N

N

Classifying (Weak) Coideal Subalgebras of Weak Hopf C
| -Algebras

Leonid Vainerman, Jean-Michel Vallin

» To cite this version:

Leonid Vainerman, Jean-Michel Vallin. Classifying (Weak) Coideal Subalgebras of Weak Hopf C | -
Algebras. Journal of Algebra, 2020, 550, pp.333-357. 10.1016/j.jalgebra.2019.12.026 . hal-02146994

HAL Id: hal-02146994
https://hal.science/hal-02146994

Submitted on 4 Jun 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-02146994
https://hal.archives-ouvertes.fr

Classifying (Weak) Coideal Subalgebras of
Weak Hopf C*-Algebras

Leonid Vainerman Jean-Michel Vallin

Dedicated to the Memory of Etienne Blanchard

Abstract

We develop a general approach to the problem of classification
of weak coideal C*-subalgebras of weak Hopf C*-algebras. As an
example, we consider weak Hopf C*-algebras and their weak coideal
C*-subalgebras associated with Tambara Yamagami categories.
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1 Introduction

It is known that any finite tensor category equipped with a fiber functor
to the category of finite dimensional vector spaces is equivalent to the rep-
resentation category of some Hopf algebra - see, for example, [5], Theorem
5.3.12. But many tensor categories do not admit a fiber functor, so they
cannot be presented as representation categories of Hopf algebras. On the
other hand, T. Hayashi [7] showed that any fusion category always admits
a tensor functor to the category of bimodules over some semisimple (even
commutative) algebra. Using this, it was proved in [7], [15], [17] that any
fusion category is equivalent to the representation category of some algebraic
structure generalizing Hopf algebras called a weak Hopf algebra [2] or a finite
quantum groupoid [11]. The main difference between weak and usual Hopf
algebra is that in the former the coproduct A is not necessarily unital.

Apart from tensor categories, weak Hopf algebras have interesting ap-
plications to the subfactor theory. In particular, for any finite index and
finite depth II;-subfactor N < M, there exists a weak Hopf C*-algebra &
such that the corresponding Jones tower can be expressed in terms of crossed
products of N and M with & and its dual. Moreover, there is a Galois cor-
respondence between intermediate subfactors in this Jones tower and coideal
C*-subalgebras of & - see [13]. This motivates the study of coideal C*-
subalgebras of weak Hopf C*-algebras which is the subject of the present
paper. The abbreviation WHA will always mean a weak Hopf C*-algebra.

A coideal C*-subalgebra is a special case of the notion of a &-C*-algebra,
which is, by definition, a unital C* algebra A equipped with a coaction a of
a WHA & = (B, A, S,¢). More exactly, we will use the following

Definition 1.1 A weak right coideal C*-subalgebra of B is a right &-C*-
algebra (A, a) with a C*-algebra inclusion i : A — B (not necessarily unital)
satisfying A = (i ® idg)a. One can think of A as of a C*-subalgebra of B
such that a = A. If i is unital, we call A a coideal C*-subalgebra of B.

For the sake of brevity, we will call a (weak) coideal C*-subalgebra a
(weak) coideal of B. Note that if & is a usual Hopf C*-algebra, then one can
prove that necessarily 14 = 1g, so weak and usual coideals coincide.

It was shown in [20] that any B-C*-algebra (A, a) corresponds to a pair
(M, M), where M is a module category with a generator M over the category
of unitary corepresentations of &.



In Preliminaries we recall definitions and facts needed for the exact formu-
lation of this result expressed in Theorem 2.9. Note that similar categorical
duality for compact quantum group coactions was obtained earlier in [1], [11].

Section 3 is devoted to necessary conditions which a pair (M, M) satisfies
if (A, a) is an indecomposable (weak) coideal.

In Sections 4 and 5 the above mentioned general approach is applied
to the problem of classification of ®-algebras and weak coideals of WHA’s
associated with a concrete class of fusion categories - Tambara-Yamagami
categories TY(G, x, T) [18].

Recall that simple objects of TY(G, x, T) are exactly the elements of a
finite abelian group GG and one separate element m satisfying the fusion rule
g-h=gh, gm=m-g=m, m? = ggcg, g* =—g, m=m* (g,h € G). These

categories are parameterized by non degenerate symmetric bicharacters y :
G x G — C\{0} and 7 = +|G|~"/2. For any subset K < G, we shall denote
K+ :={geG|x(k,g) =1, Vke K}.

