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Is affine-invariance well defined on SPD

matrices? A principled continuum of metrics

Yann Thanwerdas and Xavier Pennec

Université Côte d’Azur, Inria, Epione, France

Abstract. Symmetric Positive Definite (SPD) matrices have been widely
used in medical data analysis and a number of different Riemannian met-
rics were proposed to compute with them. However, there are very few
methodological principles guiding the choice of one particular metric for
a given application. Invariance under the action of the affine transfor-
mations was suggested as a principle. Another concept is based on sym-
metries. However, the affine-invariant metric and the recently proposed
polar-affine metric are both invariant and symmetric. Comparing these
two cousin metrics leads us to introduce much wider families: power-affine
and deformed-affine metrics. Within this continuum, we investigate other
principles to restrict the family size.

Keywords: SPD matrices · Riemannian symmetric space.

1 Introduction

Symmetric positive definite (SPD) matrices have been used in many differ-
ent contexts. In diffusion tensor imaging for instance, a diffusion tensor is a
3-dimensional SPD matrix [1–3]; in brain-computer interfaces (BCI) [4], in func-
tional MRI [5] or in computer vision [6], an SPD matrix can represent a covari-
ance matrix of a feature vector, for example a spatial covariance of electrodes or a
temporal covariance of signals in BCI. In order to make statistical operations on
SPD matrices like interpolations, computing the mean or performing a principal
component analysis, it has been proposed to consider the set of SPD matrices as
a manifold and to provide it with some geometric structures like a Riemannian

metric, a transitive group action or some symmetries. These structures can be
more or less natural depending on the context of the applications, and they can
provide closed-form formulas and consistent algorithms [2, 7].

Many Riemannian structures have been introduced over the manifold of SPD
matrices [7]: Euclidean, log-Euclidean, affine-invariant, Cholesky, square root,
power-Euclidean, Procrustes... Each of them has different mathematical prop-
erties that can fit the data in some problems but can be inappropriate in some
other contexts: for example the curvature can be null, positive, negative, con-
stant, not constant, covariantly constant... These properties on the curvature
have some important consequences on the way we interpolate two points, on
the consistence of algorithms, and more generally on every statistical operation
one could want to do with SPD matrices. Therefore, a natural question one can
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ask is: given the practical context of an application, how should one choose the
metric on SPD matrices? Are there some relations between the mathematical
properties of the geometric structure and the intrinsic properties of the data?

In this context, the affine-invariant metric [2, 8, 3] was introduced to give an
invariant computing framework under affine transformations of the variables.
This metric endows the manifold of SPD matrices with a structure of a Rie-
mannian symmetric space. Such spaces have a covariantly constant curvature,
thus they share some convenient properties with constant curvature spaces but
with less constraints. It was actually shown that there exists not only one but
a one-parameter family that is invariant under these affine transformations [9].
More recently, [10–12] introduced another Riemannian symmetric structure that
does not belong to the previous one-parameter family: the polar-affine metric.

In this work, we unify these two frameworks by showing that the polar-affine
metric is a square deformation of the affine-invariant metric (Section 2). We
generalize in Section 3.1 this construction to a family of power-affine metrics
that comprises the two previous metrics, and in Section 3.2 to the wider family
of deformed-affine metrics. Finally, we propose in Section 4 a theoretical ap-
proach in the choice of subfamilies of the deformed-affine metrics with relevant
properties.

2 Affine-invariant versus polar-affine

The affine-invariant metric [2, 8, 3] and the polar-affine metric [12] are different
but they both provide a Riemannian symmetric structure to the manifold of SPD
matrices. Moreover, both claim to be very naturally introduced. The former uses
only the action of the real general linear group GLn on covariance matrices. The
latter uses the canonical left action of GLn on the left coset space GLn/On

and the polar decomposition GLn ≃ SPDn × On, where On is the orthogonal
group. Furthermore, the affine-invariant framework is exhaustive in the sense
that it provides all the metrics invariant under the chosen action [9] whereas the
polar-affine framework only provides one invariant metric.

