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Abstract
The 2009-2010 El Nifio was accompanied by a severe drought strongly impacting Mexico as well as Central America, the

Caribbean, and the southern USA. The present work aims at assessing how such a major climatic event impacted the hydrological

typology of transitional waters in Terminos Lagoon, one of the largest shallow tropical lagoons fringing the Gulf of Mexico.

Spatiotemporal inter-comparison of hydrological conditions was conducted by pairing a reference multiparametric dataset (14
hydrological parameters versus 34 sampling stations) averaged over the October 2008 to July 2010 period with each sampling

occurrence dataset and running Principal Component Analyses (PCA), setting the reference-survey dataset as active variables and

each sampling occurrence dataset as non-active (supplementary) variables. It revealed that the exceptional deficit in freshwater

supply to the lagoon during the 2009-2010 El Niflo drastically reduced hydrological diversity and lowered the trophic status of the

lagoon. Short-term shifts in environmental status are common in transitional waters and responsible for temporary shifts in
community structure but climate change projections show a significant long-term decrease in the freshwater discharge at the regional

scale that will impact Terminos Lagoon as well as other coastal lagoons of Mexico and Central America. When combined with sea

level rise, such a decrease will result in a long-term shift in hydrological conditions with a subsequent increase in salinity and a

decrease in the diversity of environmental conditions affecting trophic status, will have a long-term impact on the biota.
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Introduction

Littoral regions accommodate a broad range of coastal sys-
tems with heterogeneous water bodies often referred to as
“transitional waters” characterized by strong variability in sa-
linity as well as in most environmental parameters of natural
or anthropogenic origin which are driven by the balance be-
tween marine and freshwater inputs (Elliott and McLusky
2002; McLusky and Elliott 2007). Response of transitional
waters to ongoing climate change has risen to the highest level
of economic and political priority, resulting in a growing de-
mand for the accurate scientific expertise essential for the
definition; implementation; and control of ecologically, so-
cially, and economically effective management plans. This is
especially true in the Terminos Lagoon area, on the southern
Gulf coast of Mexico, which has been singled out as being
vulnerable to climate change (Magrin et al. 2007), potentially
exposed by the end of the twenty-first century to a drastic
decrease in river discharge from the Usumacinta-Grijalva
River (Kemp et al. 2016), and subject to general sea level rise
in the range 0.5 to 1 m (Magrin et al. 2007; Rahmstorf 2012).
Here, as in all other transitional water systems, a proper as-
sessment of spatiotemporal variability must be considered as a
prerequisite to the scientific establishment of cause to effect
relationships between global change and shifts in environmen-
tal conditions. However, spatiotemporal variability issues
have often been overlooked in environmental studies, raising
the risk of drawing insufficiently supported scientific interpre-
tation and of misguiding environmental policies toward inef-
ficient management action plans (Lucena-Moya et al. 2012).
Extracting comprehensive information from multiparametric
environmental databases remains a challenge and
environmetric approaches based on multivariate data ordina-
tion have been proven to be a rigorous and integrative way of
assessing spatial and temporal variability of transitional waters
(Fichez et al. 2010; Shin et al. 2013). The approach developed
in the present study specifically focuses on the physico-
chemical and biogeochemical indicators of water quality that
are commonly measured in environmental status assessments.
Establishing a multiparametric characterization of transitional
waters has been identified as a key integrative diagnostic ap-
proach that is still strongly lacking in environmental manage-
ment (Poikane et al. 2014). Recent concerns about delineating
environmental status categories for transitional waters have
largely focused on intercomparison between distinct systems,
to the detriment of the preliminary assessment of internal spa-
tiotemporal variability (Larned 1998; Liston et al. 1992;
Muslim and Jones 2003; Lucena-Moya et al. 2012), with the
most in-depth studies often being circumscribed to gray liter-
ature reports (Haynes et al. 2001; Furnas 2003). As a conse-
quence, and due to the complex synergistic impacts of ongo-
ing changes in climate conditions and local anthropogenic
drivers, there is a strong risk of hastily drawing cause-and-

effect relationship, regardless of what spatiotemporal variabil-
ity has to teach us about the flexibility of tropical transitional
systems and about the most probable scenarios at stake in
terms of environmental response to global change. Such a lack
of information on the distribution and temporal variability of
environmental parameters is especially critical for coastal
tropical systems of emerging and developing countries where
the potential threat of global change is increasingly acknowl-
edged as a key parameter detrimentally impacting sustainable
development. This is even more salient for the Mesoamerican
region (Central America and Southern Mexico), which is con-
sidered to be the most prominent tropical climate change hot-
spot worldwide (Giorgi 2006) and which is increasingly vul-
nerable to extreme climatic events (Hidalgo et al. 2013;
Vazquez-Gonzalez et al. 2014).