The Hayashi’s reconstruction theorem allows to construct a WHA &1y,
associated with TY(G, x, 7) - see [10]. We recall this construction in slightly
different form in Subsection 4.1. Then, using the methods elaborated in [0],
8], [9], we classify in Subsection 4.2 indecomposable module categories over
representations of &y, their autoequivalences and generators. Together
with the above mentioned results this leads to the following classification
theorem:

Theorem 1.2 There are two types of isomorphism classes of indecomposable
finite dimensional &1y-C*-algebras:

(i) those parameterized by pairs (K, {my}°"®), where K < G and {my}°™
is the orbit of a nonzero collection {my € Z |\ € G/K?} under the action of
the group of translations on G/K.

(ii) those parameterized by pairs (K, ({my}, {m,})°™®), where K < G and
({mn}, {m,})°" is the orbit of a nonzero double collection ({my € Z,|\ €
G/K},{m, € Zi|u € G/K™*}) under the action of:

a) the group of translations on G/K x G/K* if K # K*;

b) the semi-direct product (G/K x G/K) x Zy generated by translations

on G/K x G/K and the flip o : ({my},{m,}) < ({m,}, {m,}) f K = K+.

Finally, Section 5 is devoted to the classification of indecomposable (weak)
coideals of &7. Their classification is given by the following



Theorem 1.3 Isomorphism classes of indecomposable weak coideals of &1y
are parameterized by pairs (K, (Zy, Z1)°™), where K is a subgroup of G and
(Zo, Z,)°™ is the orbit of a nonempty subset (Zy, Z,) = G/K x G/K* such
that either |Zo| < 1 or |Z1| < 1, under the action of:

a) the group of translations on G/K x G/K* if K # K*;

b) the semi-direct product (G/K x G/K) x Zs generated by translations

on G/K x G/K and the flip o : (Zy, Z,) < (21, Zy) if K = K+.

Given a subgroup K < G, the isomorphism classes containing coideals
correspond exactly to the following orbits:

when K # K*, to the four orbits {(\,&)/\ € G/K}, {(T,n),/u €
G/K*}, {(G/K p)/ne G/KH}, (N G/KY)/N e G/K},

when K = K*, to the two orbits {(\, &) v (J,N),/\ € G/K} and
{(G/K,\)u (\G/K)/ N e G/K}.

In fact, we give an explicit construction of representatives of all isomor-
phism classes of indecomposable finite dimensional &;-C*-algebras and in-
decomposable (weak) coideals of &7y.

Our references are: to [5] for tensor categories, to [12] for C*-tensor cat-
egories and to [14] for weak Hopf algebras (finite quantum groupoids).

2 Preliminaries

2.1 Weak Hopf C*-algebras

A weak Hopf C*-algebra (WHA) & = (B, A, S, ¢) is a finite dimensional C*-
algebra B with the comultiplication A : B — B® B, counit ¢ : B — C,
and antipode S : B — B such that (B, A, ¢) is a coalgebra and the following
axioms hold for all b,c,d e B :

(1) A is a (not necessarily unital) *-homomorphism :

Abe) = A(b)A(c),  A(bY) = A(b),

(2) The unit and counit satisfy the identities (we use the Sweedler leg
notation A(c) = ¢; ® ¢z, (A®idg)A(c) =1 ® ca ® 3 ete.):

e(ber)e(ead) = e(bed),
AM@NA®A®M)) = (A®id)A(),
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(3) S is an anti-algebra and anti-coalgebra map such that

m(idg ® S)A(b) = (e®idg)(A(1)(b®1)),
m(S®idp)A(b) = (idg®e)((1®b)A(1)),

where m denotes the multiplication.

The right hand sides of two last formulas are called target and source
counital maps €, and e, respectively. Their images are unital C*-subalgebras
of B called target and source counital subalgebras B; and B, respectively.

The dual vector space B has a natural structure of a weak Hopf C*-
algebra ® = (B A, S, €) given by dualizing the structure operations of B:

cpbb> = <p@u A®) >,
<A(go),b®c> = <, bc >,
<S(p),b> = <o, S(b) >,
<¢*b> = <@ S(b)* >,

for all b,ce B and ¢, € B. The unit of B is ¢ and the counit is 1.

