
HAL Id: hal-02147177
https://hal.science/hal-02147177v1

Submitted on 4 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A semantic-based discovery service for the Internet of
Things

Porfírio Gomes, Everton Cavalcante, Thais Batista, Chantal Taconet, Denis
Conan, Sophie Chabridon, Flavia Delicato, Paulo Pires

To cite this version:
Porfírio Gomes, Everton Cavalcante, Thais Batista, Chantal Taconet, Denis Conan, et al.. A semantic-
based discovery service for the Internet of Things. Journal of Internet Services and Applications, 2019,
10 (1), �10.1186/s13174-019-0109-8�. �hal-02147177�

https://hal.science/hal-02147177v1
https://hal.archives-ouvertes.fr

Journal of Internet Services
and Applications

Gomes et al. Journal of Internet Services and Applications (2019) 10:10
https://doi.org/10.1186/s13174-019-0109-8

RESEARCH Open Access

A semantic-based discovery service for
the Internet of Things
Porfírio Gomes1, Everton Cavalcante1* , Thais Batista1, Chantal Taconet2, Denis Conan2,
Sophie Chabridon2, Flavia C. Delicato3 and Paulo F. Pires3

Abstract

With the Internet of Things (IoT), applications should interact with a huge number of devices and retrieve context data
produced by those objects, which have to be discovered and selected a priori. Due to the number, heterogeneity, and
dynamicity of resources, discovery services are required to consider many selection criteria, e.g., device capabilities,
location, context data type, contextual situations, and quality. In this paper, we describe QoDisco, a semantic-based
discovery service that addresses this requirement in IoT. QoDisco is composed of a set of repositories storing resource
descriptions according to an ontology-based information model and it provides multi-attribute and range querying
capabilities. We have evaluated different approaches to reduce the inherent cost of semantic search, namely parallel
interactions with multiple repositories and publish-subscribe interactions. This paper also reports the results of some
performance experiments on QoDisco with respect to these approaches to handle resource discovery requests in IoT.

Keywords: Internet of Things, Discovery service, Semantic web, Quality of context, Information model

1 Introduction
The Internet of Things (IoT) has rapidly evolved in recent
years as an extension of the current Internet with seam-
lessly interconnected physical objects (a.k.a. IoT devices)
towards providing value-added applications for end-users.
These devices typically encompass sensors and actuators:
sensors produce context data that describe things and
their environment whereas actuators are capable of actu-
ating on them. IoT devices provide services that expose
functionalities to an IoT ecosystem, but the implemen-
tation of those services and their provided interfaces are
highly dependent on the underlying device hardware.
With the growth of IoT and the provision of a huge

number of devices in the near future, there is a need for
discovery services to enable clients such as middleware
platforms, end-users, and applications to retrieve IoT
available resources (i.e., sensors, actuators, services, con-
text data) based on search criteria. Even though discovery
services represent a well-studied topic in distributed sys-
tems [1], traditional approaches are not suitable for the

*Correspondence: everton@dimap.ufrn.br
1Department of Informatics and Applied Mathematics, Federal University of
Rio Grande do Norte, Natal, Brazil
Full list of author information is available at the end of the article

IoT mainly due to the high dynamics of IoT resources [2].
Existing resource discovery proposals for the IoT usually
rely on a single repository responsible for storing resource
descriptions [3–6]. There are several well-known draw-
backs that make this approach unsuitable for IoT in a
real-world scenario, e.g., low scalability and dependabil-
ity. To overcome these limitations, other approaches have
relied on distributed repositories to support the discovery
process [7–11].
The high heterogeneity of IoT resources calls for an

information model containing unambiguous descriptions
of IoT resources. Delicato et al. [12] point out that discov-
ering resources and retrieving data in several scenarios of
IoT is a challenge itself. This is worsened by the current
lack of standardization of protocols and formats to rep-
resent resources and the absence of consensus in terms
of which concepts should be modeled in an information
model for IoT. Chun et al. [13] argue that an informa-
tion model tailored to IoT should be modeled in terms of
ontologies, which can represent a set of common concepts
used in IoT to model resources/services and relation-
ships among them while providing formal expressiveness,
avoiding ambiguity, and fostering automated analysis and
inferences. Therefore, enriching information models with
this type of information can promote interoperability

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13174-019-0109-8&domain=pdf
http://orcid.org/0000-0002-2475-5075
mailto: everton@dimap.ufrn.br
http://creativecommons.org/licenses/by/4.0/

Gomes et al. Journal of Internet Services and Applications (2019) 10:10 Page 2 of 14

among resources, data providers, and data consumers,
and facilitate data access, service integration, semantic
interpretation, and knowledge extraction [14].
Discovery services for IoT can significantly benefit from

context-awareness as resources can be selected according
to contextual information, namely the current situation of
users and/or applications with minimal user intervention
[15]. For instance, a service could search for sensors at a
given location nearby a given user or in a room above a
certain level of temperature. Another benefit of consider-
ing context is that such resources could be prioritized or
recommended according to the interest of users as deter-
mined by their context, including location, history, etc.
Guinard et al. [3] indeed argue that it should be possible
to use external sources of information to better formulate
queries in IoT, going beyond simple keyword search and
using user-quality parameters such as context.
IoT services are deployed in highly dynamic environ-

ments in which resources and services constantly degrade,
disappear and reappear, etc., thus making data in IoT
to be imperfect and inconsistent [12, 16]. A solution to
limit such an imperfection is to consider additional knowl-
edge in the form of Quality of Context (QoC) metadata,
e.g., precision, accuracy, up-to-dateness, etc. [17] to better
characterize the acquired data. Using this additional infor-
mation is relevant since it can augment the richness of
the discovery procedure, better support decision-making
actions, enable to filter out irrelevant data with insuffi-
cient quality, and rank which information should be used
[18, 19].
Aiming at addressing the aforementioned concerns,

we have developed QoDisco, a semantic-based discov-
ery service for the IoT [20]. QoDisco is composed of
a set of independent repositories storing both sensors
and actuators descriptions as well as data produced by
sensors. Furthermore, QoDisco complies with important
requirements for discovery services tailored to IoT [7, 21],
such as the ability to handle heterogeneous resources,
multi-attribute and range queries, and quality of con-
text data. QoDisco encompasses an ontology-based infor-
mation model with a consistent vocabulary of concepts
related to IoT resources, relationships among them, con-
textual data, and QoC-related information. This informa-
tion model takes advantage of well-established, standard-
ized ontologies and meta-models to semantically describe
resources, services, and QoC criteria, besides easing
semantic queries that inherently support multi-attribute
and range queries.
Our previous work [20] describes an early version of

QoDisco by focusing on the presentation of a novel infor-
mation model to describe IoT resources as well as propos-
ing an initial architecture and implementation prototype.
The search process in QoDisco has two operation modes,
namely synchronous and asynchronous. In this paper,

we go a step beyond by bringing improvements in the
search process to make it more scalable.We have enriched
the QoDisco architecture and implementation to sup-
port queries over QoDisco repositories in parallel, directly
improving the time performance of synchronous searches.
Moreover, we incorporated in QoDisco an internal bro-
ker to support notifying clients interested in new records
available at repositories, thus removing any dependency
from an external service in the asynchronous search pro-
cess and reducing coupling. We have also performed four
computational experiments in an urban pollution moni-
toring scenario aimed to quantitatively evaluate QoDisco
and assess the efficiency of its synchronous and asyn-
chronous search processes.
The remainder of this paper is organized as follows.