The present study was conducted on the very large and
shallow coastal Terminos Lagoon during a time period includ-
ing the 2009-2010 El Niflo Southern Oscillation positive
anomaly when Mexico experienced the most severe drought
since 1941 (Baringer et al. 2010). Its objectives, based on a 2-
year hydrological survey, aimed to (i) apply a data treatment
allowing for temporal intercomparison of typology ap-
proaches; (ii) analyze what such an intercomparison could
reveal in terms of seasonal cycling and climate change in the
specific context of the severe 2009-2010 El Nifio—related
drought period; and (iii) assess potential long-term environ-
mental alteration in Terminos Lagoon in the context of climate
change projection scenarios.

Material and methods
Study site and environmental conditions

The selection of Terminos Lagoon as a focus site for the study
of tropical coastal lagoon transitional waters arose logically
from its exceptional status as one of the largest shallow sys-
tems in the Gulf of Mexico, where conservation policies con-
flicted with anthropogenic pressure (Grenz et al. 2017).
Moreover, Terminos Lagoon benefited from a significant sci-
entific background and has been the recent object of renewed
interest from the scientific community leading to its selection
as a “pilot site” within the framework of the Global
Environment Facility (GEF) Program on the Gulf of
Mexico-Large Marine Ecosystem (GoM-LME) (Garcia-Rios
etal. 2013). Terminos Lagoon (Fig. 1) is located on the south-
ern coast of the Gulf of Mexico in the Mexican state of
Campeche and stretches over a surface of 1936 km* with an
average depth of only 2.4 m yielding a total water volume of
4.65 km® (Contreras Ruiz Esparza et al. 2014). Climate cate-
gories shift from tropical wet and dry in the lowlands to trop-
ical rainforest in the highlands. There are three distinct sea-
sonal periods throughout the year: a relatively dry season from
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Fig. 1 a Terminos Lagoon location and surrounding watershed basins
contributing to freshwater inputs keeping in mind that regardless of its
watershed surface, roughly 10% of the Usumacinta River discharge flows

February to May, a rainy one from June to September, with a
period of northern gales called “Nortes” between the two.
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through the Palizada River contributing to circa 90% of the freshwater
inputs to the lagoon; and b bathymetry of Terminos Lagoon with location
of the 34 sampling stations

Inland, Terminos Lagoon is surrounded by two very distinct
geologic provinces. Eastward stretches the Yucatan Peninsula,
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characterized by low rainfall and a porous calcareous base-
ment. This emerged carbonate platform has no river catch-
ment so rainfall penetrates the porous basement, providing
the water table with fresh water that finally seeps into the
sea all along the coasts of the Peninsula. To the west and south
of Terminos Lagoon are spread the lowlands of Tabasco and
the highlands of Chiapas and Guatemala. Four river catch-
ments directly discharge an average yearly volume of
11.96 x 10° m* yr.”! of freshwater into Terminos Lagoon
(Robadue Jr et al. 2004), roughly amounting to 2.6 times
its volume. Average yearly precipitation and evaporation
of 1805 mm yr.”' and 1512 mm yr.” ', respectively, result in
a net rainfall of 293 mm yrfl(David and Kjerfve 1998;
Espinal et al. 2007) and freshwater groundwater inputs to
Terminos Lagoon have been averaged at 4 x 10° m® yr.™’
(David 1999). The resulting freshwater input budget for
Terminos Lagoon yielded a total net yearly input of
12.57 x 10° m?® yr.”!, of which river discharge, precipita-
tion net input, and groundwater seepage accounted for
95.44%, 4.53%, and 0.03%, respectively, river discharge,
therefore, remaining by far the main source of freshwater
inputs to Terminos Lagoon (Fichez et al. 2017). The
Chumpan River is the lowest contributor, with an average
annual freshwater discharge of 0.6 x 10° m® yr.”" which
passes through the Balchacah Lagoon before reaching
Terminos Lagoon midway along its southern coast. The
Candelaria River combines with the small Mamantel
River to deliver a total of 2.26 x 10° m® yr.”! of freshwater
to the lagoon through the so-called Pargos Estuary. Finally,
the Palizada River discharges an average of 9.1 x
10° m® yr.”' of freshwater to Terminos Lagoon through
the El Vapor, El Este, and Del Viento lagoons and the
San Francisco and Chica openings, thereby accounting
for more than two-thirds of the freshwater inputs to the
lagoon. The Palizada is in fact a tributary of the
Usumacinta River, which in turn is part of the intertwined
Grijalva-Usumacinta basins that stretch over a total area of
112,550 km? (Hudson et al. 2005). Receiving an average
annual rainfall of 1709 mm yrfl, the Usumacinta River
discharges an average annual freshwater volume of 69 x
10° m® yrf] to the Gulf of Mexico, of which a little less
than one-tenth is diverted to the Terminos Lagoon through
the Palizada River (Fichez et al. 2017). On its seaward
side, the Terminos Lagoon is connected to the Gulf of
Mexico by two straits — Carmen Strait on the western side
(4 km long) and Puerto Real Strait on the eastern side
(3.3 km long) — separated by Carmen Island, a carbonated
sandbar 30 km long and 2.5 km wide. The lagoon’s shal-
lowness is disrupted only by channels located in the east-
ern part of each strait. Strong tidal currents generating la-
goon inflow and outflow pass through those two straits that
reach maximum depths of 19 m in Carmen Strait and 12 m
in Puerto Real Strait.