The counital subalgebras commute elementwise, we have Soe, = ¢, 0.8
and S(B;) = Bs. We say that B is connected if By n Z(B) = C (where Z(B)
is the center of B), coconnected if B, n By = C, and biconnected if both
conditions are satisfied.

The antipode S is unique, invertible, and satisfies (S o #)? = idg. We
will only consider regular quantum groupoids, i.e., such that S?|p, = id. In
this case, there exists a canonical positive element H in the center of B
such that S? is an inner automorphism implemented by G = HS(H)™!, i.e.,
S%(b) = GbG™! for all b € B. The element G is called the canonical group-like
element of B, it satisfies the relation A(G) = (G® G)A(1) = A(1)(G®G).

There exists a unique positive functional h on B, called a normalized
Haar measure such that

(tdg @ h)A = (e, ®h)A, hoS=h, hog=¢, (idg®h)A(lp)=1p.

We will dehote by Hj, the GNS Hilbert space generated by B and h and by
Ay, © B — Hj, the corresponding GNS map.



2.2 Unitary representations and corepresentations of
a weak Hopf ('*-algebra

Let & = (B, A, S,¢) be a weak Hopf C*-algebra. We denote by &y, ¢, its
target and source counital maps, by B; and By its target and source subalge-
bras, respectively, and by G its canonical group-like element. We also denote
by h the normalized Haar measure of &.

Any object of the category URep(®) of unitary representations of & is a
left B-module of finite rank such that the underlying vector space is a Hilbert
space H with a scalar product < -, - > satisfying

<b-v,w>=<wv,b"-w>, forall v,we H, be B.

URep(®) is a semisimple category whose morphisms are B-linear maps and
simple objects are irreducible B-modules. One defines the tensor product of
two objects Hy, Hy € URep(®) as the Hilbert subspace A(1p) - (H; ® Hy) of
the usual tensor product together with the action of B given by A. Here we
use the fact that A(1p) is an orthogonal projection.

Tensor product of morphisms is the restriction of the usual tensor product
of B-module morphisms. Let us note that any H € U Rep(®) is automatically
a Bi-bimodule via z - v -t := zS(t) - v, Vz,t € B;,v € E, and that the
above tensor product is in fact ®p,, moreover the B;-bimodule structure for
H, ®p, Hy is given by z-£ -t = (2 ® S(t)) - &, Vz,t € B, & € H ®p, Hs.
The above tensor product is associative, so the associativity isomorphisms
are trivial. The unit object of URep(®) is B; with the action of B given by
b-z:=¢(bz), Vb€ B,z € B, and the scalar product < z,t >= h(t*z).

For any morphism f : Hy — H,, let f* : Hy — H; be the adjoint linear
map: < f(v),w >=<wv, f*(w) >, Yv € Hy,w € Hy. Clearly, f* is B-linear,
f*=f(f®p 9)* = [*®p, g*, and End(H) is a C*-algebra, for any object
H. So URep(®) is a finite C*-multitensor category (1 can be decomposable).

The conjugate object for any H € URep(®) is the dual vector space H
naturally identified (v + o) with the conjugate Hilbert space H with the
action of B defined by b-7 = GY2S(b)*G~/2 - v, where G is the canonical
group-like element of &. Then the rigidity morphisms defined by

Ry(1p) = Ei(Gl/Q - % ®p, -€i), Ru(1p) = Zi(e; ®p, G2 -€), (1)

where {e;}; is any orthogonal basis in H, satisfy all the needed properties -
see [3], 3.6. Also, it is known that the B-module B, is irreducible if and only
if By n Z(B) = Clp, i.e., if & is connected. So that, we have
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Proposition 2.1 URep(®) is a rigid finite C*-multitensor category with
trivial associativity constraints. It is C*-tensor if and only if & is connected.

Definition 2.2 A right unitary corepresentation U of & on a Hilbert
space Hy is a partial isometry U € B(Hy) ® B such that:

(i) (id ® A)(U) = UyaUss.

(i) (id®e)(U) = id.

If U and V are two right corepresentations on Hilbert spaces Hy and
Hy,, respectively, a morphism between them is a bounded linear map T €
B(Hy, Hy) such that (T®1p)U = V(T ®1p). We denote by UCorep(®) the
category whose objects are unitary corepresentations on finite dimensional
vector spaces with morphisms as above.

