N
N

N

HAL

open science

Morphopoietic Determinants of HIV-1 Gag Particles
Assembled in Baculovirus-Infected Cells

Bernard Gay, Jeannette Tournier, Nathalie Chazal, Christian Carriere, Pierre

Boulanger

» To cite this version:

Bernard Gay, Jeannette Tournier, Nathalie Chazal, Christian Carriere, Pierre Boulanger. Morphopoi-
etic Determinants of HIV-1 Gag Particles Assembled in Baculovirus-Infected Cells. Virology, 1998,
247 (2), pp.160-169. 10.1006/viro.1998.9237 .

hal-02147228

HAL Id: hal-02147228
https://hal.science/hal-02147228
Submitted on 7 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-02147228
https://hal.archives-ouvertes.fr

VIROLOGY 247, 160-169 (1998)
ARTICLE NO. VY989237

Morphopoietic Determinants of HIV-1 Gag Particles Assembled in Baculovirus-Infected Cells
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Laboratoire de Virologie et Pathogénese Moléculaire (CNRS UMR 5812), Faculté de Médecine, 34060 Montpellier, France
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The determinants for HIV-1 particle morphology were investigated using various deletion and insertion mutants of the Gag
precursor protein (Gag) expressed in baculovirus-infected cells and ultrastructural analysis of membrane-enveloped Gag
particles under the electron microscope. Five discrete regions were found to influence the size, the variability in dimension,
and the sphericity of the particles: (i) the matrix (MA) N-terminal domain, within residues 10-21, the junctions of (i) MA-CA
(capsid), (iii) CA-spacer peptide SP1 and (iv) nucleocapsid (NC)-SP2, and (v) the p692¢ C-terminus. Internal regions (ii), (iii), and
(iv) contained HIV-1 protease cleavage sites separating major structural domains. No particle assembly was observed for
amb276, a MA-CA polyprotein mutant lacking the C-terminal third of the CA domain. However, MA-CA domains including the
MHR (residues 277-306), or downstream sequence to CA residue 357, resulted in the assembly into tubular or filamentous
structures, suggesting a helical symmetry of Gag packing. Mutant amb374, derived from amb357 by further addition of the
heptadecapeptide motif 3*HKARVLAEAMSQVTNSA3™, overlapping the CA-SP1 junction and the SP1 domain, showed a
drastic change in the pattern of Gag assembly, compared to amb357, with formation of spherical particles. These data
suggested a novel function for the spacer domain SP1, acting as a spherical shape determinant of the Gag particle which
would negatively affect the helical symmetry of assembly of the Gag precursor molecules conferred by the MHR and the
downsteam CA sequence, within residues 307-357. © 1998 Academic Press
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symmetry; MV and CDV nucleoprotein core.

INTRODUCTION

The occurrence of virus-like particles in cells express-
ing solely the human immunodeficiency virus type 1
(HIV-1) Gag precursor (Pr55Gag) implied that this
polyprotein contained all the sequence information re-
quired for its self-assembly into immature Gag patrticles,
which, upon maturation, lead to infectious virions (Wills
and Craven, 1991; Craven and Parent, 1996). Extensive
mutagenesis of the retrovirus Gag structural domains,
matrix (MA), capsid (CA), nucleocapsid (NC), and C-
terminal p6 (reviewed in Boulanger and Jones, 1996;
Craven and Parent, 1996; Krausslich and Welker, 1996),
and crystallographic analysis of MA (Hill et al., 1996;
Massiah et al., 1994; Rao et al., 1995) and CA proteins
(Gamble et al., 1996, 1997; Gitty et al., 1996; Kovari et al.,
1997; Momany et al., 1996) have contributed to defining
the regions in the Gag precursor which are essential for
interaction and self-assembly of membrane-enveloped,
budding particles. In RSV, three discrete assembly do-
mains have been identified, and termed M, for mem-
brane-binding, |, for interaction, and L, for late step of
budding (Craven and Parent, 1996). In HIV-1 Pr55Gag, M
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has been found to be confined to the N-myristoylated
glycine and the N-terminal 31 residues of the MA do-
main, | has been mapped to the NC domain, and L at the
N-terminal end of the p6 domain (Craven and Parent,
1996).

