set.

To prove the second point we consider 𝑝, 𝑞 ∈ 𝑋 and prove 𝑑(𝑞, 𝑝) ≤ 𝑑(𝑝, 𝑞);
equality follows by exchanging the roles of 𝑝 and 𝑞. If 𝑑(𝑝, 𝑞) = +∞, this is obvious.
Otherwise, given any 𝜀 > 0 there exist a path 𝛾 = 𝛼1𝛼2 · · · 𝛼𝑘 from 𝑝 to 𝑞 with
ℓ(𝛾) ≤ 𝑑(𝑝, 𝑞) + 𝜀. Then, using the notation 𝛼′

𝑖 for the reverse arc of 𝛼𝑖 provided by
the hypothesis, 𝛾′ := 𝛼′

𝑘𝛼′
𝑘−1 · · · 𝛼′

1 is a path from 𝑞 to 𝑝 and

ℓ(𝛾′) =
𝑘∑︁

𝑖=1
ℓ(𝛼′

𝑘−𝑖) =
𝑘∑︁

𝑖=1
ℓ(𝛼𝑘𝑖

) = ℓ(𝛾) ≤ 𝑑(𝑝, 𝑞) + 𝜀.

Letting 𝜀 go to zero, it follows 𝑑(𝑞, 𝑝) ≤ 𝑑(𝑝, 𝑞).
To prove the third point, let 𝑝, 𝑞, 𝑟 ∈ 𝑋. If there is no path from 𝑝 to 𝑞 or no

path from 𝑞 to 𝑟, then the right-hand side is +∞ and the inequality is trivially true.
Assume otherwise and let 𝜀 > 0 be arbitrary. There exists paths 𝛾1 : 𝑝 → 𝑞 and
𝛾2 : 𝑞 → 𝑟 such that ℓ(𝛾1) ≤ 𝑑(𝑝, 𝑞) + 𝜀 and ℓ(𝛾2) ≤ 𝑑(𝑞, 𝑟) + 𝜀. Then 𝛾1 * 𝛾2 : 𝑝 → 𝑟
so that

𝑑(𝑝, 𝑟) ≤ ℓ(𝛾1 * 𝛾2) = ℓ(𝛾1) + ℓ(𝛾2) ≤ 𝑑(𝑝, 𝑞) + 𝑑(𝑞, 𝑟) + 2𝜀.

Letting 𝜀 go to zero, we get the triangular inequality.
Concerning the fourth and last point, note that we always have 𝑑(𝑝, 𝑝) = 0 since

the empty path ∅𝑝 has by definition length 0. Assume now that ℓ is non-degenerate
and let 𝑚 a function as given in Definition 2.3; then whenever 𝑝 ̸= 𝑞 ∈ 𝑋, for all
𝛾 : 𝑝 → 𝑞 we have ℓ(𝛾) ≥ 𝑚(𝑝, 𝑞), so that 𝑑(𝑝, 𝑞) ≥ 𝑚(𝑝, 𝑞) > 0. Conversely, if
𝑝 ̸= 𝑞 =⇒ 𝑑(𝑝, 𝑞) > 0, then letting 𝑚(𝑝, 𝑞) = 𝑑(𝑝, 𝑞) yields non-degeneracy of ℓ.
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𝑝

𝑞

𝑟

𝑠

4

2

3

6

2

1

Figure 1: Four cities linked by six roads with time measurements from (Haggett
2001, p. 341)

2.3 Examples
Let us give a few examples showing how the above framework can be used to model
various geographically relevant situations.

Example 2.6. Let us start with a discrete example. We choose the infamous exam-
ple of Haggett (Haggett 2001, p. 341): 𝑋 = {𝑝, 𝑞, 𝑟, 𝑠} is a set of four cities, linked two
by two by six roads that can be traveled in times given in figure 1. These connections
can be modeled in our framework by a network of twelve arcs 𝑁 = {𝛼𝑖𝑗 : 𝑖, 𝑗 ∈ 𝑋}
(including both directions for each road) with 𝑠(𝛼𝑖𝑗) = 𝑖 and 𝑒(𝛼𝑖𝑗) = 𝑗; and by the
length function (expressed in the unit of one hour)

ℓ(𝛼𝑝𝑞) = ℓ(𝛼𝑞𝑝) = 4 ℓ(𝛼𝑝𝑟) = ℓ(𝛼𝑟𝑝) = 2 ℓ(𝛼𝑝𝑠) = ℓ(𝛼𝑠𝑝) = 1
ℓ(𝛼𝑞𝑟) = ℓ(𝛼𝑟𝑞) = 2 ℓ(𝛼𝑞𝑠) = ℓ(𝛼𝑠𝑞) = 6 ℓ(𝛼𝑟𝑠) = ℓ(𝛼𝑠𝑟) = 3.

Up to now, the model fits exactly Haggett example. However, considering paths
we see that what we call the distance becomes quite different; in particular, the road
𝛼𝑞𝑠 becomes irrelevant as the paths 𝛾1 := 𝛼𝑞𝑟𝛼𝑟𝑠 and 𝛾2 := 𝛼𝑞𝑝𝛼𝑝𝑠 each have cost
5, less than the cost 6 of the direct arc 𝛼𝑞𝑠. This translates the fact that a traveler
can go from 𝑞 to 𝑠 in only five hours, by avoiding the direct road. As underlined in
(L’Hostis 2016b), optimization ensures the validity of the triangular inequality.

More generally, any graph with positive labels on its edges can be translated
into the present framework, and the distance is the usual path-minimizing distance
(actually, this case is a very classical framework in graph theory).

Example 2.7. Let us now show how the above framework can be used to model a
continuous space. Let 𝑋 be a domain of the plane R2 (endowed with its canonical
scalar product), meant to represent a small enough region that the curvature of
Earth can be neglected. Assume that we are to model e.g. bird or foot travel and
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that the region is homogeneous, without obstacles or roads facilitating certain travels
compared to other.