If & is coconnected (i.e., if By n By = Clg), UCorep(®) is a rigid C*-
tensor category with trivial associativities isomorphic to U Rep((;ﬁ). Namely,
any Hy is a right B-comodule via v — U(v® 1p), therefore, automatically a
(Bs, Bs)-bimodule. Then tensor product U@V := Uy3Va3 acts on Hy®p, Hy,
the unit object U. € B(B;) ® B is defined by z® b — A(1p)(1p ® 2b), Vz €
B,,be B, and the rigidity morphisms related to the conjugate U of an object
U which acts on the conjugate Hilbert space Hy of Hyr, are

Ry(lp) = Ei(él/2 € ®p, €), Ru(lp) = Xi(e; ®p, G2 - @), (2)

where {e;}; is any orthogonal basis in Hy;. We denote by 2 an exhaustive set
of representatives of the equivalence classes of irreducibles in UCorep(®).
Denote Hy« by H*, then U” = @,;Jmﬁj ® Ufj, where mfj are the matrix
units of B(H®) with respect to some orthogonal basis {e;} € H” and U,
are the corresponding matrix coefficients of U”*. Recall that B = @®,cqBy-,

where By. = Span(Uf;).

2.3 The Hayashi’s fiber functor and reconstruction
theorem.

Let C be a rigid finite C*-tensor category and 2 = Irr(C) be an exhaustive
set of representatives of equivalence classes of its simple objects. Let R be

the C*-algebra R = C® = @Cp,, where p, = p* are mutually orthogonal
z€el)
idempotents: p,p, = 0, 4ps, for all 2,y € (2. Let us define a functor ‘H from C



to the category Corrs(R) of finite dimensional Hilbert R-bimodules (called
R-correspondences) by:

H(z) = H* = (P Hom(z,y®x), for every z € Q,

y,2€Q

where Hom(x,y) is the vector space of morphisms x — y. The R-bimodule
structure on H” is given by:

py-H® -p, = Hom(z,y®x), foral z,y,ze.
If fe Hom(z,y), then H(f) : H* — HY is defined by:
H(f)g) = (id.®f)-g, forany z,ieQand gep. - H - p,

The tensor structure of H is a family of natural isomorphisms H,, : H* ®

HY - H* ® HY defined by:
R

Hey(V@®W) =a,,,- (v®idy,) wep, - HE®Y) (3)

forallvep,-H*-p,,w e p,-HY-py, 2,5,t € Q. Here a, ,, are the associativity
isomorphisms of C.

We define the scalar product on H” as follows. If x,y,2z € Q and f,g €
Hom(z,y ® x), then ¢* € Hom(y ® z,z) and ¢g* - f € End(z) = C, so one
can put < f,g >,= ¢*- f. The subspaces Hom(z,y ® z) are declared to
be orthogonal, so H* € Corr;(R). Dually, H € Corrp(R) via 2, -7 - 2, =
zy-v-zy, for all 21,20 € R,v e H*. Now one can check that H is a unitary
tensor functor in the sense of [12] 2.1.3.

Theorem 2.3 (a C*-version of the Hayashi’s theorem -see [7], [10])
Let C be a rigid finite C*-tensor category, @ = Irr(C) and H : C —
Corr¢(R) be the Hayashi’s functor, where R = C'*|. Then the vector space

B - ®H, ., (4)

e

has a reqular biconnected weak Hopf C*-algebra structure & such that C =
UCorep(®) as rigid C*-tensor categories.



Explicitly, if v,w e H*, g,h € HY and {ef} is an orthonormal basis in H”, for
all z,y € ), then:

(WD) (9@ h)y = (Hoy (W ® 9) @ Hay (v @ D))y € H® @ HE® (5)

Alw®7) = Pw @), @ (e QD). (6)

j
e(w®V) =< w,v >, . (7)

Now define an antipode and an involution. Consider the natural isomor-
—* —x .
phisms ¢, : H* - H and V,: H — H** where z* is the dual of x €

D, (v) = (z'dy®R_x*) g (VU ), U, (V) = (VQidy#) -a;;x* (id,®R,),
(8)

where z,y, z € Q, we identify y with y®1, v € p, - H® - p,, R, and a, , .+ are,

respectively, the rigidity morphisms and the associativities in C. Then:

S(w @) = V.(v) @ P (w), (9)

(w®7v)* = w* @7T’, where w’ = U, (W), T = ®,(v). (10)
Any H? is a right B-comodule via

a,(v) = ?ef@e?@v, where v € H,,

one checks that it is unitary which gives the equivalence C = U Corep(®).
The algebra of the dual quantum groupoid & is