In this work, we show that the two frameworks coincide on the same quotient
manifold GLn/On but differ because of the choice of the diffeomorphism between
this quotient and the manifold of SPD matrices. In particular, we show that there
exists a one-parameter family of polar-affine metrics and that any polar-affine
metric is a square deformation of an affine-invariant metric.

In 2.1 and 2.2, we build the affine-invariant metrics g1 and the polar-affine
metric g2 in a unified way, using indexes i ∈ {1, 2} to differentiate them. First,
we give explicitly the action ηi : GLn × SPDn −→ SPDn and the quotient
diffeomorphism τ i : GLn/On −→ SPDn; then, we explain the construction
of the orthogonal-invariant scalar product giIn that characterizes the metric gi;
finally, we give the expression of the metrics g1 and g2. In 2.3, we summarize
the results and we focus on the Riemannian symmetric structures of SPDn.

2.1 The one-parameter family of affine-invariant metrics

Affine action and quotient diffeomorphism In many applications, one
would like the analysis of covariance matrices to be invariant under affine trans-
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formations X 7−→ AX + B of the random vector X ∈ R
n, where A ∈ GLn and

B ∈ R
n. Then the covariance matrix Σ = Cov(X), is modified under the trans-

formation Σ 7−→ AΣA⊤. This transformation can be thought as a transitive Lie
group action η1 of the general linear group on the manifold of SPD matrices:

η1 :

{

GLn × SPDn −→ SPDn

(A,Σ) 7−→ η1A(Σ) = AΣA⊤ . (1)

This transitive action induces a diffeomorphism between the manifold SPDn

and the quotient of the acting group GLn by the stabilizing group Stab1(Σ) =
{A ∈ GLn, η

1(A,Σ) = Σ} at any point Σ. It reduces to the orthogonal group
at Σ = In so we get the quotient diffeomorphism τ1:

τ1 :

{

GLn/On −→ SPDn

[A] = A.On 7−→ η1(A, In) = AA⊤ . (2)

Orthogonal-invariant scalar product We want to endow the manifold M =
SPDn with a metric g1 invariant under the affine action η1, i.e. an affine-
invariant metric. As the action is transitive, the metric at any point Σ is char-
acterized by the metric at one given point In. As the metric is affine-invariant,
this scalar product gIn has to be invariant under the stabilizing group of In.
As a consequence, the metric g1 is characterized by a scalar product g1In on the
tangent space TInM that is invariant under the action of the orthogonal group.

The tangent space TInM is canonically identified with the vector space Symn

of symmetric matrices by the differential of the canonical embedding M →֒
Symn. Thus we are now looking for all the scalar products on symmetric matrices
that are invariant under the orthogonal group. Such scalar products are given
by the following formula [9], where α > 0 and β > −α

n : for all tangent vectors
V1,W1 ∈ TInM, g1In(V1,W1) = α tr(V1W1) + β tr(V1)tr(W1).

Affine-invariant metrics To give the expression of the metric, we need a
linear isomorphism between the tangent space TΣM at any point Σ and the
tangent space TInM. Since the action η1

Σ−1/2 sends Σ to In, its differential

given by TΣη
1
Σ−1/2 : V ∈ TΣM 7−→ V1 = Σ−1/2V Σ−1/2 ∈ TInM is such a

linear isomorphism. Combining this transformation with the expression of the
metric at In and reordering the terms in the trace, we get the general expression
of the affine-invariant metric: for all tangent vectors V,W ∈ TΣM,

g1Σ(V,W ) = α tr(Σ−1V Σ−1W ) + β tr(Σ−1V )tr(Σ−1W ). (3)

As the geometry of the manifold is not much affected by a scalar multiplica-
tion of the metric, we often drop the parameter α, as if it were equal to 1, and
we consider that this is a one-parameter family indexed by β > − 1

n .