Virus particle morphogenesis has to be considered
from a double point of view: (i) the quantitative aspect of
the phenomenon, which can be assayed by the number
of particles recovered from the extracellular medium,
and its decrease or absence in the case of assembly-
defective mutants; (ii) the qualitative analysis of the as-
sembly process, which takes into account the parame-
ters of the particles, i.e., their mean size, shape, and
regular or irregular contours. In the case of HIV-1, how-
ever, the effects of gag mutations on particle assembly
have mainly been studied in quantitative terms, and the
numbers of Gag particles and mature infectious virions
produced have been evaluated by CA immunoassays
and RT enzymatic assays. By contrast, very little has
been reported on the regions of the Gag precursor mol-
ecule and on the mechanisms which control the size, the
shape, and the symmetry of the particles.

The present study describes the results of an ultra-
structural analysis performed by electron microscopy
(EM) on membrane-enveloped Gag particles assembled
and released by baculovirus-infected insect cells ex-
pressing recombinant HIV-1 Gag precursor mutants. This
system has the advantage of a high efficiency of Gag
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precursor production and particle assembly (Boulanger
and Jones, 1996; Carriere et al., 1995; Chazal et al., 1994,
1995; Gheysen et al., 1989; Hughes et al., 1993; Luo et al.,
1994; Overton et al., 1989; Royer et al., 1991, 1992); and
provides Gag particle samples in sufficient amounts to
obtain statistical data with reasonable confidence.

RESULTS

Electron micrographs showing WT and mutant Gag
particles at the periphery of sectioned cells were ob-
served and the parameters of the particles determined
(Fig. 1 and Table 1). It was assumed that they repre-
sented nascent or “young” particles freshly released by
budding from the plasma membrane. The results, exem-
plified in Figs. 3 and 4, are summarized in histograms of
Figs. 2a, 2b, and 2c. Figure 2a presents the mean values
for the external diameter of the mutant Gag particles.
Their heterogeneity in size was estimated by the stan-
dard deviation (SD) of the mean values (Fig. 2b). Their
propensity to assemble into nonspherical particles was
estimated from the mean ratio of the minimum diameter
(d) to the maximum diameter (D), defined as the sphe-
ricity index (d:D) (Fig. 2c and Table 2).

With the exception of mutant amb276, all the other
mutants released extracellular Gag particles in signifi-
cant numbers. The diameter of Sf9-released WT Gag
particles was found to be 125.04 £ 12.45 nm (mean =
SD; n = 51, confidence interval = 3.5 nm at the P = 0.05
level), consistent with the previously reported dimen-
sions of mature and immature HIV-1 particles (135-150
nm in diameter) observed by conventional transmission
EM (Gelderblom, 1990). However, our recombinant WT
Gag particles appeared to be rather homogeneous in
size, a result which contrasted with the wide range of
diameters, varying from 120 to 260 nm, for similar recom-
binant Gag particles analyzed by cryo-EM (Fuller et al.,
1997). It is not possible to assess whether the homoge-
neity in size and shape of the WT Gag particles resulted
from the artifactual effect of fixative and contrasting
agents used in our EM study or, alternatively, whether the
nascent, fibrin-included particles found in the vicinity of
Sf9 cell plasma membrane would have been preserved
in their original, native morphology. In the latter case, this
would imply that heterogeous Gag particles harvested
from the culture medium and isolated by ultracentrifuga-
tion in velocity gradients for cryoEM analysis (Fuller et
al., 1997), could have undergone some morphological
alterations.

In contrast to WT Gag particles, more pleiomorphism
was shown by Gag mutants, although to various degrees
(Figs. 2-4). At the N-terminal extremity of the Gag pre-
cursor molecule, in the MA domain, the deletion dl10-21
(refer to Figs. 5¢c and 5d in Chazal et al., 1995), corre-
sponding to the first a-helix H1, and the deletion dI101-
143 (Fig. 3b), corresponding to the last a-helix H5 (Hill et

al.,, 1996; Massiah et al., 1994) and the MA—-CA junction,
resulted in mutant particles significantly larger than the
WT particles, with diameters of 206.01 = 64.70 and
18790 = 3713 nm, respectively (Fig. 2a). The dl41-143
mutant (Fig. 3a) had a diameter of 165.82 + 26.90 nm,
intermediate between the WT particles and the dI10-21
and dI101-143 mutant particles. The dl10-21 mutant par-
ticles and, to a lesser degree, the dl41-143 and dI101-143
showed a higher heterogeneity in size and shape than
the WT Gag particles, with a significant number of non-
spherical particles adopting a dumbell shape (Figs. 2b,
2c, 3a, and 3b).