B = @B(H,), (11)

TN

the duality is given, for all x € Q, A € B(H,),v,w € H, by:

<A wRU >=< Aw,v >, .
B is clearly a C*-algebra with the obvious matrix product and involution,
Notations 2.4 For all z,y € Q and allve H*, we HY, we denote:

vow = Hyy(v®rw)

10



Remark 2.5 Let 0 be the unit element of C, and H® := @ Hom(z,x), then
e}

using (3) and (8) it is easy to check that (H°, o,%) is a commutative C*-
algebra and if, for all x € 0, v2 is a normalized vector in Hom(x,z), then
(v9)2eq is a basis of mutually orthogonal projections in H°.

Remark 2.6 LetC be a rigid finite C*-tensor category and F : C — Corrs(R)
be a unitary tensor functor, where R is a finite dimensional unital C*-algebra.
Then there exists [17] a regular biconnected finite quantum groupoid & with
B; = By = R such that C = UCorep(®) as C*-tensor categories. For any
fized C, the set of C*-algebras R for which the above mentioned functor F
exists, contains at least R = CI (where Q = Irr(C)), then F = H. In
general, this set contains several elements, and the corresponding WHAs are
called Morita equivalent.

In particular, if the above set of functors contains a fiber functor F :
C — Hilby, i.e., R = C, the corresponding quantum groupoids are Morita
equivalent to a usual C*-Hopf algebra.

2.4 Coactions.

Definition 2.7 A right coaction of a WHA & on a unital =-algebra A, is a
x-homomorphism a : A - A® B such that:

1) (a®i)a = (ida ® A)a.

2) (ZdA ®8)Cl = ZdA

3)a(ls) e A® B;.

One also says that (A, a) is a &-#-algebra.

If A is a C*-algebra, then a is automatically continuous, even an isometry.
There are *-homomorphism « : By, — A and =-antihomomorphism £ :

By — A with commuting images defined by «o(z)8(y) = (ida ® €)[(14a ®

z)a(la)(1a ®y)], for all z,y € Bs. We also have a(14) = (¢ ®idp)A(1p),

a(a(z)aB(y)) = (la®@z)a(a)(14 ®y), (12)
and
(a(z) @ 1p)a(a)(B(y) @ 1p) = (14 ® S(x))a(a)(1a® S(y)).  (13)

The set A* = {a € Ala(a) = a(14)(a ® 15)} is a unital =-subalgebra of A (it
is a unital C*-subalgebra of A when A is a C*-algebra) commuting pointwise
with a(Bs). A coaction a is called ergodic if A* = Cl,.
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Definition 2.8 A & — C*-algebra (A, a) is said to be indecomposable if it
cannot be presented as a direct sum of two & — C*-algebras.

It is easy to see that (A, a) is indecomposable if and only if Z(A) N A* = Cl4.
Clearly, any ergodic & — C*-algebra is indecomposable.

For any (U, Hy) € UCorep(®), we define the spectral subspace of A cor-
responding to (U, Hy) by

Ay = {ae Ala(a) € a(14)(A® By)}.

Let us recall the properties of the spectral subspaces:

(i) All Ay are closed.

(i) A = BreqAye.

(iii) Ay=Ayy © @, Ay=, where z runs over the set of all irreducible direct
summands of U* @ UY.

(iv) a(Ay) < a(14)(Ay ® By) and Ay = (Ap)*.

(v) Ag is a unital C*-algebra.

2.5 Categorical duality.

Let us recall the main result of [20]:

Theorem 2.9 Given a reqular coconnected WHA &, the following two cat-
egories are equivalent:

(i) The category of unital &-C*-algebras with unital &-equivariant -
homomorphisms as morphisms.

(ii) The category of pairs (M, M), where M is a left module C*-category
with trivial module associativities over the C*-tensor category UCorep(®)
and M is a generator in M, with equivalence classes of unitary module func-
tors respecting the prescribed generators as morphisms.

In particular, given a unital &-C*-algebra A, one constructs the C*-category
M = D, of finitely generated right Hilbert A-modules which are equivariant,
that is, equipped with a compatible right coaction [I]. Any its object is
automatically a (Bs, A)-bimodule, and the bifunctor U X1 X := Hy Qp, X €
D, for all U € UCorep(®) and X € Dy, turns Dy into a left module C*-
category over UCorep(®) with generator A and trivial associativities.