Section 2 describes QoDisco, its architecture and imple-
mentation. Section 3 presents the performed evaluation.
Section 4 discusses related work. Section 5 contains con-
cluding remarks and directions for future work.

2 QoDisco
This section presents QoDisco, our QoC-aware discov-
ery service for the IoT. Section 2.1 describes the QoDisco
architecture. Section 2.2 details the synchronous and
asynchronous search processes that can be performed
using QoDisco. Section 2.3 describes the information
model used to describe IoT resources, services, and QoC
information. Section 2.4 presents a prototype imple-
mentation of our proposal. Further information about
QoDisco is publicly available at http://consiste.dimap.ufrn.
br/projects/qodisco/.

2.1 Architecture
QoDisco relies on a collection of repositories to per-
form discovery tasks. This approach provides several
advantages over using a single repository, mainly scal-
ability, fault-tolerance, independent control of reposito-
ries, and data distribution [22]. In the context of this
work, QoDisco clients can be: (i) IoT devices and gate-
ways publishing resources; (ii) applications searching for
records, i.e., descriptions of resources, services and con-
text data in repositories; or (iii) record repositories acces-
sible through QoDisco. For becoming available through
QoDisco, each repository must provide operations for
both querying and updating records as defined by its
Repository API.
After receiving a discovery request containing a domain

name and a query, QoDisco searches for records stored
in the repositories pertaining to the domain specified by
the client. In this work, a domain is an area of knowledge
specified through an ontology document, called reposi-
tory domain ontology (RDO) document. Figure 1 illus-
trates the modules composing the QoDisco architecture,
described as follows.

http://consiste.dimap.ufrn.br/projects/qodisco/
http://consiste.dimap.ufrn.br/projects/qodisco/

Gomes et al. Journal of Internet Services and Applications (2019) 10:10 Page 3 of 14

Fig. 1 QoDisco architecture

The Ontology Module consists of repository domain
ontology (RDO) documents describing the concepts com-
posing the information model of QoDisco. In this module,
the Ontology Manager provides operations for adding,
removing, and modifying RDO documents, whereas the
QoC Criteria Manager is responsible for adding, remov-
ing, and modifying QoC criteria (also defined in RDO
documents). A QoC criterion represents an attribute
that qualifies a context information (e.g., accuracy, up-
to-dateness) and it can be calculated in different ways
according to the situation in which it is used. In QoDisco,
QoC criteria are described through ontologies to allow for
unambiguous identification and representation.
The Repository Module manages repositories and maps

each one to (a group of) specific RDO document(s) in
the Ontology Module. As the search and management of
records is based on domains, a repository joiningQoDisco
has to be mapped to at least one domain specified by an
RDO document and multiple repositories can be mapped
to the same domain by their respective owners.
The Record Manager is responsible for adding, remov-

ing, andmodifying records in repositories. As repositories
maintain their operational and managerial independence,
their owners canmanage their own records independently
from QoDisco. Nonetheless, the information model of
QoDisco (see Section 2.3) is shared among all of these
repositories.
The Search Module encompasses the Query Mediator,

which forwards queries to the repositories belonging to
QoDisco. To perform the search, this component specifies

an RDO document name (i.e., domain name) to the Repos-
itory Manager, which provides the IP addresses and port
numbers of the repositories mapped to the domain.
The Operation Module encompasses five components.

The Request Handler receives requests to search andman-
age repositories and records for both synchronous and
asynchronous operation modes. The Synchronous Search
Handler performs requests by querying the Query Medi-
ator. The Asynchronous Search Handler notifies clients
(i) about the discovery of a new resource matching the
search query and (ii) about the modification or removal of
a resource description. The Repository Manager Handler
and the Record Manager Handler respectively interact
with the Repository Manager and the Record Manager to
add/remove repositories and records.
The functionalities of the Operation Module and the

Ontology Module are provided through the Client Inter-
face. This interface operations regard both synchronous
and asynchronous operations as well as the management
(insertion, removal, update) of records, repositories, RDO
documents, and QoC criteria. More information on the
Client Interface is also available at http://consiste.dimap.
ufrn.br/projects/qodisco/.

2.2 Interaction patterns
Due to the dynamic context where the IoT resources oper-
ate, a discovery service in IoT should be able to handle
both synchronous calls and asynchronous notifications
[23, 24]. The former relies on request-reply interactions
towards providing resource information at the moment

http://consiste.dimap.ufrn.br/projects/qodisco/
http://consiste.dimap.ufrn.br/projects/qodisco/

Gomes et al. Journal of Internet Services and Applications (2019) 10:10 Page 4 of 14

of the search whereas the latter are based on publish-
subscribe interactions to notify clients in case of resource
removal, insertion or update.
The synchronous operation follows the simple request-

reply message exchange pattern. This process starts with
a client request containing the query and a domain name
to be searched for. QoDisco identify the repositories that
pertain to the specified domain and sends requests to
all the matching repositories. Each requested repository
searches on its own set of records and returns a response
with the set of results. Finally, QoDisco combines all
results returned by each repository and sends them to
the client as a single response. Figure 2 illustrates an
example of this process with the Air Pollution domain.
In this example, only repositories matching the domain
name specified by the client are searched by QoDisco, i.e.,
repositories one and three.
The publish-subscribe interaction pattern fosters loose

coupling and scalability. In many implementations of
this model, information producers (publishers) send mes-
sages to a topic from which information consumers (sub-
scribers) interested into such a topic receive all published
messages as notifications [25]. This is managed by an
intermediary message broker (a.k.a. event bus) that uses
a store-and-forward technique to route messages from
publishers to subscribers. Figure 3 illustrates this process,
which encompasses the following steps:

(1) The client makes a request to the QoDisco API with
a query and a domain name identifying the records of
interest; QoDisco stores both query and domain
name and sends a response containing the address of
the broker within the Asynchronous Search Handler

Fig. 2 Synchronous search process in QoDisco

Fig. 3 Asynchronous search process in QoDisco

and a topic name created to identify the client
request;

(2) The client subscribes to the broker by sending the
topic name provided by QoDisco;

(3) Whenever a record insertion operation is requested,
QoDisco verifies if such a record meets both query
and domain specified by other clients; and

(4) QoDisco notifies the new record to interested clients
through the broker contained in the Asynchronous
Search Handler.