Then it makes sense to consider as arcs all continuously differentiable curves
𝛼 : [𝑇0, 𝑇1] → 𝑋 (where 𝑇0 < 𝑇1 ∈ R), with 𝑠(𝛼) = 𝛼(𝑇0) and 𝑒(𝛼) = 𝛼(𝑇1), and to
take the classical length function

ℓ(𝛼) :=
∫︁ 𝑇1

𝑇0
‖𝛼′(𝑡)‖ d𝑡

Then paths can be identified with continuous, piecewise continuously differentiable
curves in an obvious way. Note that if we preferred to have “length” be physically
homogeneous to a time, we could have written

ℓ(𝛼) :=
∫︁ 𝑇1

𝑇0
𝑅‖𝛼′(𝑡)‖ d𝑡

where 𝑅 is the inverse of the speed of the modeled traveler. This number can be
factored into a global scale for our model, and we disregard this consideration for
now.

If 𝑋 is convex, then the distance obtained by optimizing the length of curves
coincides with the Euclidean metric: 𝑑(𝑝, 𝑞) = ‖𝑝 − 𝑞‖, and the unique shortest path
from 𝑝 to 𝑞 is the line segment between these points (parameterized in any one-to-one
way).

Note that convexity of 𝑋 is necessary for this statement to hold. Consider for
example an annulus 𝑋 = �̄�(0, 3)∖𝐵(0, 1) where 𝐵(𝑝, 𝑟) (respectively �̄�(𝑝, 𝑟)) denotes
the open (respectively closed) Euclidean disk of center 𝑝 and radius 𝑟. Then the
points 𝑝, 𝑞 of coordinates (0, −2) and (0, 2) respectively cannot be joined by a line
segment, as paths are constrained to stay in 𝑋. In this case 𝑑(𝑝, 𝑞) > ‖𝑞 −𝑝‖ = 4 (in
general, the same phenomenon occurs for each pair of point defining a line segment
that is not contained in 𝑋). There are exactly two shortest paths from 𝑝 to 𝑞, one
avoiding the inner disk from the left, the other avoiding it from the right. If we had
considered 𝑋 = �̄�(0, 3) ∖ �̄�(0, 1), then the distance would have been the same, but
there would not exist any shortest path (as in Example 2.2 from 𝑝 to 𝑞, their distance
being only arbitrarily well approximated by lengths of paths).

Even without convexity, it is well-known and easy to check that 𝑑 is a metric if
and only if 𝑋 is connected by continuous, piecewise continuously differentiable paths
(otherwise, only the finiteness fails). In particular, non-degeneracy is easily proven
by taking 𝑏(𝑝, 𝑞) = ‖𝑞 − 𝑝‖.

Example 2.8. More general situations can be modeled in a similar way than in
Example 2.7, for example by introducing inhomogeneity in the formula of the cost
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𝑝

𝑞

Figure 2: Distances on an annulus

of an arc
ℓ(𝛼) =

∫︁ 𝑇1

𝑇0
𝑅(𝛼𝑡)‖𝛼′(𝑡)‖ d𝑡

where 𝑅 : 𝑋 → (0, +∞) represent the roughness of the terrain at each point (in
mathematics, this is called a conformal change of Riemannian metric). We shall
denote by 𝑑𝑅 the induced distance (which is a metric in many cases, e.g. whenever
there exist some 𝜀 > 0 such that 𝑅(𝑝) ≥ 𝜀). Such a situation is easily pictured using
shades of gray to represent 𝑅, travel being more difficult in darker regions than in
lighter ones. In the domain of geographical cartography, such a representation of
distances takes the form of cost-of-passage surface or cost surface (Collischonn and
Pilar 2000; White and Barber 2012). Related representations include Bunge propos-
ing a crumpled space model to describe a marsh area difficult to cross surrounding
a road (Bunge 1962, p. 271). Representations with the same aim of describing dif-
ferent geographical time-distances use graphs in two (Plassard and Routhier 1987;
Tobler 1997) or three dimensions (Mathis 1990; Mathis, Polombo, and L’Hostis 1993;
L’Hostis 2009). One could also model general surfaces with Riemannian metrics (i.e.
metrics which, at a very local scale, are Euclidean up to order 1 approximations);
but note that the marvelous uniformization theorem from the early XXth century
shows that any such surface which is homeomorphic to a domain in the plane, can
be represented by a distance 𝑑𝑅 obtained as above isometrically (i.e. in a way that
distances are perfectly preserved). In particular, any part 𝑌 of the earth that is not
the whole can be represented in the plane by a map 𝜙 : 𝑌 → 𝑋 ⊂ R2, and a function
𝑅 can be chosen, in a way that 𝑑𝑅(𝜙(𝑝), 𝜙(𝑞)) is exactly equal to the shortest path
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distance in 𝑌 between 𝑝 and 𝑞. For a detailed historical and mathematical account
of the uniformization theorem, the reader can consult (Saint-Gervais 2016).

Example 2.9. The above examples are all classical in the geometry of metric spaces,
and the only advantage of our framework seems to unify the discrete and continuous
models. Let us now give an example that mixes both continuous and discrete aspects,
and that we claim is quite satisfactorily modeled in our framework.

Let again 𝑋 be a domain in R2, convex say, and assume we have two ways to
travel in 𝑋: by car, where the constraints of the road network are assumed to be
negligible, so that we modeled car travel as in Example 2.7; and by plane, with
exactly two airports located at 𝑎1, 𝑎2 ∈ 𝑋, with a fast two-ways connexion between
them.

The network 𝑁 shall now be the union of the set 𝑁𝑔 of all continuously differen-
tiable arcs on 𝑋 in the one hand, and of the set of the two connexions between the
airports 𝑁𝑓 = {𝛼𝑓 :12, 𝛼𝑓 :21} (𝑔 stands for “ground” and 𝑓 for “flight”). The starting
and endpoints of arcs in 𝑁𝑔 are defined as usual, and we set 𝑠(𝛼𝑓 :12) = 𝑒(𝛼𝑓 :21) = 𝑎1
and 𝑠(𝛼𝑓 :21) = 𝑒(𝛼𝑓 :12) = 𝑎2.

The length function is given for 𝛼 ∈ 𝑁𝑔 by the physically homogeneous formula
of Example 2.7

ℓ(𝛼) :=
∫︁ 𝑇1

𝑇0
𝑅‖𝛼′(𝑡)‖ d𝑡

where 𝑅 is the inverse of the speed of ground travel; and assuming both aerial
connexions take the same time 𝑇𝑓 , ℓ(𝛼𝑓 :12) = ℓ(𝛼𝑓 :21) = 𝑇𝑓 .