2.2 The polar-affine metric

Quotient diffeomorphism and affine action In [12], instead of defining a
metric directly on the manifold of SPD matrices, a metric is defined on the left
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coset space GLn/On = {[A] = A.On, A ∈ GLn}, on which the general linear
group GLn naturally acts by the left action η0 : (A, [A′]) 7−→ [AA′]. Then this
metric is pushed forward on the manifold SPDn into the polar-affine metric g2

thanks to the polar decomposition pol : A ∈ GLn 7−→ (
√
AA⊤,

√
AA⊤

−1
A) ∈

SPDn ×On or more precisely by the quotient diffeomorphism τ2:

τ2 :

{

GLn/On −→ SPDn

A.On 7−→
√
AA⊤

. (4)

This quotient diffeomorphism induces an action of the general linear group GLn

on the manifold SPDn, under which the polar-affine metric will be invariant:

η2 :

{

GLn × SPDn −→ SPDn

(A,Σ) 7−→ η2A(Σ) =
√
AΣ2A⊤

. (5)

It is characterized by η2(A, τ2(A′.On)) = τ2(η0(A,A′.On)) for A,A
′ ∈ GLn.

Orthogonal-invariant scalar product The polar-affine metric g2 is char-
acterized by the scalar product g2In on the tangent space TInM. This scalar
product is obtained by pushforward of a scalar product g0[In] on the tangent

space T[In](GLn/On). It is itself induced by the Frobenius scalar product on

gln = TInGLn, defined by 〈v|w〉Frob = tr(vw⊤), which is orthogonal-invariant.
This is summarized on the following diagram.

GLn
s−→ GLn/On

τ2

−→ M = SPDn

A 7−→ A.On 7−→
√
AA⊤

〈·|·〉Frob g0[In] g2In

Finally, we get the scalar product g2In(V2,W2) = tr(V2W2) for V2,W2 ∈ TInM.

Polar-affine metric Since the action η2Σ−1 sends Σ to In, a linear isomorphism
between tangent spaces is given by the differential of the action TΣη

2
Σ−1 : V ∈

TΣM −→ V2 = Σ−1TΣpow2(V )Σ−1 ∈ TInM. Combined with the above expres-
sion of the scalar product at In, we get the following expression for the polar
affine metric: for all tangent vectors V,W ∈ TΣM,

g2Σ(V,W ) = tr(Σ−2 TΣpow2(V )Σ−2 TΣpow2(W )). (6)

2.3 The underlying Riemannian symmetric manifold

In the affine-invariant framework, we started from defining the affine action
η1 (on covariance matrices) and we inferred the quotient diffeomorphism τ1 :
(GLn/On, η

0) −→ (SPDn, η
1). In the polar-affine framework, we started from

defining the quotient diffeomorphism τ2 : GLn/On −→ SPDn (corresponding to
the polar decomposition) and we inferred the affine action η2. The two actually
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correspond to the same underlying affine action η0 on the quotient GLn/On.
Then there is also a one-parameter family of affine-invariant metrics on the
quotient GLn/On and a one-parameter family of polar-affine metrics on the
manifold SPDn. This is stated in the following theorems.

Theorem 1 (Polar-affine is a square deformation of affine-invariant).

1. There exists a one-parameter family of affine-invariant metrics on the quo-

tient GLn/On.

2. This family is in bijection with the one-parameter family of affine-invariant

metrics on the manifold of SPD matrices thanks to the diffeomorphism τ1 :
A.On 7−→ AA⊤. The corresponding action is η1 : (A,Σ) 7−→ AΣA⊤.

3. This family is also in bijection with a one-parameter family of polar-affine

metrics on the manifold of SPD matrices thanks to the diffeomorphism τ2 :
A.On 7−→

√
AA⊤. The corresponding action is η2 : (A,Σ) 7−→

√
AΣ2A⊤.