At the other extremity of the Gag precursor molecule,
the deletion of the C-terminal half of p699, as in amb462,
the deletion of the entire p6929 domain and most of the
SP2 intermediate domain, as in amb438, or the deletion
of p6929, SP2, and the C-terminal end of the NC domain,
as in amb426, had little or no effect on the final sizes of
the mutant particles: 132.86 = 919, 120.43 = 10.02, and
127.04 = 1113 nm, respectively (Fig. 2a). Likewise, partial
or total deletion of the p69%¢ domain seemed to result
only in minor changes in the degree of homogeneity and
sphericity of mutant particles: a standard deviation of the
mean value slightly lower than that for WT was observed
for amb462 (9 nm vs 12 nm for WT; Fig. 2b) and a slightly
higher sphericity index for amb438 (0.93 = 0.06 vs 0.89 =
0.01 for WT; Fig. 2c and Table 2). In contrast to these
deletions, the fusion of an extra retroviral sequence to
the carboxy-terminal extremity of p69%9, as in GagPR67,
apparently affected the particle size and homogeneity to
a greater extent. GagPR67, which contains a p6929-fused
protease (PR) domain inactivated by a D33G mutation at
its active site, released irregular particles, varying in
shape from small spherical particles to elongated struc-
tures (Royer et al., 1997). Their mean diameter was found
to be slightly smaller than that of WT particles (m = 109
nm; Fig. 2a), but their heterogeneity (SD = 77.32 nm) and
lack of sphericity (d:D = 0.79) were both higher (Figs. 2b
and 2c). Further addition of portions of the reverse tran-
scriptase domain (Pol) at the C-terminus of Gag polypro-
tein, as in GagPRPol84 or GagPRPol112 constructs
(Royer et al., 1997), abolished assembly and budding (not
shown).

Since the quantitative changes occurring with p6 mu-
tations were rather discrete, in comparison to carboxy-
truncated mutants such amb333 or amb341, the Student's
test was applied to the parameters of the WT, amb462,
amb438, and GagPR67 particle populations. The differ-
ence in particle heterogeneity was apparently significant
at the P = 0.05 level between WT and amb462 (t = 3.25,
P = 0.00158), as well as between WT and GagPR67 (t =
3.73, P = 0.001), and the difference in sphericity index
between the populations of WT and amb438 particles
was also significant (t = 4.65, P = 0.001). This suggested
that the carboxy terminus of Pr55Gag would play some
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FIG. 1 Schematic diagram of HIV-1, 5, Gag contructs depicting the position and the extent of the various truncations and deletions. On the linear
representation of the WT Pr55Gag precursor, the respective positions of the structural domains, indicated by vertical bars, are within residues 1-132
(MA), 133-363 (CA), 364-377 (SP1), 378-433 (NC), 434-448 (SP2), and 449-500 (p6). The CA, NC, and p6 domains are shown by light gray boxes, the
MA, the major homology region (MHR) of the CA domain, the SP1, and SP2 spacer peptides by black boxes, and the two zinc fingers in the NCp7
by hatched boxes. Gag mutants are arbitrarily grouped according to the type of mutation. From the top to the bottom: MA deletion mutants,
carboxy-truncated Gag polyproteins resulting from the insertion of amber multiple stop codons (Carriere et al., 1995), insertion mutants (solid arrows),
internal deletion mutants in SP1 or SP2, and polyprotein fusion mutant GagPR67, resulting from the fusion of an inactive protease domain (PR, 11 kDa)
to the carboxy-terminal residue of p6929 (Royer et al., 1997).

subtle but significant conformational role in the Gag tural domains, MA, CA, NC, and p69%9, along with two
particle morphogenetic process. spacer peptides delineated by additional cleavage sites