Now, applying the framework above defines paths that can combine car travels
with flights, and enable to construct the underlying optimized distance. Here, pro-
vided 𝑅 > 0 and 𝑇𝑓 > 0, this distance is a metric, and shortest paths are either line
segments, or combination of one or two line segments and one flight.

Of course, more complicated situations with more airports, more connexions (not
necessarily between all possible pairs of airports), possibly varying ground travel
difficulty, can be modeled in the same way. One can also model alternative ground
travel means by taking 𝑁𝑔 = 𝑁𝑔𝑏 ∪ 𝑁𝑔𝑐 where 𝑁𝑔𝑏 and 𝑁𝑔𝑐 are two disjoint copies
of the set of continuously differentiable curves, the first ones corresponding to bike
travels and the second ones corresponding to car travel. Then one sets

ℓ(𝛼) :=
∫︁ 𝑇1

𝑇0
𝑅𝑏‖𝛼′(𝑡)‖ d𝑡 ∀𝛼 ∈ 𝑁𝑔𝑏

ℓ(𝛼) :=
∫︁ 𝑇1

𝑇0
𝑅𝑐‖𝛼′(𝑡)‖ d𝑡 ∀𝛼 ∈ 𝑁𝑔𝑐
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where 𝑅𝑏 is the inverse of the biking speed, and 𝑅𝑐 is the inverse of the driving speed.
As such, if we make the reasonable assumption 𝑅𝑏 > 𝑅𝑐, the introduction of biking
does not change the distance as it is a slower mean of transport than car. But if one
turns 𝑅𝑏 and 𝑅𝑐 into functions, with 𝑅𝑏(𝑝) < 𝑅𝑐(𝑝) when 𝑝 lies in some regions, or
if one changes the formula of the cost function to take into account the economical
and ecological cost of gas, then this enriched model becomes relevant.

Note that compared to (Smith 1989), the present approach does notably not
include axiom N3 (subpath closure) of Smith’s definition 3.1: arcs need not be re-
strictable into subarcs, and this better represent flights or any other travels that
cannot in practice be decomposed. On the other hand, Smith’s path networks are
particular cases of our definition of networks.

3 Contextual networks and metrics
We shall now enrich the above notions of space, network, and length by adding some
contextual information. To motivate and explain the need for this enrichment, let us
discuss how the notion of break has been considered incorrectly as an impediment to
the universal validity of the triangular inequality (L’Hostis 2016a; L’Hostis 2016b).
Breaks in itineraries are necessary to relaunch movement, so they do not entail the
idea of sub-optimality in distances that the triangle inequality violation suggest.
In particular (Huriot, Smith, and Thisse 1989, p. 313) admit that their proposed
minimum cost distance may violate the triangle inequality. While they do not give
an explicit example, it is plausible that what they have in mind is close to example
3.1 below.

Regarding this situation, two ways forward can be envisaged:

i. developing a semi-metric structure that assumes a violation of triangle inequal-
ity; these structures will be based on a relaxation of the triangle inequality
replaced by a less demanding inequality (Wallace Alvin Wilson 1931)

ii. developing a framework where triangle inequality of metrics is always respected

The first approach has been indicated by (Huriot, Smith, and Thisse 1989). The
renunciation to triangular inequality entails losing major geometrical properties, the
inability to use the spatial analytical techniques of Geography (Ahmed and Harvey J.
Miller 2007), and entering abstract spaces (W. A. Wilson 1932, p. 517). The second
approach allows to remain in a metric domain concerning geometry, and allows to
consider that optimisation is included in the idea of distance. For these reasons we
chose the second approach.
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𝐴 𝑀 𝐵

𝐶𝑖𝑡𝑦 𝑀𝑜𝑡𝑒𝑙 𝐶𝑖𝑡𝑦

8 h 8 h

Figure 3: Two cities, a midway motel and the length of two paths 𝐴𝑀 and 𝑀𝐵

As extensively shown in (L’Hostis 2016b), several authors attach the idea of
a human as an effort minimizer (Zipf 1949) to cost and “not just to distances”
(Montello 1991, p. 113). We defend here an opposite view and propose to root the
idea of optimisation into the definition of geographical distance and its mathematical
formalisation. We refute the idea that geographical distance measurement could
eventually be suboptimal. Departing from the point of view of (Huriot, Smith, and
Thisse 1989, p. 313), we claim that as soon as distances are well-defined through
an optimization process, the triangle inequality is satisfied. Apparent violations of
the triangular inequality are either a lack of optimization, as in the “two errors”
debunked in (L’Hostis 2016b), or a lack of well-definiteness as we will explain below.
The reinterpretation of the following simple example described in (L’Hostis 2016b)
is at the core of our approach.

Example 3.1. Assume, as on figure 3, two cities 𝐴, 𝐵 are connected by a single road
with a motel 𝑀 in between; to travel by car between 𝐴 and 𝑀 , or between 𝑀 and
𝐵 takes 8 hours. Assume further that one is not able or allowed to drive for more
than 8 hours in a row, and that after 8 hours of driving an 8 hours rest is needed.
It has been argued that this is a counter-example to the triangular inequality: the
distance (in travel time) from 𝐴 to 𝐶 would be 24 hours (twice 8 hours of driving
and 8 hours of rest in between), larger than the sum of the distance from 𝐴 to 𝑀
and the distance from 𝑀 to 𝐵 (both 8 hours). It has been proposed to relax the
triangular inequality in such a case (L’Hostis 2016b), in a way that could be modeled
by replacing in the above framework the additivity of cost (1) by some other rule to
determine ℓ(𝛾1 * 𝛾2).

We argue that the problem here does not lie in the triangular inequality, but in the
fact that distances (travel times) are not well-defined out of context. Geometry alone
cannot explain the form of these path and of the corresponding metric spaces. In
particular, it is not true in general that one standing at 𝐴 can be at 𝑀 8 hours later.
Imagine the motel manager has to go to 𝐴 fetch some commodities: neglecting the
time involved in logistics, after her 8 hours drive to 𝐴 she cannot drive back straight
away. She thus stands in 𝐴 with no way to be at 𝑀 until 16 hours later. The travel
time between any two points in fact depends on whether the traveler is rested or
tired: there is a context to be taken into account. Modelling this is the goal of the
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framework we are about to develop.