2.3 Information model
The information model of QoDisco is depicted in Fig. 4.
It comprises an ontology-based vocabulary of concepts
related to IoT resources and services, relationships among
them, and QoC-related information. To semantically
describe resources, such an information model takes
advantage of the SAN ontology [26], an extension of
the W3C’s SSN ontology [27] that provides concepts,
attributes, and properties to model both sensors and
actuators. Additionally, we have incorporated part of the
SOUPA ontology [28] aiming at including location-related
concepts to describe location-related information (e.g.,
latitude, longitude, altitude, distance, surface) as well as
symbolic representations of space and spatial relation-
ships, being associated with both resources and data
(observations).
The QoDisco information model also comprises the

OWL-S ontology [29], which has been widely used in
both academia and industrial applications for semanti-
cally modeling Web services. To represent the relation-
ship between resources and services, we have created the
exposes property, which links the Sensor and Actuator

Gomes et al. Journal of Internet Services and Applications (2019) 10:10 Page 5 of 14

Fig. 4 Information model adopted by QoDisco

concepts (representing resources) to the Service concept
(representing services), as shown in Fig. 4.
To cope with QoC-related concerns, we have incorpo-

rated part of the QoCIM meta-model [30] by describing
its concepts as an ontology. The QoC Criterion concept
can be used to represent a QoC parameter associated with
context data, e.g., accuracy, precision, completeness, up-
to-dateness. In turn, the QoC Indicator concept expresses
the QoC level of an observation (measured data) made by
a resource. In theQoDisco informationmodel, the has_qoc
property associates a QoC level (QoC Indicator concept)
to an observation made by a resource (SensorOutput con-
cept) whereas the qoc_criterion property indicates that a
QoC indicator must be associated with a QoC criterion.
This information model follows the same flexible ideology
as QoCIM, i.e., defining a basis to design and represent
any QoC criterion instead of providing a predefined list
of supported QoC criteria. Moreover, a given QoC crite-
rion can be built upon other primitive or composed QoC
criteria.

2.4 Implementation
QoDisco is implemented as a Web application using the
Java programming language and the Spring framework,
being deployed to an Apache Tomcat server. Spring pro-
vides support for multithreading using a thread pool,
which was required towards implementing the parallel
search request to the repositories (see Section 2.2). For
the sake of performance, QoDisco uses multithreading
facilities to throw searches in parallel.
In the current implementation of QoDisco, search

queries are specified in SPARQL [31], a semantic query
language standardized by W3C for information retrieval.
SPARQL supports both multi-attribute and range queries
over documents in OWL, the W3C’s recommended

language to semantically describe ontologies. SPARQL is
one of most popular approaches for discovery services
due to its relative simplicity of implementation, besides
being an open standard. Experimental results reported by
Bröring et al. [32] recommend the use of SPARQL for dis-
covery services based on directories (such as QoDisco)
since it provides queries with richness and result rank-
ing. In particular, search queries in QoDisco comply with
SPARQL 1.1, the latest version made available by W3C.
The underlying infrastructure for Operation, Search,

Repository, and Ontology Modules is implemented using
Apache Jena [33], an open-source framework to search
for, add, and modify OWL descriptions while supporting
SPARQL queries.QoDisco uses Jena-ARQ as query engine
and it follows five steps to perform a query:

(1) Parsing – structuration of the query string as query
object;

(2) Algebra Generation – translation of the query object
to an algebra expression using the SPARQL
specification algorithm;

(3) High-level Optimization – transformations applied
to the algebra expression, e.g., replacing equality
filters with a more efficient graph pattern;

(4) Low-level Optimization – choice of the evaluation
order for basic graph patterns; and

(5) Evaluation – execution of algebra expressions to
generate solution graph patterns.

Information about repositories (HTTP address and sup-
ported operations), RDO documents (name and URI), and
topics (topic name) is handled by their respective modules
to be registered at a relational database.
Repositories are implemented using Apache Fuseki [34],

a server providing SPARQL query, update, and storage
operations via HTTP requests. Fuseki was chosen due to

Gomes et al. Journal of Internet Services and Applications (2019) 10:10 Page 6 of 14

its easy deployment and because it provides a SPARQL
HTTP endpoint built upon the Jena framework, but other
existing technologies could be used to implement reposi-
tories. The broker service within the Asynchronous Search
Handler uses Moquette [35], a lightweight open-source
Java library to implement publish-subscribe message bro-
kers for the MQTT messaging protocol. With the broker
address and a topic name, a client can interact directly
with the Moquette broker in the Asynchronous Search
Handler using the MQTT protocol.
Finally, the Client Interface is implemented as a REST-

ful Web service using the Spring framework. Clients
can access the main functionalities offered by QoDisco
either through a user-friendly Web graphical interface or
through the REST API Client Interface.

3 Evaluation
In this section, we report a quantitative evaluation assess-
ing the efficiency of QoDisco and its two search processes
using computational effort in terms of execution time
as metric. Our evaluation does not compare QoDisco
with other proposals due to the unavailability of bench-
marks handling all of its features. Table 1 summarizes the
designed experiments.
Section 3.1 describes the scenario considered in the

evaluation. Section 3.3 outlines the configuration used in
E1 and E2 to assess the performance of the synchronous
search process. Section 3.3 presents the configuration
used in E3 and E4 to evaluate the performance of the
asynchronous search process.

3.1 Scenario
Consider a scenario of air pollution monitoring in an
urban area where public buses are equipped with air
pollution monitoring sensors and a GPS receiver. Bus
stations are equipped with more sophisticated air pollu-
tion monitoring sensors capable of providing data with
better QoC. Four QoC criteria are used to qualify pollu-
tion measurements and GPS location: (i) margin of error,

Table 1 Computational experiments for evaluating QoDisco

Experiment Goal

E1 To assess the influence of parallel searches over repos-
itories on the performance of synchronous searches

E2 To assess the performance of QoDisco upon an
increasing number of records queried in a syn-
chronous search

E3 To assess the performance of the asynchronous
search process with a varying number of clients to be
notified about the publication of a new record in a
repository

E4 To assess the performance of the asynchronous
search process to notify a single client with a varying
number of records published at the same time

which quantifies doubt about the result of a measurement
and it is expressed in the same unit as the measure-
ment; (ii) freshness, which measures the time elapsed from
the collection of observations to its delivery to a con-
sumer; (iii) precision, which qualifies how close or how
repeatable the results from a measurement are and it is
typically expressed as a percentage; and (iv) spatial reso-
lution, which measures the precision to express a physical
area.
The following snippet illustrates the description of a

sensor observation, described as the output of the car-
bon monoxide sensor Sensor01. The observation result is
a sensor output referenced as observation_result01:
qodisco:Observation01
a ssn:Observation ;
ssn:observedBy qodisco:Sensor01 ;
ssn:observedProperty pol:Carbon_Monoxide ;
ssn:observationResultTime <2018-10-22T16:00:

24.000-03:00>
ssn:observationResult :observation_result01 .