The processing of HIV-1 Pr55Gag by the virus-coded at the CA-NC junction (position 363-364) and the NC-
proteinase (PR) results in the release of four major struc- p6929 junction (position 433-434), respectively (Craven
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TABLE 1

Characteristics of Recombinant Gag Precursor Mutants and Mutant Gag Particles®

Gag clone Sample size® Postulated
designation Mutant sequence Domains involved® (n) Particle morphology symmetry?
WT Pr55Gag — — 51 Spherical SS
dl10-21 —GO[]-L?~ MA (E*LDRWEKIR?) 55 Spherical SS
di41-143 —E“° [NSR] H*4— MA, MA//CAP 57 Spherical SS
dl101-143 —A% [GINSR] H*4— MA//CA 48 Spherical SS
amb276 —M?"8-stop CA (—HMR)® 0 No particle —
amb306 —A%%.stop CA (+HMR)® 18 Tubular H
amb333 —I3%3[FWNSSLD]-stop CA 16 Tubular H
amb341 — A3 GILV]-stop CA 30 Tubular H
amb357 —G**’[WNSSLD]-stop CA/ISP1 21 Tubular H
amb374 —A%"4[GILV]-stop SP1 24 Spherical SS
amb426 —C*?8[LEF]-stop NC 24 Spherical SS
amb438 —W*38[LEF]-stop SP2 50 Spherical SS
amb462 —S*62[WNSSLD]-stop p69a9 48 Spherical SS
in357 —G%®7 [WNSS] H — CAJISP1 10 Spherical and tubular SS, H
in374 —AS4 [GIPA] T — SP1 89 Spherical SS
in438 —W4*38 [LEFQ] P — SP2 16 Spherical Ss
dl427-438 —C*%% [LEFQ] P**°— NC//SP2 47 Spherical SS
d437-444 —KA436 [L] PHS— SP2 62 Spherical SS
GagPR67 GagPr55-PRD33G' p6929//PR(11kDa) 24 Spherical and tubular SS, H

@ The sequences are written in single-letter code amino acids, and amino acids inserted at cloning cassettes are in brackets.

® The respective positions of the different structural domains of HIV-1, 5, Pr55Gag are indicated in Fig. 1 For the MA mutant dI10-21, the short deleted
sequence (residues 11-20) is shown in parenthesis. Double slash bars indicate the junction between structural domains.

¢ Sample size represents the number of particles (n) observed under the EM and quantitated, as shown in Fig. 2.

9 Assembly of Gag molecules has been shown not to follow the icosahedral symmetry, but a mechanism of interaction of membrane-bound
semispherical sectors (SS) (Fuller et al., 1997). Tubular or filamentous particles are assumed to adhere to helical (H) symmetry.

¢ Deletion involving (=) or not (+) the major homology region (MHR, Wills and Craven, 1991), located within residues 285-305 in HIV-1 Pr55Gag.

f Addition of the active site-inactivated protease (PR) domain (D to G substitution; Royer et al., 1997) to the C-terminus of p6939.

and Parent, 1996; Henderson et al., 1992). The role of SP1
(residues 364-377) and SP2 (residues 434-447) in Gag
particle morphogenesis was also analyzed by EM, using
Pr55Gag carrying mutations in (or near) these two inter-
mediate domains. Mutants dl437-444 (SP2-deleted; Fig.
3c), dl427-438, carrying a deletion involving the NC-SP2
junction (Fig. 3d), and the SP2 insertion mutant in438
showed Gag particles with a mean diameter greater than
that of WT particles (145.63, 152.60, and 145.81 nm, re-
spectively), with a significantly higher dispersion of the
values (SD ranging from 22 to 36 nm). For the two
deletion mutants, but not for the insertion mutant in438,
there was a lower sphericity index (0.77 and 0.80), com-
pared to WT particles. Two insertion mutants, in374,
which carried an insertion within the SP1 domain, and
in357, carrying an insertion at the CA-SP1 junction (Table
1), assembled particles slightly larger than those of the
WT (136.94 and 129.84 nm, respectively). However, in357
Gag particles appeared to be highly pleiomorphic, with a
SD value of 48 nm, and showed many irregular and
tubular structures which lowered their sphericity index to
0.77. These data suggested that the spacer domains SP2
and SP1 play a significant role in the Gag particle mor-
phology. The importance of SP1 and the CA-SP1 junction
was confirmed by EM analysis of Gag carboxy-truncation
mutants.