4. The diffeomorphism pow2 :

{

(SPDn, 4g
2) −→ (SPDn, g

1)
Σ 7−→ Σ2 is an isometry

between polar-affine metrics g2 and affine-invariant metrics g1.

In other words, performing statistical analyses (e.g. a principal component
analysis) with the polar-affine metric on covariance matrices is equivalent to
performing these statistical analyses with the classical affine-invariant metric on
the square of our covariance matrix dataset.

All the metrics mentioned in Theorem 1 endow their respective space with a
structure of a Riemannian symmetric manifold. We recall the definition of that
geometric structure and we give the formal statement.

Definition 1 (Symmetric manifold, Riemannian symmetric manifold).
A manifold M is symmetric if it is endowed with a family of involutions (sx)x∈M

called symmetries such that sx ◦sy ◦sx = ssx(y) and x is an isolated fixed point of

sx. It implies that Txsx = −IdTxM. A Riemannian manifold (M, g) is symmetric

if it is endowed with a family of symmetries that are isometries of M, i.e. that

preserve the metric: gsx(y)(Tysx(v), Tysx(w)) = gy(v, w) for v, w ∈ TyM.

Theorem 2 (Riemannian symmetric structure on SPDn). The Rieman-

nian manifold (SPDn, g
1), where g1 is an affine-invariant metric, is a Rieman-

nian symmetric space with symmetry sΣ : Λ 7−→ ΣΛ−1Σ. The Riemannian

manifold (SPDn, g
2), where g2 is a polar-affine metric, is also a Riemannian

symmetric space whose symmetry is sΣ : Λ 7−→
√
Σ2Λ−2Σ2.

This square deformation of affine-invariant metrics can be generalized into
a power deformation to build a family of affine-invariant metrics that we call
power-affine metrics. It can even be generalized into any diffeomorphic deforma-
tion of SPD matrices. We now develop these families of affine-invariant metrics.



6 Y. Thanwerdas, X. Pennec

3 Families of affine-invariant metrics

There is a theoretical interest in building families comprising some of the known
metrics on SPD matrices to understand how one can be deformed into another.
For example, power-Euclidean metrics [13] comprise the Euclidean metric and
tends to the log-Euclidean metric [14] when the power tends to 0. We recall that
the log-Euclidean metric is the pullback of the Euclidean metric on symmetric
matrices by the symmetric matrix logarithm log : SPDn −→ Symn. There is
also a practical interest in defining families of metrics: for example, it is possible
to optimize the power to better fit the data with a certain distribution [13].

First, we generalize the square deformation by deforming the affine-invariant
metrics with a power function powθ : Σ ∈ SPDn 7−→ Σθ = exp(θ logΣ) to
define the power-affine metrics. Then we deform the affine-invariant metrics by
any diffeomorphism f : SPDn −→ SPDn to define the deformed-affine metrics.

3.1 The two-parameter family of power-affine metrics

We recall that M = SPDn is the manifold of SPD matrices. For a power θ 6= 0,
we define the θ-power-affine metric gθ as the pullback by the diffeomorphism
powθ : Σ 7−→ Σθ of the affine-invariant metric, scaled by a factor 1/θ2.

Equivalently, the θ-power-affine metric is the metric invariant under the θ-
affine action ηθ : (A,Σ) 7−→ (AΣθA⊤)1/θ whose scalar product at In coincides
with the scalar product g1In : (V,W ) 7−→ α tr(VW )+β tr(V )tr(W ). The θ-affine

action induces an isomorphism V ∈ TΣM 7−→ Vθ = 1
θΣ

−θ/2 ∂V powθ(Σ)Σ−θ/2 ∈
TInM between tangent spaces. The θ-power-affine metric is given by:

gθΣ(V,W ) = α tr(VθWθ) + β tr(Vθ)tr(Wθ). (7)

Because a scaling factor is of low importance, we can set α = 1 and consider
that this family is a two-parameter family indexed by β > −1/n and θ 6= 0.