The value measured by the sensor as well as the QoC
criteria associated with it are referenced in observa-
tion_result01 by observation_qocindicator01 and obser-
vation_resultvalue01, which respectively are instances of
the QoCIndicator and ObservationValue classes of the
QoDisco information model:
qodisco:observation_result01
a ssn:SensorOutput ;
ssn:isProducedBy qodisco:Sensor01 ;
qodisco:has_qoc qodisco:

observation_qocindicator01 ;
ssn:hasValue qodisco:

observation_resultvalue01 .

The following snippet represents a QoC criterion (pre-
cision) and its respective value (99%) as referenced in the
element observation_qocindicator01 which is associated
to the result observed from the carbon monoxide sensor
Sensor01:
qodisco:observation_qocindicator01
a qodisco:QoCIndicator ;
qodisco:has_qoc_criterion qodisco:Precision ;
qodisco:has_qoc_value 99 .

The actual valuemeasured by the carbonmonoxide sen-
sor Sensor01 (397.0) is in turn referenced in the element
observation_resultvalue01:
qodisco:observation_resultvalue01
a ssn:ObservationValue ;
ssn:hasQuantityValue 397.0 .

In the described scenario, the location of the buses and
bus stations is qualified with spatial resolution, pollution
measurements provided by buses’ sensors are qualified
with both precision and freshness, and the ones pro-
vided by bus stations’ sensors are qualified with margin
of error and freshness. These measurements are seman-
tically annotated accordingly to the QoDisco information
model and stored into a repository registered at QoDisco.
In this scenario, QoDisco can be used by clients to search

Gomes et al. Journal of Internet Services and Applications (2019) 10:10 Page 7 of 14

for and select sensors and their respective measurements
according to their capabilities, location, QoC indicator
parameters, etc. using SPARQL queries.
In the experiment, we have calculated the time spent

by QoDisco to search for all the observations related with
carbon monoxide pollution levels with a QoC indicator of
precision greater than or equal to 95%. This is expressed
by the following SPARQL query:

SELECT ?obs ?qocValue ?sensorData WHERE {
?obs a ssn:Observation ;

ssn:observedProperty pol:
Carbon_Monoxide ;

ssn:observationResult ?
observationResult .

?observationResult qodisco:has_qoc ?qoc
;

ssn:hasValue ?resultValue .
?resultValue ssn:hasQuantityValue ?

sensorData .
?qoc qodisco:has_qoc_criterion qodisco:

Precision .
?qoc qodisco:has_qoc_value ?qocValue .
FILTER (?qocValue >= 95)

}

This query returns a response in JSON or XML contain-
ing (i) an URI to the observation, (ii) an URI referring to
the sensor output, (iii) a reference to the QoC indicator,
and (iv) the QoC value of the observation. Other attributes
or additional QoC criteria could be easily added to the
search query.

3.2 Experimental setup
As repositories are independently managed by clients
and hence they may be deployed to different compu-
tational nodes, all experiments used a group of virtual
machines over an academic hybrid Cloud Computing
service based on the OpenStack platform and VMware
Integrated OpenStack. In both E1 and E2, each reposi-
tory was deployed to an independent virtual single-core
machine with 1 GB of RAM using the Fuseki technology
[34] whereas QoDisco was deployed to a virtual dual-core
machine with 2 GB of RAM. A client was deployed to
another virtual single-core machine with 1 GB of RAM.
These settings are depicted in Fig. 5.
The performance of the synchronous search process in

E1 and E2 was assessed by using a JMeter server [36] run-
ning in the same virtual machine as the client. Apache
JMeter is a well-known tool used to perform load tests and
measure performance of Web-based applications, relying
on test plans representing a set of actions made by clients.
For E1 and E2, a test plan was set with sending an HTTP
GET request to the QoDisco API with the above-stated
SPARQL query.

Fig. 5 Computational infrastructure used in experiments E1 and E2
(synchronous search)

In E3 and E4, a repository initially populated with 1,000
random observations related to carbon monoxide pollu-
tion levels was deployed in a virtual single-core machine
with 1 GB of RAM. QoDisco was deployed in a virtual
dual-core machine with 2 GB of RAM,multiple publishers
were deployed in a virtual single-core machine with 1 GB
of RAM, and subscribers were deployed in another single-
core machine with 1GB of RAM as well. A time Web
service intended to provide the relative time was deployed
in a virtual single-core processor with 512 MB of RAM.
These settings are depicted in Fig. 6.
As JMeter does not provide native means of subscribing

to an MQTT broker, we developed a Java client program
to assess the response time of asynchronous notifica-
tions sent by QoDisco in E3 and E4. To calculate the
time spent for the asynchronous search process, the time

Fig. 6 Computational infrastructure used in experiments E3 and E4
(asynchronous search)

Gomes et al. Journal of Internet Services and Applications (2019) 10:10 Page 8 of 14

Web service deployed in one of the virtual machines was
used to share the current time among clients (publish-
ers and subscribers). This service is accessed to retrieve
the current time when publishers request the insertion
of new records and subscribers receive notifications from
QoDisco, so that the elapsed time between these two
time instants is determined. We have used such a strat-
egy as distributed systems inherently have no single global
notion of the correct time [37]. More importantly than
having the correct time is having a consistent time among
all computational nodes involved in the experiment and
hence a typical practice is using a local time service aiming
at minimizing network latency. Therefore, the differences
regarding the clocks of the machines used in the experi-
ments is kept as minimal as possible.
An additional, but important caution must be taken

when attempting to precisely measure a Java application
since it is necessary to consider the complex interac-
tion among the components of the Java Virtual Machine,
including the application bytecode, the core runtime sys-
tem, the just-in-time compiler, and the garbage collector.
To obtain a realistic performance measurement, it is nec-
essary to wait for QoDisco to reach its steady state after
a large number of interactions. In both E1 and E2, we
noticed that the synchronous search method reaches a
steady state after 1000 requests. For E3 and E4, the steady
state was reached after 200 notifications. In all four exper-
iments, we also monitored the processes and threads
running in each virtual machine using the htop Linux
tool [38] to ensure that only QoDisco and its Java threads
would have considerable amount of time in the dual-core
processor.