Carboxy-truncated Gag polyproteins with extensive
deletions from the C-terminus were studied in EM for
size and shape characteristics. Mutant amb276, deleted
of p6, SP2, NC, SP1, and the C-terminal third of CA,
including the major homology region (MHR; Wills and
Craven, 1991; Craven and Parent, 1996), failed to assem-
ble any Gag particle. However, amb306, which failed to
form spherical particles, assembled long tubular struc-
tures of 15 to 93 nm in diameter (60 = 27 nm; m = SD)
and heterogeneous in length, up to 8 um (Figs. 2a and
4a). Similar tubular assemblies of heterogeneous
lengths protruding from the plasma membrane were ob-
served with amb333, amb341, and amb357 (Figs. 4b-4f),
although they showed less heterogeneity in diameter
(82 = 4, 48 = 5, and 45 * 15 nm, respectively) than
amb306. These tubular structures were labeled with
anti-CA monoclonal antibody and immunogold-labeled
conjugate (Fig. 4e), suggesting that the protein layer
underneath the membrane lipid bilayer consisted of Gag
precursor molecules. All the other Gag mutants carrying
smaller carboxy-terminal deletions, amb374 (lacking NC,
SP2, and p69%9; Fig. 4g) amb426, amb438 (lacking SP2
and p6929), and amb462 (deleted of the p69%9 C-terminal
half), assembled spherical particles (not shown; refer to
Carriére et al., 1995).
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FIG. 2. Histograms of the distribution of Gag particle size (a), hetero-
geneity (b), and sphericity (c) between different HIV-1 Gag precursor
mutants, whose names were abbreviated as indicated in Fig. 1 and Table
1 (a) The mean diameters of the particles are given in nm. For tubular
particles of mutants amb306, amb333, amb341, and amb357, the parame-
ters shown are the mean diameter taken at different positions (at least 10)
of several independent tubes (n, refer to Table 1). (b) Particle heterogeneity,
evaluated by the standard deviation (SD) to the mean diameters, is given
in nm. (c) Particle sphericity was estimated from the ratio of the minimum
to maximum diameters; for tubular particles assembled by mutants
amb306, amb333, amb341, and amb357, this was evaluated by the ratio of
the mean diameter to the length of the tube. For amb357, the circles and
ellipses which resulted from the incidence of the cell sectioning through
self-folding tubes, as visible in Fig. 4f, were not quantitated, as they
represented too complex 3D structures to be easily interpreted and re-
solved in a 2D analysis. The sample size, i.e., the number of particles
quantitated (n), is indicated in Tables 1 and 2.

GAY ET AL.

FIG. 3. Electron microscopy of Gag particles of internal deletion
mutants, assembling at and budding from Sf9 plasma membrane. MA
and MA-CA deletion mutants dl41-143 (a) and dI101-143 (b); SP2 and
NC-SP2 deletion mutants dI437-444 (c) and dl427-438 (d). Bar, 100 nm.

DISCUSSION

The regions of Pr55Gag which influenced the overall
particle size, their variability in size and their degree of
sphericity were found to be located at five discrete re-
gions of the molecule: (i) at the N-terminus of the MA,
within residues 10-21, (ii) at the MA-CA junction, (iii) at
the CA-SP1 junction, (iv) at the NC-SP2 junction, and (v)
at the p69%¢ C-terminus. It is noteworthy that three of
these regions correspond to HIV-1 protease cleavage
sites, suggesting that they represent accessible and
flexible hinges between structural domains. It is reason-
able to conceive that these hinges could have significant
morphopoietic effects on the Gag particles.