Sampling

Sampling was conducted across a network of 34 stations (Fig.
1) during a total of nine sampling trips spanning a 2-year
period from October 2008 to July 2010. Temperature, salinity
(Sal), turbidity (Turb), oxygen saturation percentage (O,%),
and in situ chlorophyll-a fluorescence (Fluo) profiles were
obtained from a multiparametric profiler (SeaBird® SBE 19)
equipped with additional sensors for turbidity (Seapoint® op-
tical back scatter), dissolved oxygen (SeaBird® SBE 43), and
chlorophyll-a in situ fluorescence (WETLabs® WETStar).
Salinity was obtained with a precision of 0.001. Calibrated
back scattering turbidity sensors set-up in high turbidity mode
provided NTU or nephelometric turbidity unit values with a
precision of 0.1 NTU. As a general rule, it has been reported
that backscattering was linearly correlated to suspended par-
ticulate matter concentrations below 10 g 1" with a general
correspondence of 1 NTU for 1 mg, with negligible variability
between individual nephelometers but significant inter-site
variability due to the very diverse optical properties and
multi-modal particle size distribution of suspended particles
in coastal lagoons (Ouillon et al. 2004). Chlorophyll-a in situ
fluorescence is reported as arbitrary fluorescence units with a
precision of 0.01 units. The combination of in situ fluores-
cence and chlorophyll-a analysis permitted to establish posi-
tive correlations between chlorophyll-a concentrations and in
situ fluorescence for each sampling period. But the relation-
ship changed from one sampling period to the next as other
pigments — as well as particulate and dissolved organic mat-
ter generally abundant in transitional waters — interfered with
the 460/695 nm excitation/emission wavelengths used to de-
tect in situ chlorophyll-a (Zeng and Li 2015), thus preventing
the establishment of a generic conversion rule.

Water was sampled using 5-1 Go-Flo bottles maintained
horizontally at about 0.2 m below the surface. On board, water
samples were treated following a three-step protocol: (1) as
soon as the sampling bottle was retrieved, a 40-mL Schott®
glass vial (previously washed with acid) was rinsed thrice with
sampled water, filled, immediately injected with the reagent
for ammonia (NH,) determination, sealed, and stored in the
dark for later fluorometric detection in the laboratory (Kérouel
and Aminot 1997; Holmes et al. 1999); (2) two 30-mL and
one 120-mL Nalgene® plastic vials, all previously acid-
washed, were rinsed thrice with sampled water, filled, and
stored in a specifically dedicated and refrigerated ice cooler,
to be later deep-frozen in the laboratory while awaiting anal-
ysis of dissolved inorganic and organic nutrients; and (3) a
previously acid-washed 4-L Nalgene® plastic container was
rinsed thrice with sampled water, filled, and stored in a dedi-
cated ice cooler. Back in the laboratory, water subsamples
were filtered through 25 and 47 mm diameter Whatman®
GF/F filters and immediately stored in the deep freeze for later
analysis of suspended particulate material.
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Nitrate + nitrite concentrations (NO3) were determined at
micromolar concentrations (Raimbault et al. 1990), phosphate
concentrations (PO,4) were determined according to Murphy
and Riley (1962), and silicates (Si) were ascertained according
to Fanning and Pilson (1973). All these analyses were con-
ducted on a continuous flow Technicon® AutoAnalyzer II.
Particulate and dissolved organic matter samples were subject
to wet oxidation (Raimbault et al. 1990) and the resulting
nitrate (PON and DON) and phosphate (POP and DOP) were
analyzed as previously described. Active chlorophyll-a (Chl-
a) and pheopigment (Pheo) concentrations were determined
using the in vivo fluorometric technique (Lorenzen 1966).