3.3 Experiments E1 and E2: Synchronous search
In E1, the performance of QoDisco is assessed by mea-
suring the time spent to respond to client requests when

synchronous searches are performed over repositories in
sequence (i.e., one repository after another) and in par-
allel as the number of available repositories is increased.
For this experiment, each repository contained exactly
1,000 randomly generated observations related to car-
bon monoxide pollution levels, with no other records.
Figure 7 presents the results of E1 in terms of average
response time (in milliseconds) for the sequential and par-
allel search approaches ofQoDisco considering one to five
repositories. In this experiment, we measured the perfor-
mance of QoDisco with JMeter by sending a request to
the QoDisco API from a single thread 50 times. As the
number of records returned by the client search could
possibly influence the QoDisco response time, we have
also ensured that exactly 10% of all observations registered
in each repository matched the search query.
As shown in Fig. 7, the response time for the syn-

chronous search is improved by using a parallel approach
on the available repositories. Average response times in
the parallel approach are about 30% smaller than the ones
observed in the sequential approach for three repositories
and about 40% smaller for five repositories. It is also worth
observing that the synchronous search performance of
the parallel approach has low variation with the num-
ber of repositories, thus revealing the scalability of such
an approach with QoDisco. In this sense, clients can per-
form fine-tuned queries by choosing the domains to be
searched, thereby reducing the number of repositories
being searched and hence improving the performance of
QoDisco.
In E2, we measured the response time spent by QoDisco

to respond to a request to the QoDisco API from a sin-
gle thread 50 times, besides ensuring that exactly 10% of
the registered observations matched the client query with
increasing the number of observations in a single reposi-
tory. Figure 8 presents the results of E2 in terms of average

Fig. 7 Results of experiment E1: sequential vs. parallel synchronous search with increasing number of repositories

Gomes et al. Journal of Internet Services and Applications (2019) 10:10 Page 9 of 14

Fig. 8 Results of experiment E2: synchronous search with increasing number of observations

response time (in milliseconds) of the synchronous search
process upon increasing the number of registered obser-
vations, as well as how much of the total time correspond
solely to the repository response time.
Figure 8 shows that the repository response time signif-

icantly influences the synchronous search response time.
The overhead caused by QoDisco is almost constant at
200 ms for all measurements, whereas the repository
response time corresponds to approximately 75% of the
total response time for 10,000 observations and almost
90% for 20,000 observations. This indicates that the over-
head is mainly caused by Apache Fuseki and its storage
and query mechanisms.

3.4 Experiments E3 and E4: Asynchronous search
In E3, we performed 50 independent executions of the
asynchronous search process while increasing the num-
ber of publishers (one to twenty). All publishers were

running in the same virtual machines and their publica-
tions matched the search query used by the subscriber.
The performance was assessed by measuring the time
interval from sending the first record to QoDisco to the
arrival of the last notification to the subscriber. The aver-
age response times (in milliseconds) observed in E3 are
presented in Fig. 9. The measured time is around 300
ms for 20 simultaneous publications and it scales lin-
early with the number of publishers matching the query.
A proposition to improve the measured time is enforc-
ing a filtering mechanism on QoDisco according to a
refresh time constraint positioned by the client applica-
tion, thereby reducing the number of publications to be
sent to the client.
To assess the performance of QoDisco in E4, 50 inde-

pendent executions of the asynchronous search process
were performed while increasing the number of iden-
tical subscribers, one to twenty. The performance was

Fig. 9 Results of experiment E3: time to notify a client while increasing the number of publishers

Gomes et al. Journal of Internet Services and Applications (2019) 10:10 Page 10 of 14

assessed by measuring the time interval from sending a
record to QoDisco to the notification arrival to all sub-
scribers. Although subscribers were interested in the same
records from the same domain (thus representing the
worst case in which all subscribers are interested into
receiving all available information), we created a topic for
each subscriber to simulate independent asynchronous
search requests. The average response times (in millisec-
onds) observed in E4 are shown in Fig. 10 with average
response times smaller than 350 ms in the worst experi-
mental condition (20 subscribers). In comparison to our
previous work [20], we noticed that the asynchronous
search process largely benefits from distributing reposito-
ries, QoDisco, publishers, subscribers, and the time Web
service in different computational nodes instead of using
a single one.
An important issue to highlight is that the internal bro-

ker service used byQoDiscomay represent a performance
bottleneck with respect to the asynchronous notification
process. The overhead to deliver one publication indeed
increases with the number of its subscribers. As a future
work, we plan to compare new brokers [39] as well as
new SPARQL servers according to their throughput and
latency towards improving scalability in QoDisco.

4 Related work
Discovery services represent a well-studied topic in
distributed systems. However, most of the existing
approaches cannot be directly applied to IoT as they do
not comply with some requirements in this context, as (i)
the large scale of IoT scenarios, (ii) resource constraints
related to capabilities of devices, and (iii) the high volatility
of device network connection [7, 12, 40]. In this section,
we summarize some significant approaches found in the

literature by analyzing them in terms of search processes
and support to context-related information.

4.1 Synchronous and asynchronous search processes
The literature has pointed out SPARQL as one of the
most popular approaches for discovery services due to
its relative simplicity of implementation and because it
is an open standard. Experimental results reported by
Bröring et al. [32] recommend the use of SPARQL for dis-
covery services based on directories (such as QoDisco)
since it provides queries with richness and result ranking.
However, some proposals make use of other query meth-
ods. SmartSearch [41] is a discovery service that uses the
Lucene library for indexing, discovering, and dynamically
selecting of resources based on their functional charac-
teristics and non-functional features. QoDisco shares the
same goal in terms of being easy to integrate to other
platforms towards providing discovery capabilities, but
its operations are provided through an API built upon
SPARQL. Moreover, SmartSearch requires a client library
to be installed in the resources/clients to interact with
it, a drawback considering the limited nature of the IoT
resources.
WOTS2E [42] is a search engine able to discover seman-

tically annotated Linked Data sources (i.e., SPARQL end-
points) and then devices and their services using special-
ized Web crawlers. The automatic discovery of reposito-
ries can increase the number of resources and services
available for searching and allow for an easier integra-
tion with a resource discovery service. AlthoughWOTS2E
seems to be in an initial development stage, the auto-
matic discovery and integration of resources available in
the Web might be a large step to the adoption of such
a platform in IoT, instead of requiring these endpoints

Fig. 10 Results of Experiment 4: time to notify a client while increasing the number of subscribers

Gomes et al. Journal of Internet Services and Applications (2019) 10:10 Page 11 of 14

to follow a uniform information model and to be man-
ually registered in the platform. As a future work, we
consider extending QoDisco to support the automatic dis-
covery and integration of SPARQL endpoints containing
IoT resources available in the Web.
Another relevant proposal is presented by Chirila et al.