3.1 Contextual networks
Let 𝑋 be a set called the space, and 𝐶 be another set called the context set. Elements
of 𝑋 are called locations, while elements of 𝐶 are called contexts. As before, 𝑋
should contain only those points of the physical space that are meaningful locations;
𝐶 should be made rich enough to model all elements of context that are relevant to
travel cost. An element (𝑝, 𝑐) of 𝑋 × 𝐶 is called a state: it compounds the data of
the location and the context.

Contextual networks will be defined exactly as networks, but on the set of states.
We still repeat the definitions as the different roles played by 𝑋 and 𝐶 will have an
importance in the modeling process and in the interpretation. The case of a singleton
𝐶 = {𝑐0} will correspond to the above framework, while in example 3.1 we could
take 𝐶 = {𝑟, 𝑡} (𝑟 for “rested”, 𝑡 for “tired”). 𝐶 can be a product space, to take into
account several variables (gas gauge, accumulated fatigue, available visas, etc.)

A contextual network on 𝑋 with context set 𝐶 is a network 𝑁 on the states set
𝑋 × 𝐶, i.e. 𝑁 is a set endowed with two functions: 𝑠, 𝑒 : 𝑁 → 𝑋 × 𝐶. Elements of
𝑁 are still called arcs: given an arc 𝛼 we call 𝑠(𝛼) and 𝑒(𝛼) its starting state and
endstate; we write 𝑠𝑋 , 𝑒𝑋 : 𝑁 → 𝑋 and 𝑠𝐶 , 𝑒𝐶 : 𝑁 → 𝐶 the functions defined by

𝑠(𝛼) = (𝑠𝑋(𝛼), 𝑠𝐶(𝛼)) and 𝑒(𝛼) = (𝑒𝑋(𝛼), 𝑒𝐶(𝛼)) ∀𝛼 ∈ 𝑁.

As before, several arcs can be used to describe travels corresponding to the same
displacement in the physical space; actually, most of the time a lot of different arcs
will be needed for each movement in the physical space to take into account the
starting context. Even for a given movement and a given starting context, several
arcs can be used, e.g. one for fast driving and another for slow driving (with different
ending contexts, notably in term of gas consumption and fatigue).

Given a contextual network 𝑁 on a space 𝑋 with context 𝐶, a path 𝛾 from
(𝑝, 𝑐) ∈ 𝑋 × 𝐶 to (𝑞, 𝑏) ∈ 𝑋 × 𝐶 is a finite word 𝛼1𝛼2 . . . 𝛼𝑘 with letters in 𝑁 such
that 𝑠(𝛼1) = (𝑝, 𝑐), 𝑒(𝛼𝑘) = (𝑞, 𝑏) and 𝑒(𝛼𝑖) = 𝑠(𝛼𝑖+1) for each 𝑖 ∈ {1, 2, . . . , 𝑘 − 1}.
We write 𝛾 : (𝑝, 𝑐) → (𝑞, 𝑏) to express that 𝛾 is some path from (𝑝, 𝑐) to (𝑞, 𝑏), but
we may want to forget some information by speaking of a path from 𝑝 to 𝑞, writing
𝛾 : 𝑝 → 𝑞; or of a path from (𝑝, 𝑐) to 𝑞 by writing 𝛾 : (𝑝, 𝑐) → 𝑞. The set of paths
is again denoted by 𝑁*, and includes a trivial path ∅𝑝,𝑐 : (𝑝, 𝑐) → (𝑝, 𝑐) for each
state (𝑝, 𝑐). Two paths 𝛾 : (𝑝, 𝑐) → (𝑞, 𝑏) and 𝜂 : (𝑝′, 𝑐′) → (𝑞′, 𝑏′) are chainable if
(𝑝′, 𝑐′) = (𝑞, 𝑏), and the concatenation of two chainable paths is a path denoted by
𝛾 * 𝜂.
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A length function on a contextual network 𝑁 is a function ℓ : 𝑁 → (0, +∞)
which we extend to a function on 𝑁*, still denoted by ℓ, by

ℓ(𝛼1 · · · 𝛼𝑘) =
𝑘∑︁

𝑖=1
ℓ(𝛼𝑖)

with the same convention ℓ(∅𝑝,𝑐) = 0.
Up to this point, there is no conceptual difference between the first framework

with a simple network and the present contextual network. It is only when consid-
ering distances that the role of locations will be prominent compared to contexts:
more often than not, distances between locations will be of primary interest, rather
than distances between states.

3.2 Contextual distances
Given a space 𝑋, a context set 𝐶, a contextual network 𝑁 and a length function ℓ,
we can construct several distances by optimization, depending on how the context is
taken into account. Let the semi-specific, specific, minimal and maximal contextual
distances be defined respectively by

𝑑𝑐(𝑝, 𝑞) = inf
𝛾:(𝑝,𝑐)→𝑞

ℓ(𝛾),

𝑑𝑐,𝑏(𝑝, 𝑞) = inf
𝛾:(𝑝,𝑐)→(𝑞,𝑏)

ℓ(𝛾),

𝑑min(𝑝, 𝑞) = inf
𝛾:𝑝→𝑞

ℓ(𝛾),

𝑑max(𝑝, 𝑞) = sup
𝑐∈𝐶

𝑑𝑐(𝑝, 𝑞).

The semi-specific distance is lowest value achieved or approximated by the length
of a path 𝛾 from 𝑝 with a given starting context state 𝑐. In this definition the starting
state is fully specified, while only the arriving location is constrained (this definition
can also be inverted to care for situations where we want to fix the ending state,
e.g. a time of arrival). This first distance will often be the object of interest: it
disregards the context in which the traveler arrives at its destination, and only takes
into account the context he or she starts in.