Data treatment

Correlation matrix-based PCAs were conducted on the nine sam-
pling datasets of 14 core variables (Sal, Turb, O2%, NH,4, NOs,
POy, Si, DON, DOP, POP, PON, Fluo, Chl-a, Pheo) measured at
34 sampling stations (T02 to T35) and on a similar format matrix
averaging data over the whole survey. Albeit of interest for the
analysis of each sampling occurrence, the PCA data treatment,
when conducted separately on each of the nine individual sam-
pling datasets, allowed for no pertinent intercomparison, due to
the absence of a common reference scale. Therefore, spatiotem-
poral intercomparison was obtained by pairing the averaged-
survey dataset with each individual sampling occurrence dataset
and running a PCA, setting the averaged-survey dataset as active
(reference) variables and each sampling occurrence dataset as
non-active (supplementary) variables (Abdi and Williams
2010). In the present work, the average data matrix (active var-
iables) served as a common referential on which each sampling
occasion (non-active variables) could be processed individually
hence allowing for an objective multiparametric spatiotemporal
intercomparison of hydrological conditions.

Results and discussion
Climate conditions during the sampling period
Climate conditions during the October 2008 to July 2010 survey

were significantly altered by a period of ENSO instability
(Table 1) corresponding to (i) a moderate La Nifia period from

November 2008 to March 2009 with a minimum Oceanic Nifio
Index (ONI) of —0.8; (ii) a very short period of normal condi-
tions; (iii) a period of relatively strong El Nifio from July 2009 to
April 2010 with a maximum ONI of + 1.6; and finally (iv) a La
Nifia period starting at the very end of our survey in July 2010.
Additionally, the 2009-2010 El Nifio was categorized as a
Modoki or Central-Equatorial Pacific (CP) El Nifio, character-
ized by lower temperature anomalies than for an Eastern-
Equatorial Pacific (EP) El Nifio (Capotondi et al. 2015)

The January 2008 to December 2010 representation of
Palizada River daily and monthly averaged flow rate (Fig. 2)
evidenced a strong freshwater discharge deficit during the year
2009, mainly due to low river flow during the rainy and post-
rainy seasons. Monthly averaged discharge peaked at 220 m* s~
in November 2009, which was far below the 530 and 700 m> s !
maxima recorded in October 2008 and September 2010, respec-
tively. The yearly cumulated Palizada River discharge amounted
to 8 and 8.7 x 10° m® in 2008 (including contribution from
Tropical Storm Marco) and 2010 (no such climatic event but
sustained rainfall during the whole rainy period), respectively,
whereas in 2009 it amounted to only 4.8 x 10° m?, correspond-
ing to a deficit of 33% when compared to the average yearly
discharge of 7.2 x 10° m® calculated over the 1992 to 2011 time
series (Fichez et al. 2017) and a deficit of 39% and 44% when
compared to the years 2008 and 2010, respectively.

Survey averaged reference

The PCA primarily yielded an ordination of the main factors
accounting for the variability of Terminos Lagoon hydrology
(Table 2). The cumulative 70% variance threshold identifying
the main structuring factors (Afifi et al. 2011) was reached or
exceeded when combining the first three factors with the ex-
ceptions of September 2009, when 77% of the variance was
reached from the first two factors as opposed to March and
July 2010, when the 70% threshold required a combination of
the first four factors.

The first three factors computed from the averaged-survey
dataset accounted for 78% of the variance (Table 2). The biplot
representations of Factor 1 against Factor 2 (Fig. 3a) and Factor
3 against Factor 2 (Fig. 3b) showed that Factor 1 accounting
for 51% of variance alone was strongly correlated positively
with salinity (0.88) and negatively with most trophic status

Table1  Oceanic Nifo Index —ONI from January 2008 to December 2010. ONI negative values below — 0.5 (La Nina) are shaded in light gray and ONI
positive values over + 0.5 (El Nifo) are shaded in dark gray

Year DJF JFM FMA MAM AMJ MJ) JJA JAS ASO SON OND NDJ

2008 =15 =1.5 =1.2 -0.9 -0.7 -0.5 -0.3 -0.2 -0.1 -0.2 -0.5 =0.7

2009 -0.8 =07 -0.5 -0.2 0.2 0.4 0.5 0.6 0.8 1.1 1.4 1.6

2010 1.6 13 1.0 0.6 0.1 -0.4 -0.9 —it b7 =14 =15 =155 =155

2011 = Sl -0.9 -0.6 -0.3 -0.2 -0.2 -0.4 -0.6 -0.8 -1.0 -1.0
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Palizada River daily and monthly
averaged freshwater flow rates
from January 2008 to