We have chosen to define the metric gθ so that the power function powθ :
(M, θ2gθ) −→ (M, g1) is an isometry. Why this factor θ2? The first reason is for
consistence with previous works: the analogous power-Euclidean metrics have
been defined with that scaling [13]. The second reason is for continuity: when
the power tends to 0, the power-affine metric tends to the log-Euclidean metric.

Theorem 3 (Power-affine tends to log-Euclidean for θ → 0). Let Σ ∈ M
and V,W ∈ TΣM. Then limθ→0 g

θ
Σ(V,W ) = gLE

Σ (V,W ) where the log-Euclidean

metric is gLE
Σ (V,W ) = α tr(∂V log(Σ) ∂W log(Σ))+β tr(∂V log(Σ))tr(∂W log(Σ)).

3.2 The continuum of deformed-affine metrics

In the following, we call a diffeomorphism f : SPDn −→ SPDn a deformation.
We define the f -deformed-affine metric gf as the pullback by the diffeomorphism
f of the affine-invariant metric, so that f : (M, gf) −→ (M, g1) is an isometry.
(Regarding the discussion before the Theorem 3, gpowθ = θ2gθ.)
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The f -deformed-affine metric is invariant under the f -affine action ηf :
(A,Σ) 7−→ f−1(Af(Σ)A⊤). It is given by gfΣ(V,W ) = αtr(VfWf )+βtr(Vf )tr(Wf )
where Vf = f(Σ)−1/2 ∂V f(Σ) f(Σ)−1/2. The basic Riemannian operations are
obtained by pulling back the affine-invariant operations.

Theorem 4 (Basic Riemannian operations). For SPD matrices Σ,Λ ∈ M
and a tangent vector V ∈ TΣM, we have at all time t ∈ R:

Geodesics γf
(Σ,V )(t) = f−1(f(Σ)1/2 exp(tf(Σ)−1/2TΣf(V )f(Σ)−1/2)f(Σ)1/2)

Logarithm LogfΣ(Λ) = (TΣf)
−1(f(Σ)1/2 log(f(Σ)−1/2f(Λ)f(Σ)−1/2)f(Σ)1/2)

Distance df (Σ,Λ) = d1(f(Σ), f(Λ)) =
∑n

k=1 (log λk)
2

where λ1, ..., λn are the eigenvalues of the symmetric matrix f(Σ)−1/2f(Λ)f(Σ)−1/2.

All tensors are modified thanks to the pushforward f∗ and pullback f∗ op-
erators, e.g. the Riemann tensor of the f -deformed metric is Rf (X,Y )Z =
f∗(R(f∗X, f∗Y )(f∗Z)). As a consequence, the deformation f does not affect the
values taken by the sectional curvature and these metrics are negatively curved.

From a computational point of view, it is very interesting to notice that the
identification L′

Σ : V ∈ TΣM 7−→ V ′ = TΣf(V ) ∈ Tf(Σ)M simplifies the above
expressions by removing the differential TΣf . This change of basis can prevent
from numerical approximations of the differential but one must keep in mind
that V 6= V ′ in general. This identification was already used for the polar-affine
metric (f = pow2) in [12] without explicitly mentioning.

4 Interesting subfamilies of deformed-affine metrics

Some deformations have already been used in applications. For example, the
family Ar : diag(λ1, λ2, λ3) 7−→ diag(a1(r)λ1, a2(r)λ2, a3(r)λ3) where λ1 > λ2 >

λ3 > 0 was proposed to map the anisotropy of water measured by diffusion
tensors to the one of the diffusion of tumor cells in tumor growth modeling
[15]. The inverse function inv = pow−1 : Σ 7−→ Σ−1 or the adjugate function
adj : Σ 7−→ det(Σ)Σ−1 were also proposed in the context of DTI [16, 17]. Let us
find some properties satisfied by some of these examples. We define the following
subsets of the set F = Diff(SPDn) of diffeomorphisms of SPDn.