The specific distance is formally the same object as the non-contextual distance
introduced above, with 𝑋 × 𝐶 as space. In particular, it satisfies the triangular
inequality in the sense that for all (𝑝, 𝑐), (𝑞, 𝑏), (𝑟, 𝑎) ∈ 𝑋 × 𝐶,

𝑑𝑐,𝑎(𝑝, 𝑟) ≤ 𝑑𝑐,𝑏(𝑝, 𝑞) + 𝑑𝑏,𝑎(𝑞, 𝑟).
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It refers to a path 𝛾 that modifies the position in 𝑋 from 𝑝 to 𝑞, and at the same
time, modifies the context in 𝐶 from 𝑐 to 𝑏.

In the motel example 3.1, what had originally been considered as the distance
between two locations is in our framework their minimal distance: it corresponds to
a best-case scenario and will in general not satisfy the triangle inequality.

The maximal distance corresponds to the worst-case scenario, and will always
satisfy the triangle inequality, as we will show below.

Theorem 3.2. For all contextual data (𝑋, 𝐶, 𝑁, ℓ) the following hold.

i. (Finiteness) Given 𝑝, 𝑞 ∈ 𝑋 and 𝑐, 𝑏 ∈ 𝐶, we have:

(a) 𝑑𝑐(𝑝, 𝑞) < +∞ if and only if there is a path 𝛾 : (𝑝, 𝑐) → 𝑞,
(b) 𝑑𝑐,𝑏(𝑝, 𝑞) < +∞ if and only if there is a path 𝛾 : (𝑝, 𝑐) → (𝑞, 𝑏),
(c) 𝑑min(𝑝, 𝑞) < +∞ if and only if there is a path 𝛾 : 𝑝 → 𝑞,
(d) 𝑑max(𝑝, 𝑞) < +∞ if and only if there is a number 𝐴 such that for all 𝑐 ∈ 𝐶,

there is a path 𝛾 : (𝑝, 𝑐) → 𝑞 with ℓ(𝛾) ≤ 𝐴. In particular, if 𝐶 is finite,
then 𝑑max(𝑝, 𝑞) < +∞ if and only if there is a path 𝛾 : 𝑝 → 𝑞.

ii. (Symmetry) If for all arc 𝛼, there exist an arc 𝛼′ such that 𝑠𝑋(𝛼′) = 𝑒𝑋(𝛼),
𝑒𝑋(𝛼′) = 𝑠𝑋(𝛼) and ℓ(𝛼′) = ℓ(𝛼), then: 𝑑min(𝑝, 𝑞) = 𝑑min(𝑞, 𝑝) for all 𝑝, 𝑞 ∈ 𝑋.

iii. (Triangle inequality) for all 𝑝, 𝑞, 𝑟 ∈ 𝑋 and all 𝑐, 𝑏, 𝑎 ∈ 𝐶 we have

(a) 𝑑𝑐(𝑝, 𝑟) ≤ 𝑑𝑐(𝑝, 𝑞) + 𝑑max(𝑞, 𝑟),
(b) 𝑑𝑐,𝑎(𝑝, 𝑟) ≤ 𝑑𝑐,𝑏(𝑝, 𝑞) + 𝑑𝑏,𝑎(𝑞, 𝑟),
(c) 𝑑max(𝑝, 𝑟) ≤ 𝑑max(𝑝, 𝑞) + 𝑑max(𝑞, 𝑟).

iv. (Distinguishability) If ℓ is non-degenerate (note that Definition 2.3 applies
word-for-word to contextual length functions), then for all 𝑝, 𝑞 ∈ 𝑋 and all
𝑐, 𝑏 ∈ 𝐶 we have

𝑑𝑐(𝑝, 𝑞) = 0 ⇔ 𝑑min(𝑝, 𝑞) = 0 ⇔ 𝑑max(𝑝, 𝑞) = 0 ⇔ 𝑝 = 𝑞.

Note that symmetry is not relevant for the semi-specific distance, and is covered
by Theorem 2.5 for the specific distance. One can state conditions ensuring symmetry
of the maximal distance, but they seem either not general enough or not simple
enough to warrant a statement rather than a case-by-case analysis.
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𝑝, 𝑐

𝑞, 𝑏

𝑟, 𝑎

Figure 4: A triangle in the state space: each vertex is a state, i.e. a pair (loca-
tion,context), and each edge is a path.

Proof. The four finiteness assertions are direct consequences of the hypothesis that
length functions take finite values on arcs. The symmetry assertion for 𝑑min has
mutatis mutandis the same proof as the symmetry in Theorem 2.5.

Let us now prove the triangle inequalities; we fix 𝜀 > 0 and in each case assume
the contextual distances in the right-hand side are finite, as otherwise the statement
is vacuously true.

There is a path 𝛾 : (𝑝, 𝑐) → 𝑞 such that ℓ(𝛾) ≤ 𝑑𝑐(𝑝, 𝑞) + 𝜀; let 𝑏 be the context
at its endpoint. By definition 𝑑𝑏(𝑞, 𝑟) ≤ 𝑑max(𝑞, 𝑟), so there is a path 𝜂 : (𝑞, 𝑏) → 𝑟
such that ℓ(𝜂) ≤ 𝑑𝑏(𝑞, 𝑟) + 𝜀 ≤ 𝑑max(𝑞, 𝑟) + 𝜀. Now 𝛾 * 𝜂 : (𝑝, 𝑐) → 𝑟 has length
at most 𝑑𝑐(𝑝, 𝑞) + 𝑑max(𝑞, 𝑟) + 2𝜀, so that letting 𝜀 go to zero we get 𝑑𝑐(𝑝, 𝑟) ≤
𝑑𝑐(𝑝, 𝑞)+𝑑max(𝑞, 𝑟). By taking the supremum over 𝑐 ∈ 𝐶, we get precisely 𝑑max(𝑝, 𝑟) ≤
𝑑max(𝑝, 𝑞) + 𝑑max(𝑞, 𝑟). The case of the specific distance follows from Theorem 2.5,
seeing the contextual network as a non-contextual network on 𝑋 × 𝐶 (see Figure 4).

Concerning distinguishability, simply observe that 𝑝 = 𝑞 implies each of the
contextual distances to be zero, while 𝑝 ̸= 𝑞 implies each of them to be at least
𝑚(𝑝, 𝑞) > 0.