March 2011. Sampling campaign
occurrences are represented by
dark triangles at the base of the x-
axis. Hydrology data were
downloaded on the 28th of April
2014 from the Mexican
“Comision Nacional de Agua”
(CONAGUA) online
hydrological surveys database.
(http://Wwww.conagua.gob.mx/
CONAGUAO07/Contenido/
Documentos/Portada%
20BANDAS.htm)
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parameters such as POP (—0.93), pheopigments (—0.92), in
situ fluorescence (—0.91), chlorophyll-a (= 0.81), NO; (—
0.78), PO4 (— 077), and Si (— 0.73), or with turbidity (—0.73).
Factor 2 accounting for 17% of variance was mainly positively
correlated with DON (0.82), PON (0.63), and DOP (0.50) and
negatively correlated with ammonium (— 0.64). Factor 3 ac-
counting for 9% of variance showed a weaker positive corre-
lation with turbidity (0.49) and dissolved oxygen saturation
(0.48) and a weaker negative correlation with Si (0.43).

The biplot representation of cases (i.e., sampling stations)
for Factor 1 against Factor 2 (Fig. 3c¢) and Factor 3 against
Factor 2 (Fig. 3d) provided a representation of environmental
condition diversity. A strong distribution pattern could be ob-
served on the Factor 1 against Factor 2 biplot that jointly
accounted for 68% of the variance (Fig. 3c). A group of
roughly 22 sampling stations located essentially in the central
and eastern part of the lagoon was linearly ordinated along a
diagonal line stretching from T18 to T35. A second group of
ten stations (T02 to T10 and T15) located in the westernmost
part of the lagoon diverged from that diagonal line and
stretched toward the negative sides of Factors 1 and 2.
Stations T16 and T14 stood between those two groups, while
a final group of three eastern stations (T30, T29, T34)
stretched in parallel to the first diagonal group and on its lower

Daily flow rate

—4— Monthly flow rate

side. The distribution along Factor 1 and Factor 3 was much
more homogeneously spread with no strong specific pattern.

The signification of each of the first three PCA factors
which cumulatively accounted for 78% of variance could also
be inferred from the study of the few sampling stations that
neared the extremity of each axis and/or that significantly
departed from the scatterplot nucleus. Stations T06 and T07,
located at the mouth of the Palizada River, stood on the neg-
ative far end of Factor 1, whereas stations T11, T12, and T20,
located leeward of Carmen Island, stood on its positive end.
Considering its tight relationship with salinity and trophic sta-
tus parameters, that first factor of variability related to the
estuarine influence essentially driven by the Palizada River
that accounted for more than two-thirds of the freshwater in-
puts to the lagoon. That correlation with the Palizada River
influence was further confirmed by the poor correlation with
station T34, located directly downstream of Candelaria
Estuary. Stations T35, T31, T33, and T32, confined to the
easternmost part of the lagoon, stood on the far positive end
of Factor 2 corresponding to organic-rich and NHy-depleted
waters, whereas nearby station T30 stood on the very opposite
end corresponding to water with lower organic load and
higher NH, concentrations. Finally, stations T09 and T29,
located in the alignment of the deep channels of Carmen

Table 2  Cumulative percentage of variance corresponding to the first four PCA factors for the nine sampling occasions and for the averaged datasets
over the full survey. The dominant structuring factors defined as those cumulatively accounting for 70% or more (Afifi et al. 2011) are shaded in gray

Cumulative Oct-08 | Nov-08 | Mar-09 | Sep-09 | Oct-09 | Dec-09 | Feb-10 | Mar-10 | Jul-10 Full

variance % survey

Factor 1 38 41 46 51 36 41 32 27 33 51

Factor 2 59 61 64 77 55 58 53 50 54 68

Factor 3 70 71 76 86 73 72 70 67 63 78

Factor 4 78 79 83 91 81 81 77 79 71 84
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Fig. 3 Biplot representation of the principal component analysis
conducted on a reference matrix gathering data averaged over the whole
survey (34 stations by 14 parameters). Projection of the 14 variables
(water parameters) a along factor 1 (51.4% of variance) showing the
essential influence of estuarine (trophic status variables) versus marine
(salinity) sources and factor 2 (16.7% of variance) oppositely linked to
DON and NHy; and b along factors 2 and 3 (9.5% of variance) oppositely

Inlet and Puerto Real Inlet, respectively, stood on the positive
end of Factor 3 correlated with high salinity, oxygen satura-
tion, and turbidity, whereas stations T02 and T34 stood on its
negative end.