Vice versa, if a pair (M, M) is given, the construction of a &-C*-algebra
(A, a) contains the following steps. First, denote by R the unital C*-algebra

12



End(M) and consider the functor F' : C — Corr(R) defined on the objects
by F(U) = Homu (M, UXI M) YU € C. Here X = F(U) is a right R-module
via the composition of morphisms, a left R-module via rX = (id®1r)X, the
R-valued inner product is given by < X,Y >= X*Y the action of F' on
morphisms is defined by F(T)X = (T ® id)X. The weak tensor structure
of F' (in the sense of [11]) is given by Jxy(X ® Y) = (id ® V)X, for all
XeFU).,YeF(\V),UVeUCorep(®).
Then consider two vector spaces:

A= PAy- = PFU") @ H) (14)

e e

and

i= @ A= @ (FUI®H. (15)

Ue|UCorep(®))| Ue|UCorep(®))|
where F(U) = @F(U;) corresponds to the decomposition U = @ U; into
irreducibles, and ||[UCorep(®)| is an exhaustive set of representatives of the

equivalence classes of objects in U Corep(®) (these classes constitute a count-
able set). A is a unital associative algebra with the product

(X@H(Y®N) = (i[d®Y)X ® (E®5, M), V(X ®E) e Ay, (Y ®7) € Ay,
and the unit
15 =idy ®1p.
Note that (id @ Y)X = Jxy(X ®Y) € F(U@ V). Then, for any U €

UCorep(G), choose isometries w; : H; — Hy defining the decomposition of
U into irreducibles, and construct the projection p: A — A by

PX ®¢) = i(F(w) X @wye), V(X ®¢) € Av, (16)

which does not depend on the choice of w;. Then A is a unital =-algebra with

the product z -y := p(zy), for all x,y € A and the involution z* := p(z*),
where (X @ £)* := (id @ X*)F(Ry) ® G'2¢, for all € € Hy, X € F(U),U €

UCorep(®). Here Ry is the rigidity morphism from (2). Finally, the map
(X ®E) =X® Zj(gj ® Uﬁi)a (17)

where {{;} is an orthogonal basis in H* and (U{; are the matrix elements of
U? in this basis, is a right coaction of & on A. Moreover, A admits a unique
C*-completion A such that a extends to a continuous coaction of & on it.
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Remark 2.10 1) We say that a UCorep(®)-module category is indecompos-
able if it is not equivalent to a direct sum of two nontrivial UCorep(®)-module
subcategories. Theorem 2.9 implies that a & — C*-algebra (A, a) is indecom-
posable if and only if the UCorep(®)-module category M is indecomposable.

2) Let I be a unital right coideal *-subalgebra of B. Then Iy= = I n By
and F(U*) can be identified with a Hilbert subspace of H* (Yx € Q) and the
coaction is the restriction of A.

Example 2.11 The C*-algebra B with coproduct A viewed as &-C*-algebra,
corresponds to the UCorep(®)-module C*-category Corry(B,) with genera-
tor M = B,: for any element U € UCorep(®) and N € Corrs(By), one
defines U XI N := F(U) ®p, N, where the functor F : UCorep(®) —
Corry(Bs) (F(U) = Hy) is the forgetful functor. Indeed, identifying M(Bs, Hy)
with Hy, we get an isomorphism of the algebra A constructed from the pair

(M, M) onto B = @(Hy ® Hy) and then an isomorphism A = B =
U

D (H, ® H,) such that p : A — A turns into the map B — B sending

zeQ

E®ne Hy ® Hy into the matriz coefficient U ,,.

3 Classifying Indecomposable Weak Coideals
If dim(A) < oo, we have the following remarks.

Remark 3.1 If (A,a) is a finite dimensional & — C*-algebra, then M =
Dy is a semisimple C*-category. Indeed, dim(Homam(E,E)) < o0, for any
E € Dy which is finitely generated. Then the proof of [/], Proposition 3.9
applies. As A is a generator of M, the set {My|\ € A} of its (classes of)
simple objects is finite and we have the corresponding fusion rule

U, KIM)y = Enl\ M, where x € Q,nl, = dim(Homm (U, X My, M,)) € Z..
e, :