3.3 Examples
Let us now see how much flexibility we gain from this framework in a bunch of
examples. First, given a space 𝑋, a network 𝑁 and a length function ℓ, one can take
𝐶 = {0} and get in the obvious way contextual network and cost function. We thus
do not loose any generality in adding context. We are of course more interested in
less trivial examples.

Example 3.3. Let us revisit the motel example 3.1. There are several ways to model
this example in our framework, we propose the following:

∙ 𝑋 = {𝐴, 𝐵, 𝑀}, 𝐴, 𝐵 representing the two cities and 𝑀 the motel in between
them,
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∙ 𝐶 = {𝑟, 𝑡} where 𝑟 is for “rested” and 𝑡 for “tired”,

∙ 𝑁 = {𝛼𝐼𝐽 : 𝐼 ̸= 𝐽 ∈ 𝑋} ∪ {𝜌𝐼 : 𝐼 ∈ 𝑋}, with 𝑠(𝛼𝐼𝐽) = (𝐼, 𝑟), 𝑒(𝛼𝐼𝐽) = (𝐽, 𝑡),
𝑠(𝜌𝐼) = (𝐼, 𝑡) and 𝑒(𝜌𝐼) = (𝐼, 𝑟); the 𝛼𝐼𝐽 correspond to driving from 𝐼 to 𝐽 ,
which needs one to be rested and provokes fatigue, while 𝜌𝐼 consists in resting
at 𝐼,

∙ ℓ(𝛼𝐼𝐽) = ℓ(𝜌𝐼) = 8 (in hours) for all 𝐼, 𝐽 .

Now we have 𝑑min(𝐴, 𝑀) = 𝑑𝑟(𝐴, 𝑀) = 8 and 𝑑min(𝑀, 𝐵) = 𝑑𝑟(𝑀, 𝐵) = 8, but
𝑑min(𝐴, 𝐵) = 𝑑𝑟(𝐴, 𝐵) = 24: the shortest path 𝐴 → 𝐵 starts from a rested context
and is 𝛼𝐴𝑀𝜌𝑀𝛼𝑀𝐵. We see that neither 𝑑min nor 𝑑𝑟 satisfy the triangle inequality.
But for example 𝑑𝑟,𝑟(𝐴, 𝐵) = 32 = 𝑑𝑟,𝑟(𝐴, 𝑀) + 𝑑𝑟,𝑟(𝑀, 𝐵), and we can check more
generally that 𝑑𝑟,𝑟 is a metric. We also have 𝑑max(𝐴, 𝐵) = 32 = 𝑑max(𝐴, 𝑀) +
𝑑max(𝑀, 𝐵): the worst case in each travel is when one is tired, implying an 8 hours
rest before driving (and an 8 hours rest between the two segments when one goes
from 𝐴 to 𝐵).

Example 3.4. Assume that we are given a space 𝑋 of cities, a (non-contextual)
network of roads 𝑁 on 𝑋 (with 𝑠, 𝑒 as starting and endpoint functions) and a length
function ℓ describing the duration of driving each road, in hours. Assume we want
to take into account a legislation that imposes a resting time of duration 𝑃 > 0
after driving for a time 𝐷 > 0. This situation can be observed in the freight road
transport with driving rules for lorry drivers (Chapelon 2006). 𝐷 is the amount of
fatigue in hours of driving that makes a break necessary or mandatory; in the case
of freight road transport this level is fixed by professional rules, wile in the domain
of individual road transport this level are indicated by good practice.

If we assume that a driver can rest anywhere, even along a road, then instead
of having driving arcs and resting arcs as in example 3.3, it is simpler to construct
the following contextual data (all contextual objects will be denoted with a ˜ to
distinguish them from the original ones).

∙ The space is still 𝑋, and the set of context is 𝐶 = [0, 𝐷] representing the
fatigue in hours of driving since the last rest.

∙ The contextual network is �̃� = {�̃�𝑐 : 𝛼 ∈ 𝑁, 𝑐 ∈ 𝐶}, with starting and endpoint
maps defined by 𝑠(�̃�𝑐) = (𝑠(𝛼), 𝑐) and 𝑒(�̃�𝑐) = (𝑒(𝛼), 𝑐 + ℓ(𝛼) mod 𝐷) where
𝑥 mod 𝐷 means the representative in (0, 𝐷] of the class of 𝑥 modulo 𝐷, i.e.
𝑥 mod 𝐷 := 𝑥 − 𝑘𝐷 whenever 𝑘 is the integer with 𝑘𝐷 < 𝑥 ≤ (𝑘 + 1)𝐷.
We say that 𝑘 is the number of breaks in �̃�𝑐. Note that 𝑐 + ℓ(𝛼) > 0 since by
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assumption ℓ(𝛼) > 0, and we take the representative in (0, 𝐷] rather than [0, 𝐷)
because when one arrives at destination with fatigue 𝐷, resting is usually not
considered part of the travel. This contextual distance is relevant to describe
time-distance of travel. Nevertheless, from the description of trips generated
with this framework, it is quite easy to infer a cost function if one wants to
take into account the arriving context.

∙ The contextual length function is given by ℓ̃(�̃�𝑐) = ℓ(𝛼) + 𝑘𝑃 where 𝑘 is the
number of breaks.

Note that in this case, we can compute contextual distances from the non-contextual
distance: for all 𝑝 ̸= 𝑞 ∈ 𝑋, 𝑑𝑐(𝑝, 𝑞) = 𝑑(𝑝, 𝑞) + 𝑘𝑃 where 𝑘 is the number of breaks,
i.e. the integer such that 𝑑(𝑝, 𝑞) − 𝑘𝐷 ∈ (0, 𝐷]. We remark that here, whenever 𝑑 is
symmetric, the maximal and minimal contextual distances are both symmetric too.

Example 3.5. Assume again that we are given a space 𝑋 of cities (and possibly other
locations such as motels), a (non-contextual) network of roads 𝑁 on 𝑋 (with 𝑠, 𝑒 as
starting and endpoint functions) and a length function ℓ describing the duration of
driving each road, in hours, and that again we want to take into account a legislation
that imposes a resting time of duration 𝑃 > 0 after driving for a time 𝐷 > 0.
However, assume that rest is only possible at a location, not in between; or worse,
resting is only possible at some locations: we denote by 𝑅 ⊂ 𝑋 the set of locations
where one can rest. This situation is closer to the observed practices of lorry driving
especially on motorways where stop is only allowed in dedicated service areas. Then
we shall model this situation as in the simple motel example above.