Spatiotemporal intercomparison

Results from PCAs using the survey-averaged dataset as ac-
tive variables and each sampling dataset as non-active (or
supplementary) variables allowed to graphically represent
the hydrological heterogeneity of each sampling occurrence
according to a common referential, hence yielding a statisti-
cally supported multiparametric spatiotemporal intercompari-
son approach. Results from such a combined PCA plotted
according to factors 1 and 2 (Fig. 4) and factors 2 and 3
(Fig. 5) showed the most widespread distribution to occur in
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linked to O2% and Si. Projection of the 34 cases (stations) along ¢ factors
1 and 2, and d factors 2 and 3. Sal = salinity, Turb = turbidity, 02% =
oxygen saturation percentage, NH, = ammonia, NOs =nitrate + nitrite,
PO, = phospates, Si=silicates, DON = dissolved organic nitrogen,
DOP =dissolved organic phosphorus, POP = particulate organic
phosphorus, PON = particulate organic nitrogen, Fluo =in situ
chlorophyll-a fluorescence, Chl-a = Chlorophyll-a, Pheo = pheopigments

October 2008, close to the peak of the rainy season, with
coordinates ranging from —25.5 to —1.3, —=5.9 to 11.5, and
—9.2 to 4.7 for Factors 1, 2, and 3, respectively, when the
survey-averaged distribution only ranged from —7.8 to 4.2,
—2.6 t0 4.0, and — 3.1 to 2.3 for the same respective factors.
Additionally, all coordinates in October 2008 were negative
for Factor 1 and mostly positive for Factor 2 or negative for
Factor 3. This strong dispersion constricted slightly in
November 2008 with values ranging from — 14.4 to — 4.0, —
3.6t07.9,and — 8.1 to 2.5 for Factors 1, 2, and 3, respectively,
thus still significantly more widespread than for the survey-
averaged distribution and still exclusively on the negative side
for Factor 1 and mainly on the positive side for Factor 2. The
scattering then narrowed strongly in March 2009, as the usual
dry period conditions prevailed, with coordinate values rang-
ing close to the survey-averaged ones. It then spread slightly
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Fig.4 Principal component analysis of the temporal variability driven by
the 14 variables (water parameters) based on the projections along factors
1 and 2 (68% cumulated variability) of each of the nine sampling

again in September 2009, but instead of expanding to reach a
situation identical to that of October 2008, it collapsed drasti-
cally in October 2009, at the beginning of the drought period,
and shifted toward the positive end of Factors 1 and 3 and the
negative end of Factor 2. This condensing and shifting trend
built up during the following 6 months until March 2010 when
coordinates ranged from 0.7 to 7.3, — 5.7 t0 0, and — 2.8 to 3.9
for Factors 1, 2, and 3, respectively, in parallel to the growing
deficit in river discharge. In July 2010, as river discharge
increased again with the end of the drought, a slightly more
widespread distribution began to appear, especially along
Factor 3.

The strong variance accounted for by the first factor and its
positive correlation with salinity and negative correlation with
trophic status and turbidity evidenced the primordial influence
of estuarine versus marine sources. More surprisingly, the sec-
ond factor appeared to be largely decoupled from salinity and
mostly correlated with organic matter and even more specifi-
cally with dissolved organic matter on one side and with am-
monium on the other side, hence most likely relating to het-
erotrophic degradation processes that led from organic-rich
waters to waters enriched in recycled N-nutrients. Combined
together, these two factors which accounted for 68%

Factor 1-51.37%

Factor1-51.37%

campaigns against the matrix gathering data averaged over the whole
survey (34 stations by 14 parameters) used as a common reference

variability evidenced a strong partitioning into two main sub-
systems with: (i) a first western subsystem covering approxi-
mately one third of the surface and strongly influenced by the
balance between the inputs from the Palizada River and the
exchanges through the El Carmen Strait, and (ii) a second
subsystem covering approximately the remaining two thirds
of the surface and extending over the central and eastern part
of the lagoon, and organized along a gradient going from the
central part to the easternmost embayment. Such a 1/3 western
2/3 eastern partitioning is consistent with previous works on
water budget (Robadue et al. 2004) on the distribution of
inorganic nutrients close to the main fresh water input sources
(Medina-Gomez et al. 2015) or on the presence of maximal
phytoplankton production in the western part due to Palizada
River inputs of phosphates and organic matter and strong on-
site bacterial mineralization that released additional nutrients
(Conan et al. 2017).