The central portion of the MA domain has been shown
to be essential for production of infectious virions and
assembly of recombinant Gag particles (Chazal et al.,
1995; Freed et al., 1994; Yu et al., 1992). Its two bounding
domains, the H1 «-helix, which was mutated in dI10-21,
and which has been assigned to bind to plasma mem-
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FIG. 4. Electron microscopy (a—d, f, g) and immunoelectron microscopy (e) of Gag particles assembled by Gag carboxy-truncated mutants (amber
mutation, amb) at the plasma membrane of Sf9 cells. CA deletion mutants amb306 (a), amb333 (b), amb341 (c), amb357 (d-f), and amb374 (g). In (e),
cell section was reacted with anti-CA mAb and 5-nm gold-labeled anti-mouse 1gG conjugate. Bar, 100 nm.
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TABLE 2

Degree of Sphericity of WT and Mutant Gag Particles®

Clone d:D ratio (mean) + SD Sample size (n)
WT Pr55Gag 0.89 0.01 51
dl10-21 0.65 0.20 55
dl41-143 0.85 0.12 57
dl101-143 0.67 021 48
amb306 0.01 NAP 18
amb333 0.00 NA 16
amb341 0.01 NA 30
amb357 0.01 NA 21
amb374 0.87 0.09 24
amb426 0.91 0.08 24
amb438 0.93 0.06 50
amb462 0.89 0.07 48
in357 0.77 0.22 10
in374 0.87 0.08 89
in438 0.92 0.06 16
dl427-438 0.80 0.14 47
dl437-444 0.77 0.16 62
GagPR67 0.79 0.20 18

@ The sphericity index of Gag particles was estimated from the mean
ratio of the minimal (d) to the maximal (D) diameter. The histogram is
shown in Fig. 2c. The sample size (n) represents the number of
particles quantitated. SD, standard deviation of the mean.

P NA, not applicable (tubular or filamentous particles).

brane phospholipids (Krausslich and Welker, 1996), and
the C-terminal portion of the MA, overlapping the second
basic signal and the MA-CA junction, mutated in dl101-
143, apparently contain major morphological determi-
nants, influencing the particle size and shape. At the
C-terminus of the Gag precursor molecule, partial or total
deletion of the p69%¢ domain resulted in a slight, albeit
statistically significant, increase in particle homogeneity
and sphericity (as in amb462 and amb438), whereas the
addition of an extra retroviral sequence to the C-terminus
of p69%9 (as in GagPR67) had the reverse effect. This
would imply that the p692%9 domain would also have some
influence on Gag conformation and assembly, as previ-
ously suggested (Hughes et al., 1993; Royer et al., 1997).

Our results with amb276 and amb306 suggested that a
recombinant HIV-1 Gag precursor consisting of the MA
and carboxy-truncated CA domains was not capable of
self-assembly in vivo without the MHR sequence (resi-
dues 285-305; Wills and Craven, 1991; Craven and Par-
ent, 1996), confirming previous studies on HIV-1 and
other retroviruses (Carriere et al., 1995; Craven et al.,
1995; Mammano et al., 1994; Strambio-de-Castilla and
Hunter, 1992). The addition of a CA sequence comprising
the MHR brought enough assembly information to allow
the formation of cylindrical or filamentous Gag particles.
These types of structures suggested a helical symmetry
of Gag packing. Further extension of the CA domain
within residues 307 to 357, as in amb333, amb341, and
amb357 which still assembled filamentous particles, im-
plied that the CA sequence within residues 307-357 did

not influence the helical symmetry of HIV-1 Gag packing
already conferred by the MHR.

The role of Gag spacer peptides in retrovirus particle
assembly and infectious virus production has been al-
ready investigated in RSV and HIV. The peptide in-
terspacing the CA and NC domains of RSV Gag precur-
sor, although having no significant sequence homology
with HIV SP1, has been found to be required for forming
regular-shaped infectious virions (Craven et al., 1993;
Krishna et al., 1998). Likewise in HIV-1, deletions of SP1
or mutations at the CA-SP1 junction abolished infectivity
(Goettlinger et al., 1989; Kralsslich et al., 1995; Pettit et
al., 1994). The integrity of SP1 and the CA-SP1 junction
has been found to be crucial for viral particle formation in
HIV-1 (Accola et al., 1998), and the deletion of a proline-
rich region at the CA-NC junction of recombinant HIV-2
Gag precursor (within residues 372-377) abolished par-
ticle assembly (Luo et al., 1994). Viral particles released
by COS 7 cells transfected by a SP1-deleted HIV-1 pro-
virus have been found to contain a tube-shaped electron-
dense core (Kraisslich et al., 1995). It has been sug-
gested that SP1 deletion had a deleterious effect on the
sequential processing of Gag polyprotein (Pettit et al.,
1994) and ordered assembly of the virions (Kralsslich et
al.,, 1995). Our observation that amb357 assembled Gag
tubular structures confirmed previous studies using C-
truncated mutants of HIV-1 Gag (Gheysen et al., 1989;
Goettlinger et al., 1989; Hockley et al., 1994; Jowett et al.,
1992) and point mutants of the CA domain of M-PMV Gag
precursor (Strambio-de-Castilla and Hunter, 1992). These
tubes were also reminiscent of the elongated structures
obtained in experiments of in vitro assembly of CA-NC
domains of RSV and HIV (Campbell and Vogt, 1995) and
of HIV-1 recombinant CA protein (Ehrlich et al., 1992;
Gross et al., 1997).