∙ The space is still 𝑋, and the set of context is 𝐶 = [0, 𝐷] representing the
fatigue in hours of driving since the last rest.

∙ The contextual network is �̃� = {�̃�𝑐 : 𝛼 ∈ 𝑁, 𝑐 ∈ 𝐶 | 𝑐 + ℓ(𝛼) ≤ 𝐷} ∪ {𝜌𝑝,𝑐 : 𝑝 ∈
𝑅, 𝑐 ∈ 𝐶}, with starting and endpoint maps defined by 𝑠(�̃�𝑐) = (𝑠(𝛼), 𝑐),
𝑒(�̃�𝑐) = (𝑒(𝛼), 𝑐 + ℓ(𝛼)) and 𝑠(𝜌𝑝,𝑐) = (𝑝, 𝑐), 𝑒(𝜌𝑝,𝑐) = (𝑝, 0).

∙ The contextual length function is given by ℓ̃(�̃�𝑐) = ℓ(𝛼) and ℓ̃(𝜌𝑝,𝑐) = 𝑃 .

The computation of contextual distances now needs the full contextual data: we
cannot recover it from the non-contextual distance only. Indeed, what was an optimal
path in the non-contextual case can now be unavailable (e.g. if there was an arc with
length greater than 𝐷); or it could become non-optimal e.g. because of the presence
of pairs of consecutive arcs both of length slightly above 𝐷/2, making it mandatory
to rest in between them while some other path has slightly greater driving time,
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but optimizes rests to happen near the limit 𝐷. Note that in some cases we can
get non-symmetric contextual distances. For example, service areas that are only
accessible from one side of a motorway can break the symmetry. Symmetry almost
never exists in geographical spaces. Moreover, this framework can be extended to
for instance caring simultaneously for breaks linked to resting of the driver, and for
breaks linked to reloading the fuel consumed by vehicles.

The location of break points, or stations, is tightly related to the spatial patterns
of trips and represents a highly relevant feature of geographical spaces. The cara-
vanserais, playing the role of halting places, where the major infrastructure of the
Silk Road (Williams 2014). The need for the first break for Parisian travellers to the
south of France has fuelled the economic specialisation of Burgundy in the touris-
tic sector around hotels and restaurants that shaped the reputation of the region
(Bavoux 2009). The availability of – and the market served by – petrol stations on
motorways is directly linked to the consumption of fuel by vehicles on the trunk lines.
These examples show that a suitable framework caring for rest and energy reload-
ing for movement sustaining, analysed with the contextual distance, is of significant
value for spatial analysis.

Example 3.6. This next example models travel using scheduled trips between var-
ious stations of a public transportation system, such as flights between airports, or
trains or buses between stations. Our space 𝑋 will consist of finitely many stations,
while our context set 𝐶 will be a subset of R, considered as a time variable. Our
network 𝑁 will contain two kinds of arcs: 𝑁 = 𝑇 ∪ 𝑊 where

∙ each scheduled trip will correspond to an arc 𝑓 ∈ 𝑇 such that 𝑠𝑋(𝑓) and 𝑒𝑋(𝑓)
are the departure and arrival stations of the flight service while 𝑠𝐶(𝑓) and 𝑒𝐶(𝑓)
are the departure and arrival time of the trip, note that 𝑠𝐶(𝑓) < 𝑒𝐶(𝑓).

∙ for every station 𝑥 ∈ 𝑋 and each couple (𝑡1, 𝑡2) ∈ R2 such that 𝑡1 ≤ 𝑡2, there
is a path 𝑤𝑥,𝑡1,𝑡2 such that 𝑠(𝑤𝑥,𝑡1,𝑡2) = (𝑥, 𝑡1) and 𝑒(𝑤𝑥,𝑡1,𝑡2) = (𝑥, 𝑡2) which
models waiting at station 𝑥 from time 𝑡1 to 𝑡2. We will denote by 𝑊 the set of
paths coming from waiting time.

As in the previous case, non symmetry already arises from the network itself : our
definition of 𝑁 ensures that every path 𝛾 : (𝑥1, 𝑡1) → (𝑥2, 𝑡2) satisfies 𝑡1 < 𝑡2. Hence
for every two airports 𝑥1 and 𝑥2 and any two times 𝑡1 and 𝑡2 such that 𝑡1 > 𝑡2,
the specific distance 𝑑𝑡1,𝑡2(𝑥1, 𝑥2) will be infinite for every choice of length function ℓ
whereas 𝑑𝑡2,𝑡1(𝑥2, 𝑥1) can be finite. Hence except in very degenerate cases the specific
distance will not be symmetric. The semi-specific distance need not be symmetric,
since the flights from 𝐴 to 𝐵 and 𝐵 to 𝐴 need not be synchronized. The maximal and

19



minimal distances need not be symmetric either, since the waiting time at connections
can be different for the return trip.

One length function of interest in this setting is the duration of the trip ℓ defined
for 𝛼 ∈ 𝑁 by ℓ(𝛼) = 𝑒𝐶(𝛼) − 𝑠𝐶(𝛼); we immediately get the same expression ℓ(𝛾) =
𝑒𝐶(𝛾) − 𝑠𝐶(𝛾) for all 𝛾 ∈ 𝑁*. In this example the four contextual distances have
different meanings :

∙ the semi-specific distance 𝑑𝑡1(𝑥1, 𝑥2) will be 𝑇 − 𝑡1 where 𝑇 is the infimum of
the possible arrival times of a trip from 𝑥1 to 𝑥2 which leaves 𝑥1 after time 𝑡1
(if no such trip exists, 𝑇 = +∞).

∙ the specific distance 𝑑𝑡1,𝑡2(𝑥1, 𝑥2) will be equal to 𝑡2 −𝑡1 if there is a trip from 𝑥1
to 𝑥2 which takes place during the time interval [𝑡1, 𝑡2] and to +∞ otherwise.

∙ the minimal distance 𝑑min(𝑥1, 𝑥2) will be equal to the infimum of the duration
of a trip from 𝑥1 to 𝑥2.