Finally, the third major environmental factor correlated
with turbidity, oxygen saturation, and salinity related mostly
to stations located close to El Carmen and Puerto Real Straits
and could be interpreted as being driven by entering well-
mixed marine surface waters loaded with particles resuspend-
ed from the shallow coastal banks (Contreras Ruiz Esparza
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Fig. 5 Principal component analysis of the temporal variability driven by
the 14 variables (water parameters) based on the projections along factors
2 and 3 (26% cumulated variability) of each of the nine sampling

et al. 2014). Despite the significant level of turbidity more
generally generated by resuspension in such a shallow lagoon
system, chlorophyll-a amounted to 70—-80% of the sum of
chloropigments in most areas, a ratio range characteristic of
relatively productive and non-senescent phytoplankton popu-
lations. That apparent paradox between light limitation and
active primary production is consistent with recently reported
results on phytoplankton dynamics in Terminos Lagoon
(Conan et al. 2017) and is not uncommon in very shallow
but hydrodynamically active systems where it has been dem-
onstrated that even under very turbid conditions, turbulent
water motion may cyclically expose phytoplankton to suffi-
cient surface irradiance to allow for phytoplankton primary
production to occur (Fichez et al. 1992).

The dispersion of stations as a function of the PCA factors
accounted for the diversity in hydrological conditions, with the
more widespread dispersion corresponding to more diverse
environmental conditions, and the most compact dispersion
corresponding to more homogeneous environmental

Factor 2 -16.68 %

Factor 2 -16.68 %

campaigns against the matrix gathering data averaged over the whole
survey (34 stations by 14 parameters) used as a common reference

conditions. The strong variations observed between October
2008 and July 2010 matched with the recorded variability in
river discharge driven by the combination of seasonal cycle
(rainy versus dry season) and drought period related to the
ENSO climate anomaly. The most widespread, and therefore,
diverse hydrological conditions were recorded in October
2008, corresponding to a situation typical of the end of the
wet season with yearly maximum river discharge. Lesser di-
verse hydrological conditions were recorded in March 2009,
corresponding to a typical end of the dry season with yearly
minimum river discharge. From September 2009 to
March 2010, the 20092010 El Nifio—related drought period
that severely affected Mexico in July 2009 and which was
reported as the driest month since the year 1941 (Baringer
et al. 2010) resulted in a drastic decrease in the diversity of
hydrological conditions. Even though low water flow rates
were very similar in March 2009 and March 2010, the
sustained deficit in river discharge during the whole 2010
wet season led to a strong decrease in hydrological condition
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heterogeneity in March 2010 as demonstrated by the drastical-
ly less widespread distribution in PCA (Fig. 4a and b) corre-
sponding to a significant loss in the diversity of hydrological
conditions. The general shift in salinity nearing marine values
and the decrease in nutrients, chloropigments, and organic mat-
ter loads (DON, DOP, and PON) resulted in a shift from a
system globally classified as brackish and mesotrophic
(Herrera-Silveira et al. 2011) to a more saline and oligotrophic
one. That shift in trophic status was perfectly summarized by
the integrative environmental indicator represented by
Chlorophyll-a concentrations (Fichez et al. 2010) which, when
averaged over the whole lagoon, decreased from 6.3 to
3.7 ug L1 between October 2008 and March 2009, but fell to
0.6 ug L' in March 2010, thus showing the 20092010
drought-related deficit in river inputs to result in a sixfold de-
crease in phytoplankton stock. This rapid and significant tro-
phic impoverishment proved that the high trophic status of
Terminos Lagoon strongly depends on river-borne new nutri-
ent inputs, the input of recycled nutrients from the sediment
reservoir being unable to sustain such a high trophic status,
even over a relatively short duration. The relative imbalance
between the respective influence of river-borne and sediment
nutrient sources on the biogeochemical functioning of the
Terminos Lagoon converged with previous results showing
nitrogen turnover times to range from less than 1 day for inor-
ganic nitrogen in the water column to over 3000 days for
sedimentary organic nitrogen (Hopkinson et al. 1988).

Short- to long-term potential consequences

The strong influence of river inputs on the trophic status and
hydrological diversity evidenced in the present work was con-
sistent with the Flood Pulse Concept (FPC) which defines
flood pulse as the major driving force in wetland systems
(Junk and Wantzen 2004). This concept was recently linked
in Terminos Lagoon to an adaptive diversification in resource
use by consumers (Sepulveda-Lozada et al. 2017), with pe-
riods of high river inputs resulting in higher trophic diversifi-
cation and lower trophic redundancy, and conversely. Shifts in
hydrological diversity and trophic status leading to a strong
variability in food supply have been seen to impact entire
communities in terms of density, diversity, and physiological
state (Wantzen et al. 2002; Junk and Wantzen 2004; Abrantes
et al. 2014). The homogenization of hydrological conditions
and impoverishment in trophic status caused by the decrease
in river inputs that we evidenced in Terminos Lagoon will
ineluctably have an impact on the ecological balance of the
Terminos Lagoon. Shift in hydrological conditions from
hypohaline to euhaline/hyperhaline status in Terminos
Lagoon has already been held responsible for having detri-
mental impacts on the food web (Abascal-Monroy et al.
2015), on juvenile development stages of exploited species,
and subsequently on the stock of living resources in the