[43] with a broker-based architecture for discovery and
recommendation of IoT services that supports queries
with both functional and non-functional parameters. The
broker can cluster based on an initial set of registered
services and the registration of new services to the bro-
ker can also trigger the dynamic update of the service
clusters. When a client queries the platform, the bro-
ker firstly performs the search on the clusters based
on functional requirements. If multiple Web services
meeting the requirements are found, then the selection
is further refined based on the quality of the services
(non-functional requirements). The strategy adopted by
QoDisco in terms of dividing repositories into domains
also minimizes the discovery cost since only reposito-
ries pertaining to the domain specified by the client are
searched by the platform.
Cabrera et al. [24] present an evaluation of commonly

used service discovery protocols for the IoT, namely DNS-
SD, mDNS-SD, CoAP-SD, and DDS Service Discovery.
The evaluated protocols provide service description, reg-
istration, unregistration, discovery, and resolution capa-
bilities. In their experiments, more than 50% of retrieved
services were not relevant to the query used when the
services have syntactic differences in their descriptions
and more than 60% when the services have semantic dif-
ferences. Each protocol indeed defines distinct, limited
service representations, thus defining a uniform standard
to represent IoT resources (such as the QoDisco infor-
mation model) can improve interoperability among IoT
protocols and technologies as well as their expressiveness.
We have noticed that the literature has not employed

much effort on the asynchronous discovery of resources
and notifying clients when there is a new or better
resource providing a given service [44]. Many contribu-
tions regarding this type of search are built upon the
publish-subscribe model. One of them is the Ketema et
al.’s work [45], which proposes pushing data directly from
specific resources on constrained devices using the CoAP
protocol. In short, a client subscribes to event messages
produced by a given hosted resource. If the discovery ser-
vice accepts the request, then the client receives a notifi-
cation message whenever the resource changes. Although
the literature provides some other discovery service pro-
posals, most of them are available as architecture propos-
als or pilot implementations, thereby indicating there is
still a need of a discovery service for IoT supporting an
asynchronous search process for semantically annotated
resources.

4.2 Using context-related information in discovery
Perera et al. [15] analyze fifty context-aware projects and
identify context discovery as one of the six challenges
in which new solutions are required in the IoT scenario.
The service discovery task can significantly benefit from
context-awareness, encompassing understanding sensor
data produced by context sources and automatically relat-
ing them to high-level context information. Despite this
importance and the nature of data in IoT, we have noticed
that not much effort has been dedicated to resource dis-
covery based on QoC-related information.
CASSARAM [46] is a centralized solution that uses

sensor characteristics and context information such as
reliability, accuracy, and battery life registered at a sin-
gle, centralized registry to automatically search for, select,
and rank appropriate sensors among a large set of avail-
able devices according to user-defined criteria and prior-
ities. Similarly to QoDisco, CASSARAM is built upon an
ontology-based information model comprising the SSN
ontology and the SPARQL language is used in the search
process. Despite CASSRAM addresses context informa-
tion, it does not consider QoC criteria in the discovery
process, which is valuable towards providing more accu-
rate results according to application/user requirements.
Indeed, we have not found any proposal in the literature
addressing the use of QoC criteria for discovery services
in IoT, thereby constituting a significant contribution of
our work.
The main motivation of the Wang et al.’s work [47]

is to solve two major challenges involved in IoT envi-
ronments, namely interoperability and scalability. They
adopt the sensor-as-a-service vision, in which the ultra-
large-scale sensing infrastructure (consisting of wireless
sensor networks) provides sensing services for multiple
applications and geographically distributed users. In this
view, specific devices, their low-level features, and their
exact location are abstracted away from users as high-level
descriptions provided by a set of standardized interfaces.
Although attractive, the authors argue that the sensor-as-
a-service vision still lacks the support from a concrete
implementation, mainly concerning the requirement of
discovering services in an efficient way. They propose
a service discovery mechanism based on semantic tech-
nologies to deal with heterogeneity and interoperability
issues, as well as on a geospatial indexing approach to
deal with scalability. As in our proposal, the authors
adopt distributed service repositories to deal with scal-
ability and exploit information on spatial context as a
way of optimizing queries to repositories, but they give
emphasis to geographic features, i.e., the type of context
explored is a spatial one. It is not within the scope of
their proposal to deal with other types of contextual data
nor to consider information about QoC as in our pro-
posal. Another difference with respect to our work is that

Gomes et al. Journal of Internet Services and Applications (2019) 10:10 Page 12 of 14

the search process is based on the use of the SPARQL
semantic query language, which adopts a synchronous
interaction model. QoDisco provides both synchronous
and asynchronous queries, which gives it greater flexibil-
ity of operation and support for more diverse types of IoT
applications.
Fredj et al. [48] propose a hierarchical-based approach

of semantic gateways to improve the discovery of IoT
semantic Web services in a dynamic context. In such an
approach, the IoT environment is modeled as a tree hier-
archy of smart spaces. Each smart space is controlled by
a semantic gateway that maintains information about the
IoT services in its scope (located within the space) and
processes discovery requests. To minimize the discovery
cost, the approach proposes creating clusters of similar
services that can be optimized over time in terms of num-
ber of clusters and number of services per cluster. The
discovery cost is measured in terms of the number of ser-
vice request matching operations performed in a gateway
to discover services matching an incoming request. Sim-
ilarly to QoDisco, this approach is based on distributing
data structures to support the discovery process. How-
ever, the goal is to minimize the discovery cost instead of
dealing with scalability issues as is the case in QoDisco.
Moreover, Fredj et al. [48] use only service location as con-
text information and QoC is not considered in the scope
of their proposal.

5 Conclusion
The heterogeneity of the widely distributed plethora of
devices in IoT poses a significant challenge to find, select,
and use IoT resources (devices, sensors, actuators, ser-
vices and context data). Therefore, it is important to
provide a flexible mechanism that enables clients to eas-
ily discover, retrieve, and use device capabilities and data
produced by them in an unambiguous way. Due to the
imperfect nature of data provided by IoT devices, it is
valuable to complement observations with QoC criteria
towards augmenting the capability of the search proce-
dure and better supporting decisions made upon these
data.
Our research in this context has proposed QoDisco,

a semantic-based discovery service for IoT structured
upon a set of repositories storing resource descrip-
tions and QoC-related information. Unlike many
approaches commonly found in the literature, QoDisco
is rich in the sense that it complies with important
requirements for discovery services in IoT, such as
searches based on multiple attributes, range queries,
different interaction patterns, and QoC criteria. More-
over, QoDisco encompasses an information model
that takes advantage of well-established, standardized
ontologies to semantically describe both resources and
services.

The uniform interface to discover resources, a well-
defined information model, and richness of the semantic-
based querying capabilities provides QoDisco with
interesting features to handle the inherent heterogeneity
observed in IoT. In this paper, we detailed the QoDisco
architecture and implementation by focusing on improve-
ments aimed to make search processes more scalable
and loosely coupled. Obtained experimental results with
QoDisco have shown that the strategy of distributing
repositories and providing asynchronous search process
can be promising to resource discovery in IoT.
As future work, we intend to perform additional exper-

iments considering network environments closer to the
ones observed in IoT, with low bandwidth, high laten-
cies, lossy network links, etc. We also need to con-
sider other important facets in discovery services for IoT,
such as dynamism and security/privacy concerns regard-
ing resources and their metadata, as well as supporting
authentication and authorization policies for accessing
repositories. In regard to repositories, we aim to inves-
tigate other alternatives to RDF query and storage as
means of possibly reducing the overhead caused by the
mechanisms currently used in QoDisco. Furthermore, it is
important to provide QoDisco with a strategy for repos-
itory consistency as repositories do not reflect updates
on ontologies, so that repository owners are currently
responsible for ensuring such a consistency. Finally, we
aim to make insertion and search for records using the
QoDisco API easier, especially for application developers
unfamiliar with the SPARQL language.