Full-length recombinant Gag precursor and immature
HIV-1 particles have recently been shown to lack an icosa-
hedral organization, as previously hypothesized (Nermut
and Hockley, 1996), and to assemble via accretion of mem-
brane-bound semispherical sectors (Fuller et al., 1997). Fur-
thermore, crystals of RSV CA protein show a helical ar-
rangement of protein subunits (Kovari et al,, 1997). The
addition to the amb357 sequence of a short stretch of
amino acids from the CA-SP1 domains, overlapping the CA
carboxy-terminal hexapeptide (residues 358-363) and al-
most the entire SP1 (viz. 11 residues of the SP1 tetrade-
capeptide), to generate amb374, resulted in the assembly of
Gag spherical particles (compare panels f and g in Fig. 4).
Although smaller than WT Gag particles (103.66 *+ 16.98
nm, n = 24, confidence interval of 114 nm at the P = 0.05
level), the amb374 particles were almost as homogeneous
in size as WT particles and presented a similar sphericity
index (0.87; Fig. 2c; Table 2). The modification of the phe-
notype of Gag particles, from a tubular (as for amb306,
amb333, amb341, and amb357) to a spherical shape (as for
amb374), suggested that the addition of the CA-SP1 junc-
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tion and SP1 peptide to the MA-CA domains of HIV-1 was
sufficient to alter the helical symmetry of assembly of the
Gag molecules.

However, recombinant HIV-1 CA protein has been
found to self-assemble in vitro as tubules, regardless of
the presence of SP1 at the C-terminus (Gross et al.,
1997). Their diameter, 55 nm, is similar to the value found
for our amb357 mutant filamentous particles (45 = 15
nm; Figs. 2a and 2b). This would confirm that the peptide
domain conferring the helical symmetry of Gag packing
in vitro and in vivo is localized within the CA, but would
imply that the morphopoiteic function assigned to SP1
would take place only in vivo at the budding sites, in the
presence of the MA domain, and in the plasma mem-
brane environment. Our observation therefore suggests
a novel function for the SP1 domain and the CA-SP1
junction of HIV-1, acting as a spherical shape determi-
nant of the immature Gag particle in vivo and as a
silencer of the helical symmetry of MA-CA assembly,
conferred by the MHR and the downstream CA se-
qguence, within residues 307-357. This function and the
morphopoietic requirement for the SP1 domain to
achieve normal CA assembly would explain the selective
advantage of a relatively slow cleavage of the CA-SP1
site by the viral protease compared to the downstream
site SP1-NC, as experimentally observed (Pettit et al.,
1994).

The minimum sequence required to transform the Gag
particle phenotype was the peptide motif *>*HKARVLAE-
AMSQVTNSA3®™, which differentiates amb357 from
amb374. This peptide was compared to sequences de-
posited in databanks using the FASTA program. It was
found to present 52% homology within a 14-residue over-
lap and 66% homology within a 9-residue overlap, with
the sequence KPRIAEMICDIDN(T) found in the nucleo-
capsid proteins (residues 238-250) of two paramyxovi-
ruses, human measles virus (MV), and canine distemper
virus (CDV) (Barrett and Mahy, 1984; Rozenblatt et al.,
1985). The CDV and MV nucleocapsid proteins interact
with the M proteins during virion formation and have
been postulated to confer the helical symmetry to the
nucleoprotein core of the virus. Both Gag CA-SP1 junc-
tion (Accola et al., 1998) and MV-CDV nucleoprotein
homologous peptide have a high probability of adopting
an a-helix conformation within the context of the whole
protein (data not shown). It would be rewarding to de-
termine whether the conserved 14-mer peptide motif has
any morphopoietic function in a viral protein context
different from HIV-1 Gag and represents per se a specific
determinant of the symmetry of the CDV and MV cores.