surrounding coastal system of the Gulf of Mexico (Ramos
Miranda et al. 2005; Sosa Lopez et al. 2005; Villéger et al.
2010; Sirot et al. 2015). However, our work demonstrated that
the increase in salinity concurred with a loss in hydrological
condition diversity and a decrease in trophic status that offer a
much more consistent explanation for the loss of functional
diversity and biotic homogenization in the fish community of
Terminos lagoon reported by those authors. Moreover, Conan
et al. (2017) characterized the Terminos pelagic ecosystem as
a “nitrogen assimilator” because of its relatively high internal
production and weak autochthonous exportation to the Gulf of
Mexico. These authors also concluded that “bottom-up” con-
trol was dominant for microbial productivity and that the het-
erogeneity in phytoplankton and free-living prokaryote distri-
bution in the lagoon was largely explained by nitrogen to
phosphorus stoichiometry. In such a context, and as already
reported for many rivers (Turner et al. 2003; Seitzinger et al.
2010), expected decreases in rainfall and river discharge to-
gether with modification in land use will most certainly mod-
ify the N versus P balance of nutrient inputs to Terminos
Lagoon, hence potentially further impacting its ecosystem
structure and functioning.

Even though the inherent variability of transitional systems
corresponding to their “buffer capacity” (Carpenter et al.
2001) has been alternatively hypothesized as the most likely
driver of present shifts in fish population in Terminos Lagoon
(Fichez et al. 2017), predictive climate scenarios strongly sug-
gest that the Terminos Lagoon system might face a future
long-term change in its salinity balance and related hydrolog-
ical conditions and trophic status. While modeling approaches
based on various IPCC emission scenarios do not foresee
change in rainfall for the next decades in the Mexico-Central
America region, a decline by 5% to 30% is expected during
the second part of the century (Saenz-Romero et al. 2010; Met
Office 2011; Biasutti et al. 2012; Hidalgo et al. 2013). For
example, if no significant precipitation change is expected
during the first half of the twenty-first century, precipitation
decline is expected in its second half with a decrease of 7% in
Guatemala and 10 to 13% in Belize under IPCC emission
scenario B2, and of 27 to 32% in Belize and Guatemala under
scenario A2 with an averaged reduction of 28% at the regional
scale (Barcena et al. 2010). Similarly, based on various emis-
sion scenarios, significant reductions in precipitation (as much
as 5-10%) and runoff (as much as 10-30%) is anticipated for
the 2050-2099 period in northern Central America (Hidalgo
et al. 2013) with a projected decrease in precipitation by ~
13% in southern Mexico in summer and slight increase in
autumn (Colorado-Ruiz et al. 2018). Those numbers come
close to the 33% deficit in river discharge we recorded during
the 2009 drought when compared to the yearly river discharge
averaged over the 1992-2011 time period, and certain authors
even claim that an 80% decrease in freshwater discharge from
the Usumacinta-Grijalva River catchment may be expected
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(Kemp et al. 2016). In Terminos Lagoon as well as in most
Central America coastal lagoons, such alleged long-term de-
crease in rainfall and river discharge will thus result in a long-
term shift toward higher salinity, lower diversity in hydrolog-
ical conditions and lower trophic status of comparable or even
greater magnitude than the one we evidenced, with corollary
impacts on biodiversity and productivity.

Conclusion

The present study has allowed to mathematically define and
represent the spatiotemporal variability of hydrological condi-
tions in Terminos Lagoon yielding a synthetic vision of the
global organization of water masses that clearly demonstrated
a strong variability which is mainly driven by river inputs. The
proposed approach provided evidence of the drastic impact of
the 20092010 EIl Nifio—related drought period on the salinity
and trophic status of the lagoon, showing its sensitivity to
climatic events. The occurrence of a 6-month-long severe def-
icit in river inputs due to that drought was seen to have result-
ed in a strong decrease in the heterogeneity/diversity in hydro-
logical conditions, with an increase in salinity and a signifi-
cant trophic status shift from mesotrophic to oligotrophic. As
climate change scenarios converge to significant decreases in
rainfall in the region, such a relationship between river inputs,
hydrological diversity, and trophic status means that the whole
trophic network and living resources will be impacted. Such
potential impacts on the diversity of environmental conditions
must be factored into environmental management plans in
order to ensure the sustainability of the current status of
Terminos Lagoon as a protected area and as a living resource
reservoir for the whole region. Beyond its application to the
specific case of Terminos Lagoon, the proposed spatiotempo-
ral intercomparison approach based on the combination using
average database PCA coordinates as a reference matrix could
be more widely applied in order to efficiently valorise
multiparametric datasets.
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