∙ the maximal distance will have properties which depend a lot on the travel
network : in particular if for every flight 𝑓 ∈ 𝐹 , 𝑠𝐶(𝑓) ≥ 0 (no trip starts
before time 0), taking 𝐶 = R would yield 𝑑max(𝑥1, 𝑥2) = +∞ whenever 𝑥1 and
𝑥2 are different. Here the modeling choices are important to obtain relevant
distances.

Let us be more specific and consider 3 airports 𝑥, 𝑦 and 𝑧 such that :

∙ there is a flight from 𝑥 to 𝑦 taking off at 10 and landing at 11.

∙ there is a flight from 𝑦 to 𝑧 taking off at 12 and landing at 13.

∙ there is a flight from 𝑥 to 𝑧 taking off at 12 and landing at 14.

Here the space 𝑋 is {𝑥, 𝑦, 𝑧}, the context is 𝐶 = [9, 15] considered as a time variable
and the network 𝑁 is built from the timetable as described above. In this example :

𝑑min(𝑥, 𝑧) = 2, 𝑑max(𝑥, 𝑧) = +∞, 𝑑𝑡(𝑥, 𝑧) =

⎧⎪⎪⎨⎪⎪⎩
13 − 𝑡 if 𝑡 ≤ 10
14 − 𝑡 if 10 < 𝑡 ≤ 12
+∞ if 12 < 𝑡.

The appearance of infinite distance should not be treated as a weakness of the ex-
ample : it carries information. The infiniteness of 𝑑𝑡(𝑥, 𝑧) for 𝑡 > 12 shows that 𝑧 is
not reachable if the trip starts later than time 𝑡 = 12.
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𝑥 𝑦 𝑧

𝑡 = 10

𝑡 = 11

𝑡 = 12

𝑡 = 13

𝑡 = 14

Figure 5: Representation of the contextual network from example 3.6. The space 𝑋 is
represented horizontally while the context is represented vertically. Any subsegment
of the vertical solid arrows is a valid path in the network, while the dashed path
cannot be subdivided.

The computation of 𝑑𝑡1(𝑥1, 𝑥2) for a real public transportation network, defined as
time-dependant networks, is an important problem in practice and a very active field
of research, see (Müller-Hannemann et al. 2007) for timetable algorithms and (Hall
1986; Delling et al. 2009; Bast et al. 2016) for routing algorithms in time-dependant
graphs. The semi-specific distance formula is relevant for the issue of a given starting
time, but can also be inverted to deal with the problem of a given desired time at
destination. These two cases cover the main problems posed by time-dependant
graphs. Note that two approaches can be found in this field: in the time extended
approach the problem of computing 𝑑𝑡1(𝑥1, 𝑥2) is tackled by choosing shortest path
in the static graph whose vertices are couples (𝑥𝑖, 𝑡𝑖), while in the time dependent
approach the underlying graph has fixed vertices 𝑥 but dynamic edges which appear
and disappear as time progresses according to available trips. In our framework they
corresponds to considering either the distance on the space 𝑋 ×R of all states or the
semi-specific contextual distance on the space 𝑋.

The length function we have presented here only takes into account the travel
time, but the flexibility of our framework allows to take into account various criteria.
One can for instance take as a length function the total price of the trip by assigning
to each arcs in 𝑊 a length of 0 and each arc in 𝑇 the price of the ticket. One
can also penalize connections by assigning to each possible trip 𝑡 ∈ 𝑇 a length
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ℓ(𝑡) = 𝑒𝐶(𝑡) − 𝑠𝐶(𝑡) + 𝑝 where 𝑝 is a fixed penalty.

4 Conclusion
A large part of our effort lies in the introduction of the description of actual trips
into the definition of distances. In our view, geographical distance is not exclusively
a matter of geometry, is is also related to physical movement in geographical space.

We propose to root the idea of effort minimisation into the definition of geo-
graphical distance and its mathematical formalisation. This objective is non-trivial
to achieve notably because of the issue of possible triangle inequality violation due to
the need for break in any movement. This issue translates into additivity problems
that may disturb the order of proximities in geographical spaces, and undermine
their basic geometrical properties. In order to address this issue, we introduce the
concept of contextual distances that, in parallel to pure geometric movement, con-
siders a context where resources used for – or related to – movement, are accounted
for, that it be time, money or other relevant quantities.

We show that contextual distances follow many properties of metrics, in particular
they respect the triangle inequality. This result paves the way for its use within the
context of spatial analysis in geography.

Future work could examine the observation of triangle inequality on empirical
datasets. Time, kilometres and cost distances by various transport modes could be
measured, and then tested regarding triangle inequality. The investigation could
consider these datasets as contextual distances, adjusting contextual and non con-
textual parameters, and test whether this mathematical framework allows to better
understand the geometry of geographic spaces. In this direction, our affirmation
that the triangle inequality is always satisfied opens more questions than it closes:
first, in some spaces the triangle inequality is almost an equality for most triple of
points while in other spaces a much stronger inequality is almost always true; this
could be used as a geometric property classifying geographical spaces. Are there ge-
ographical spaces which seem very different from a geographic perspective but which
share such geometric properties? On the contrary, are there geographical spaces that
are thought of as close one to each other, but in fact have very different geometric
behavior in this respect?

Second, one could consider other inequalities, possibly involving more than three
points. One could for example classify spaces by the constraints its geometry entails
for the 6-tuple (︁

𝑑(𝑝, 𝑞), 𝑑(𝑝, 𝑟), 𝑑(𝑝, 𝑠), 𝑑(𝑞, 𝑟), 𝑑(𝑞, 𝑠), 𝑑(𝑟, 𝑠)
)︁
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when (𝑝, 𝑞, 𝑟, 𝑠) runs over all 4-tuples of point in the given space. Searching various
sets of geometric inequalities that, when verified by a given space, ensures the planar
representation of this space up to some reasonable error would also be an interesting
endeavour: it would inform map designer by telling them when no good map can
exists, or rather how bad they must be, in a variety of contexts far beyond the
mapping of Earth with its geometric distance. These findings could prove valuable
in the domain of the representation of time-distances, where stress control is a key
issue.
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