MATERIALS AND METHODS
Gag constructs

The construction of the recombinant baculoviruses
expressing the WT Pr55Gag and most of the mutants

used in this study has been described in detail else-
where (Carriére et al., 1995; Chazal et al., 1995; Royer et
al., 1991, 1992). Carboxy-truncated mutant amb462 has
been deleted of the C-terminal half of the p6 domain,
amb438 of the entire p6 and the C-terminal half of the
SP2 intermediate domain, amb426 of the p6 and SP2
domains of the C-terminal region of the NC downstream
to the second zinc finger, amb374 has been deleted of
the entire NC, and amb357 of SP1 and NC. Further
carboxy truncations within the CA domain have gener-
ated mutants amb341, amb333, amb306, and amb276
(Carriere et al., 1995). The internal deletion in mutant
d1437-444 (residues **'IWPSYKGR***) removed most of
the SP2 domain (***LGKIWPSYKGRPGNF**®) (Huvent et
al., 1998). Deletion in mutant dl427-438 involved the NC-
SP2 junction, with the sequence ***CTERQANF-
LGKIWP** replaced by “?°C-[LEFQ]-P**® (Huvent et al.,
1998). The MA deletion mutant dl10-21 has been charac-
terized in a previous study (Chazal et al., 1995). For MA
mutant dl41-143, the 5’ gag sequence, coding for the MA
N-terminal domain, was cut at the Alul site at codon
position 40 and ligated to the 3’ moiety of in143 gag, cut,
and blunted at the uniqueEcoRI site present in its inser-
tion linker (Chazal et al., 1994). For mutant dl101-143, the
gag 5’ sequence of the insertion mutant in100 was li-
gated to the 3’ moiety of in143 gag, both cut and blunted
at their unique EcoRI site (Chazal et al., 1994). The
abbreviated names and sequence characteristics of the
mutants used in this study are summarized in Table 1,
and a schematic drawing of the Gag precursor domains
depicting the position and extent of the various muta-
tions is shown in Fig. 1

Ultrastructural analysis

Sf9 cells were infected by recombinant baculovirus at
a M.O.I. of 5 PFU/cell, and cells expressing the different
Gag constructs were harvested at 48 h after infection. To
retain the maximum number of budding Gag particles at
the periphery of the cells, fibrinogen was added to the
cell suspension (5 mg/ml in Tris-buffered saline; TBS),
and clotting of fibrin within the cell pellet was induced by
addition of thrombin (100 pg/ml in 01% CaCl, in H,0)
immediately before low-speed centrifugation of the cells.
Cell pellets were then processed for EM analysis as
previously described (Carriere et al., 1995). Several cell
sections per each Gag mutant were examined under the
Hitachi-H7100 electron microscope. Except for some low
Gag particle producers, the parameters were usually
determined on 40 to 60 Gag particles per mutant.

For immunoelectron microscopy (IEM), thin sections
were pretreated with a saturated aqueous solution of
sodium metaperiodate for 10 min, followed by a rinse in
H,O, and 10 min in 01 N HCI. After etching, the grids
were washed in H,O for 5 min and incubated on drops of
TBS supplemented with 0.05% Tween 20 (TBS-T), 0.5%
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cold water fish skin gelatin (Sigma), 0.5% nonimmune
goat serum, 0.5% bovine serum albumin, and the re-
quired antibody (Bendayan and Zollinger, 1983). Incuba-
tion with the primary anti-CA monoclonal antibody (Epi-
clone 5001; diluted to 1:100) was carried at 4°C overnight
(Carriere et al., 1995), followed by reaction with second-
ary 5-nm colloidal gold-labeled anti-mouse IgG antibody
(Amersham; diluted to 1:10) at room temperature for 1 h.
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