Acknowledgements
This work was partially supported by CNPq - Brazilian National Council for
Scientific and Technological Development and INES 2.0 - Brazilian National
Institute of Science and Technology for Software Engineering (http://www.
ines.org.br), funded by FACEPE grant APQ-0399-1.03/17 and CNPq grant
465614/2014-0. TB, FCD and PFP are CNPq fellows.

Funding
Not applicable.

Availability of data andmaterials
The datasets used and/or analysed during the current study are available from
the corresponding author on reasonable request.

Authors’ contributions
The authors have equally contributed to the manuscript. All authors read and
approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Department of Informatics and Applied Mathematics, Federal University of
Rio Grande do Norte, Natal, Brazil. 2SAMOVAR-UMR CNRS, Université
Paris-Saclay/Télécom SudParis, Évry, France. 3Department of Computer
Science, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.

http://www.ines.org.br
http://www.ines.org.br

Gomes et al. Journal of Internet Services and Applications (2019) 10:10 Page 13 of 14

Received: 5 September 2018 Accepted: 15 March 2019

References
1. Object Management Group. Trading Object Service Specification Version

1.0. https://www.omg.org/spec/TRADE/About-TRADE/.
2. Aziez M, Benharzallah S, Bennoui H. A comparative analysis of service

discovery approaches for the Internet of Things. Int Res J Electron
Comput Eng. 2017;3(1):17–22.

3. Guinard D, Trifa V, Karnouskos S, Spiess P, Savio D. Interacting with the
SOA-based Internet of Things: Discovery, query, selection, and on-demand
provisioning of Web services. IEEE Trans Serv Comput. 2010;3(3):223–35.

4. Issarny V, Georgantas N, Hachem S, Zarras A, Vassiliadist P, Autili M, et
al. Service-oriented middleware for the Future Internet: State of the art
and research directions. J Internet Serv Appl. 2011;2(1):23–45.

5. Wei Q, Jin Z. Service discovery for Internet of Things: A
context-awareness perspective. In: Proceedings of the Fourth Asia-Pacific
Symposium on Internetware. New York: ACM; 2012.

6. Cassar G, Barnaghi P, Wang W, Moessner K. A hybrid semantic
matchmaker for IoT services. In: Proceedings of the 2012 IEEE
International Conference on Green Computing and Communications.
USA: IEEE; 2012. p. 210–6.

7. Paganelli F, Parlanti D. A DHT-based discovery service for the Internet of
Things. J Comput Netw Commun. 2012;2012:1–11.

8. Cirani S, Davoli L, Ferrari G, Léone R, Medagliani P, Picone M, et al. A
scalable and self-configuring architecture for service discovery in the
Internet of Things. IEEE Internet of Things J. 2014;1(5):508–21.

9. Li J, Zaman N, Li H. A decentralized locality-preserving context-aware
service discovery framework for Internet of Things. In: Proceedings of the
2015 IEEE International Conference on Services Computing. USA: IEEE;
2015. p. 317–23.

10. Hussein D, Park S, Crespi N. A cognitive context-aware approach for
adaptives services provisioning in Social Internet of Things. In:
Proceedings of the 2015 IEEE International Conference on Consumer
Electronics. USA: IEEE; 2015. p. 192–3.

11. Jo HJ, Kwon JH, Ko IY. Distributed service discovery in mobile IoT
environments using Hierarchical Bloom Filters. In: Cimiano P, Frasincar F,
Houben GJ, Schwabe D, editors. Proceedings of the 15th International
Conference on Engineering the Web in the Big Data Era. vol. 9114 of
Lecture Notes in Computer Science. Cham, Switzerland: Springer
International Publishing; 2015. p. 498–514.

12. Delicato FC, Pires PF, Batista T. Resource management for the Internet of
Things. Cham. Switzerland: Springer International Publishing AG; 2017.

13. Chun S, Seo S, Oh B, Lee KH. Semantic description, discovery and
integration for the Internet of Things. USA: IEEE; 2015, pp. 272–5.

14. Wang W, De S, Toenjes R, Reetz E, Moessner K. A comprehensive
ontology for knowledge representation in the Internet of Things. USA:
IEEE; 2012, pp. 1793–8.

15. Perera C, Zaslavsky A, Christen P, Georgakopoulos D. Context aware
computing for the Internet of Things: A survey. IEEE Commun Surv Tutor.
2014;16(1):414–54.

16. Henricksen K, Indulska J. Modelling and using imperfect context
information. In: Proceedings of the Second IEEE Annual Conference on
Pervasive Computing and Communications Workshops. USA: IEEE; 2004.
p. 33–37.

17. Buchholz T, Küpper A, Schiffers M. Quality of Context: What it is and why
we need it. In: Proceedings of the 10th International Workshop of the
OpenView University Association. Geneva; 2003. p. 1–14.

18. Marie P, Desprats T, Chabridon S, Sibilla M. Extending Ambient
Intelligence to the Internet of Things: New challenges for QoC
management. In: Hervás R, Lee S, Nugent C, Bravo J, editors. Proceedings
of the 8th International Conference on Ubiquitous Computing and
Ambient Intelligence. vol. 8867 of Lecture Notes in Computer Science.
Cham, Switzerland: Springer International Publishing; 2014. p. 224–31.

19. Chabridon S, Laborde R, Desprats T, Oglaza A, Marie P, Marquez SM. A
survey on addressing privacy together with quality of context for context
management in the Internet of Things. Annals Telecommun. 2014;69(1):
47–62.

20. Gomes P, Cavalcante E, Batista T, Taconet C, Chabridon S, Conan D, et
al. In: García CR, Caballero-Gil P, Burmester M, Quesada-Arencibia
A, editors. A QoC-aware discovery service for the Internet of Things.
Cham, Switzerland: Springer International Publishing; 2016, pp. 344–55.

21. Gomes P, Cavalcante E, Rodrigues T, Batista T, Delicato FC, Pires PF.
A federated discovery service for the Internet of Things. In: Proceedings of
the 2nd Workshop on Middleware for Context-Aware Applications in the
IoT. New York: ACM; 2015. p. 25–30.

22. Schmidt C, Parashar M. A peer-to-peer approach to Web service
discovery. World Wide Web. 2004;7(2):211–29.

23. Brambilla M, Umuhoza E, Acerbis R. Model-driven development of user
interfaces for IoT systems via domain-specific components and patterns. J
Internet Serv Appl. 2017;8:.