(Spectral) S = {f ∈ F|∀U ∈ On, ∀D ∈ Diag++
n , f(UDU⊤) = Uf(D)U⊤}.

Spectral deformations are characterized by their values on sorted diagonal ma-
trices so the deformations described above are spectral: Ar, adj, powθ ∈ S.
For a spectral deformation f ∈ S, f(R∗

+In) = R
∗
+In so we can unically define a

smooth diffeomorphism f0 : R
∗
+ −→ R

∗
+ by f(λIn) = f0(λ)In.

(Univariate) U = {f ∈ S|f(diag(λ1, ..., λn)) = diag(f0(λ1), ..., f0(λn))}. The
power functions are univariate. Any polynomial P = λX

∏p
k=1(X − ai) null at

0, with non-positive roots ai 6 0 and positive coefficient λ > 0, also gives rise
to a univariate deformation.

(Diagonally-stable) D = {f ∈ F|f(Diag++
n ) ⊂ Diag++

n }. The deforma-
tions described above Ar, adj, powθ and the univariate deformations are clearly
diagonally-stable: Ar, adj, powθ ∈ D and U ⊂ D ∩ S.
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(Log-linear) L = {f ∈ F| log∗ f = log ◦ f ◦ exp is linear}. The adjugate
function and the power functions are log-linear deformations. More generally, the

functions fλ,µ : Σ 7−→ (detΣ)
λ−µ
n Σµ for λ, µ 6= 0, are log-linear deformations.

We can notice that the fλ,µ-deformed-affine metric belongs to the one-parameter

family of µ-power-affine metrics with β = λ2
−µ2

nµ2 > − 1
n .

The deformations fλ,µ just introduced are also spectral and the following
result states that they are the only spectral log-linear deformations.

Theorem 5 (Characterization of the power-affine metrics). If f ∈ S ∩L
is a spectral log-linear diffeomorphism, then there exist real numbers λ, µ ∈ R

∗

such that f = fλ,µ and the f -deformed-affine metric is a µ-power-affine metric.

The interest of this theorem comes from the fact that the group of spectral
deformations and the vector space of log-linear deformations have large dimen-
sions while their intersection is reduced to a two-parameter family. This strong
result is a consequence of the theory of Lie group representations because the
combination of the spectral property and the linearity makes log∗ f a homomor-
phism of On-modules (see the sketch of proof below).

Sketch of the proof. Thanks to Lie group representation theory, the linear
map F = log∗ f : Symn −→ Symn appears as a homomorphism of On-modules
for the representation ρ : P ∈ On 7−→ (V 7−→ PV P⊤) ∈ GL(Symn). Once
shown that Symn = span(In)⊕ ker tr is a ρ-irreducible decomposition of Symn

and that each one is stable by F , then according to Schur’s lemma, F is ho-
mothetic on each subspace, i.e. there exist λ, µ ∈ R

∗ such that for V ∈ Symn,

F (V ) = λ tr(V )
n In + µ

(

V − tr(V )
n In

)

= log∗ fλ,µ(V ), so f = fλ,µ.

5 Conclusion

We have shown that the polar-affine metric is a square deformation of the affine-
invariant metric and this process can be generalized to any power function or
any diffeomorphism on SPD matrices. It results that the invariance principle
of symmetry is not sufficient to distinguish all these metrics, so we should find
other principles to limit the scope of acceptable metrics in statistical computing.
We have proposed a few characteristics (spectral, diagonally-stable, univariate,
log-linear) that include some functions on tensors previously introduced. Future
work will focus on studying the effect of such deformations on real data and
on extending this family of metrics to positive semi-definite matrices. Finding
families that comprise two non-cousin metrics could also help understand the
differences between them and bring principles to make choices in applications.
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