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T
his work provides preliminary results in-
dicating that helical markers and neural
networks can enable efficient monitoring

of the 3D shape and orientation of an active
catheter from isolated 2D fluoroscopic images.

1 Introduction

Accurate performance of minimally invasive surgeries
(MIS) requires intra-operative feedback. For active
catheters, particularly, it is necessary to track beyond
the tip and include an extended longitudinal section so
as to avoid tissue damages by unintended operations of
active components along the length.

The present study aims to obtain shape and orien-
tation of active catheters with fluoroscopy, which has
been a standard protocol for catheter monitoring[1].
To overcome the limitations of 2D while avoiding the
additional computational and financial costs of bi-plane
imaging[2], radiopaque markers are introduced.

Publications have shown that band markers aid tip
orientation tracking[3] and that helical markers aid
curvature sensing[4]. This work trains a shallow neu-
ral network (NN) to reconstruct the full-length 3D
configuration of an active catheter[5] from projections
of designed markers. The system can potentially be
generalized beyond fluoroscopy for ultrasound[6][7] or
magnetic resonance imaging (MRI)[8].

2 Methods

2.1 Experimental setup and variables

A catheter prototype was made from a torque coil
(Fig.1). To assist with tracking, compression springs
were attached as radiopaque helices surrounding the
coil. An additional copper wire looped around one end

Figure 1: A prototype of catheter and helical markers (the
scale bar is in cm).

Figure 2: (A) Three variables for orientation with respect
to imaging plane (in blue) and (B) one for shape.

of the coil to serve as a reference for base point. Images
of the prototype in various shapes and orientations were
acquired by Siemens’ radiology system, Artis Zeego.

The orientation of a catheter can be defined by three
variables– yaw, roll, and pitch (Fig. 2A). The shape
of an active catheter can be approximated by a global
bending angle measured between the base and the tip
(Fig. 2B). This study focused on two of the variables:

Roll angle θroll is the angle about the unbent
catheter’s length. θroll varied between 0◦ and 75◦

in 188 increments automatically by the 20sDR-H
30 protocol on Artis Zeego.

Bending angle θbend is the difference between angles
in the distal and proximal segments. In this work,
the catheter was manually deflected into five dif-
ferent θbend.

There were, therefore, a total of 940 configurations.
Note that the variations of yaw and pitch are also crucial
and have been part of the work in progress (see 3.2).
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Figure 3: An example of 2D image (left) and the image
overlaid with extracted peaks, catheter shape, and
reference point (right).

Figure 4: The 2D trajectories of helical peaks in differ-
ent roll (θroll) and bending (θbend) angles. All
subplots share the same horizontal axis limit.

2.2 Image analysis

All images were post-processed in MATLABTM. Fig.
3 shows an example frame before and after processing.
The projected shape of the catheter was approximated
as a 3rd-order polynomial. Helical peaks were identified
by two methods. The first method found regions of con-
nected pixels and retained those in proper sizes. In each
region, the pixel furthest away from the catheter was
labeled as a peak. Nevertheless, due to θbend and projec-
tion perspective, not all peaks displayed as closed areas
to be identifiable with the first method. The second
method, based on the Qhull algorithm[9], searched for
points which formed the greatest convex hull around
the catheter. After eliminating overlaps and falsely
identified peaks by thresholding inter-peak and peak-to-
catheter distances, the trajectories of peaks over θroll
are shown in each subplot in Fig. 4 for each θbend.

3 Results

3.1 Neural network prediction

Each catheter configuration yielded about two dozens
of x- and y- of helical peaks. The information of each
set of peaks was consolidated into single variables. To
uniquely recognize the two catheter configuration vari-
ables (θbend and θroll), it is expected that a minimum
of two predictors are needed.

A two-layer feedforward network was trained with a

Figure 5: (A) The correlation of θroll and θbend between
neural network output (predicted) and ground
truth (actual). (B) The absolute errors of θroll
(top) and θbend (bottom) predictions.

nonlinear least square fitting algorithm[10]. All data
were divided randomly into training (70%), validating
(15%), and testing (15%) sets. Different predictors were
tested in a number of sessions. The two predictors
resulting in the best shape recognition were– d0 (longi-
tudinal distance between the most proximal marker and
the reference point) and di1 − di2 (difference between
concave and convex average inter-peak distances).

The correlations between predicted and actual θbend
and θroll of the testing set (n = 141) are depicted in
Fig. 5A. The errors of both variables are plotted in Fig.
5B. Almost all errors are under 15◦, and neither of the
errors seem to display any trends of variation.

3.2 Discussions

A significant contribution of the present work is the
recognition of large θbend at large θroll (e.g. bright
markers in the fifth subplot in Fig. 4), an ambiguity
primarily introduced by θroll. The markers does not
interfere with the incision in cases where the markers
are covered with an external layer[5]. It is also worth
noting that the present study attempted a framework
without regard to the perturbation of the table and the
calibration of the projection perspective.

Several aspects still need to be addressed. Improved
image quality and processing may resolve the small
portion of missing or erroneous peaks in the current
results. Moreover, simulation covering a broader variety
of possible configurations is expected to robustize neural
network performance. Presently, θbend variation was
limited to five distinct values.

As mentioned in 2.1, future work is ongoing to ex-
pand the model to include θyaw and θpitch variations.
Separate simulations supported the validity of θpitch
recognition with the addition of one predictor– coeffi-
cient of variation of inter-peak distances. As for θyaw,
parallel to the imaging plane, it is expected to be cor-
related with the overall x-y slopes.

In summary, to achieve efficient shape and orientation
identification of a 3D catheter with single-plane fluo-
roscopy, the present work demonstrated the potential
of neural network and helical markers.
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