24. Cabrera C, Palade A, Clarke S. An evaluation of service discovery
protocols in the Internet of Things. New York: ACM; 2017, pp. 469–76.

25. Eugster PT, Felber PA, Guerraoui R, Kermarrec AM. The many faces of
publish/subscribe. ACM Comput Surv. 2003;35(2):114–31.

26. Spalazzi L, Taccari G, Bernardini A. An Internet of Things ontology for
earthquake emergency evaluation and response. In: Proceedings of the
2014 International Conference on Collaboration Technologies and
Systems. USA: IEEE; 2014. p. 528–34.

27. Barnaghi P, et al. Semantic Sensor Network XG Final Report. http://www.
w3.org/2005/Incubator/ssn/XGR-ssn-20110628/. Accessed Dec 2018.

28. Chen H, Finin T, Joshi A. The SOUPA ontology for Pervasive Computing.
In: Tamma V, Cranefield S, Finin TW, Willmott S, editors. Ontologies for
agents: Theory and experiences. Whitestein Series in Software Agent
Technologies. Birkhäuser Basel: Cham, Switzerland; 2005. p. 233–58.

29. Martin D, et al. Bringing semantics to Web services: The OWL-S approach.
In: Cardoso J, Sheth A, editors. Proceedings of the First International
Workshop on Semantic Web Services and Web Process Composition. vol.
3387 of Lecture Notes in Computer Science. Germany: Springer Berlin
Heidelberg; 2005. p. 26–42.

30. Marie P, Desprats T, Chabridon S, Sibilla M. The QoCIM Framework:
Concepts and tools for Quality of Context management. In: Brézillon P,
Gonzalez AJ, editors. Context in Computing: A cross-disciplinary approach
for modeling the real world. USA: Springer New York; 2014. p. 155–72.

31. World Wide Web Consortium (W3C). SPARQL Query Language for RDF.
https://www.w3.org/TR/sparql11-overview//. Accessed Dec 2018.

32. Bröring A, Datta SK, Bonnet C. A categorization of discovery technologies
for the Internet of Things. In: Proceedings of the 6th International
Conference on the Internet of Things. New York: ACM; 2016. p. 131–9.

33. Apache Software Foundation. Jena: A free and open source Java
framework for building Semantic Web and Linked Data applications.
https://jena.apache.org/. Accessed Dec 2018.

34. Apache Software Foundation. Apache Jena Fuseki. https://jena.apache.
org/documentation/fuseki2/. Accessed Dec 2018.

35. Selva A. Moquette MQTT broker. http://moquette.io/. Accessed Dec 2018.
36. Apache Software Foundation. Apache JMeter. http://jmeter.apache.org/.

Accessed Dec 2018.
37. Coulouris G, Dollimore J, Kindberg T, Blair G. Distributed systems:

Concepts and design, 5th ed. Boston: Addison-Wesley/Pearson
Education, Inc.; 2012.

38. Muhammad H. htop - An interactive process viewer for Unix. http://
hisham.hm/htop/. Accessed Dec 2018.

39. Sommer P, Schellroth F, Fischer MT, Schlechtendahl J. Message-oriented
middleware for industrial production systems. In: Proceedings of the 14th
IEEE International Conference on Automation Science and Engineering.
USA: IEEE; 2018. p. 1217–23.

40. Issarny V, Bouloukakis G, Georgantas N, Billet B. Revisiting
Service-Oriented Architecture for the IoT: A middleware perspective. In:
Sheng QZ, Stroulia E, Tata S, Bhiri S, editors. Proceedings of the 14th
International Conference on Service-Oriented Computing. vol. 9936 of
Lecture Notes in Computer Science. Cham, Switzerland: Springer
International Publishing; 2016. p. 3–17.

41. Fortino G, Lackovic M, Russo W, Trunfio P. A discovery service for smart
objects over an agent-based middleware. In: Pathan M, Wei G, Fortino G,
editors. Proceedings of the 6th International Conference on Internet and
Distributed Computing Systems. vol. 8223 of Lecture Notes in Computer
Science. Germany: Springer Berlin Heidelberg; 2013. p. 281–93.

42. Kamilaris A, Yumusak S, Ali MI. WOTS2E: A search engine for a Semantic
Web of Things. In: Proceedings of the 3rd IEEE World Forum on Internet of
Things. USA: IEEE; 2016. p. 436–41.

43. Chirila S, Lemnaru C, Dinsoreanu M. Semantic-based IoT device
discovery and recommendation mechanism. In: Proceedings of the 12th
International Conference on Intelligent Computer Communication and
Processing. USA: IEEE; 2016. p. 111–6.

https://www.omg.org/spec/TRADE/About-TRADE/
http://www.w3.org/2005/Incubator/ssn/XGR-ssn-20110628/
http://www.w3.org/2005/Incubator/ssn/XGR-ssn-20110628/
https://www.w3.org/TR/sparql11-overview//
https://jena.apache.org/
https://jena.apache.org/documentation/fuseki2/
https://jena.apache.org/documentation/fuseki2/
http://moquette.io/
http://jmeter.apache.org/
http://hisham.hm/htop/
http://hisham.hm/htop/

Gomes et al. Journal of Internet Services and Applications (2019) 10:10 Page 14 of 14

44. Vandana CP, Chikkamannur AA. Study of resource discovery trends in
Internet of Things (IoT). Int J Adv Netw Appl. 2016;8(3):3084–9.

45. Ketema G, Hoebeke J, Moerman I, Demeester P, Tao LS, Jara AJ.
Efficiently observing Internet of Things resources. In: Proceedings of the
2012 IEEE International Conference on Green Computing and
Communications. USA: IEEE; 2012. p. 446–9.

46. Perera C, Zaslavsky A, Christen P, Compton M, search
GeorgakopoulosD. Context-awaresensor. selection and ranking model for
Internet of Things middleware. In: Proceedings of the 14th IEEE
International Conference on Mobile Data Management. USA: IEEE; 2013.
p. 314–22.

47. Wang W, Deb S, Cassarc G, Moessner K. An experimental study on
geospatial indexing for sensor service discovery. Expert Syst Appl.
2015;42(7):3528–38.

48. Fredj SB, Boussard M, Kofman D, Noirie L. Efficient semantic-based IoT
service discovery mechanism for dynamic environments. In: Proceedings
of the 25th IEEE Annual International Symposium on Personal, Indoor,
and Mobile Radio Communication. USA: IEEE; 2014. p. 2088–92.

	Abstract
	Keywords

	Introduction
	QoDisco
	Architecture
	Interaction patterns
	Information model
	Implementation

	Evaluation
	Scenario
	Experimental setup
	Experiments E1 and E2: Synchronous search
	Experiments E3 and E4: Asynchronous search

	Related work
	Synchronous and asynchronous search processes
	Using context-related information in discovery

	Conclusion
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Competing interests
	Publisher's Note
	Author details
	References