(18)
The associativity and the unit object conditions mean, respectively, that

Z P poH P
ZGEchvynz)\ = M%]Anx#nyw and nf , =0, Vr,yeQ p A€, (19)

where c; , are the fusion coefficients of C = UCorep(®). Proposition 7.1.6
of [5] gives nl = ni*,w for all \,u€ A,z € .
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Remark 3.2 If A is a coideal of B, then, due to [19], Theorem 1.1, there is
an inclusion j : M +— C such that
(M) = @ U, (20)
ze)
where M is the left C-module category with generator M coming from (A, Al 4)
and C = UCorep(®) is viewed as a C-module category with generator the
(—BQU””.
xE
If A is the set of irreducibles of M (we denote them by M, ), we can write
J(My) = ZQa,\ny”", for all X\ € A, where ay, € Z.. Writing M = /\EAmAM,\,
xe €
we must have:
/\EAmAaA’m =1, forall zeQ. (21)
€

Recall that due to the reconstruction theorem for &, any H*(xz € Q) is
the direct sum of 1-dimensional subspaces Hom(z,y® x), where y, z € Q are
such that z ¢ (y ® z). In particular, H° = @SzHom(z, z) (where 0 denotes

zZ€

the trivial corepresentation of &); we will denote by v? a norm one vector
generating Hom(z, z) viewed as a subspace of H°.

The following lemma allows to select weak coideals of B from all & — C™*-
algebras.

Lemma 3.3 Let us fiz a UCorep(®)-module category M and a generator
M in it, and let (A, a) be a &-algebra constructed from this data using the
weak tensor functor (F, Jyy). Then:

a) (A, a) is a weak coideal of B if and only if each F(U?) can be identified
with a subspace X < H® such that the map ¢ — (% = W, ({) sends X® onto
XT = F(U") and Jy= v = Hay, for all z,y € Q.

b) X° is a C*-subalgebra of H°. The unit of X° is v{ := @FUS, where

xe

' < Q is some nonempty subset. A = @ (X* ®ﬁx) 1s a cotdeal if and only

TeQ
ifT = Q.

c) A weak coideal A = x(?Q(X’” ®H") is decomposable if and only if Z(A)

contains an element of the form p = v} @vg, where Ty is a proper nonempty
subset of T'.

d) For any two identifications, F(U*) = X* and F(U*) =~ X*,Vz € Q,
satisfying the above mentioned conditions, the corresponding weak coideals
®X*QH) and (JEBQ(XZ ® H') are isomorphic as &-C*-algebras.

e
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Proof. a) If (A,a) is a weak coideal of B, then Ay < By, for any
U € UCorep(®). Indeed, by [20], Proposition 3.17 Ay = {a € A|A(a) €
A(14)(A® By)}, but A(14) = A(1p)(14 ® 1p), hence A(a) € A(1p)(A®
By) < A(1g)(B® By), so that Ay < By. It follows from [20], Theorem 4.12
and Theorem 2.21, respectively, that Ay = F(U*)®@H® and By =~ H*®H?,
so the above inclusions mean that F(U*) ¢ H*, for all x € Q.

The multiplication in A is the restriction of that in B, therefore, compar-
ing the formulas (15) and [20], (16) and using the relation Jy= pv(X ®p,Y) =
(dRY)X (VX € F(U"),Y € F(UY)), we have Jy= yv = Hy .

The involution in A sends X @7 onto X*®(7)" (see Subsection 2.4) and is
the restriction of that in B, the last one is defined by (®7 — (*® (%)’ V(,n €
H® 2 €. Then for X € F(U*) € H* we have X* = X%,

Conversely, suppose that F(U*) < H* and Jy= v = Hs,, for all z,y €
Q. It follows from the argument above that the multiplication in A is the
restriction of that in B. Next, compare the formulas [20], (29) for a and
[20], (14) for A. Since By = H*® H', for any U* - see [20], (12), the
matrix coefficient UF, with respect to a basis {¢*} of H® can be identified
with ¢* ® n*, for all z € . Now it is clear that a is the restriction of
A. Finally, putting X* = X% for any X € F(U?) and using the fact that
F(U?)f = F(U*), one checks that (A, a) is a coideal of B.

b) By Remark 2.5, H® = @ Cv? is a commutative unital C*-algebra,
e

00 (x € Q) are mutually orthogonal projections, and if A = @ (X*®H ') is a
€}

weak coideal of B, then X is a C*-subalgebra of H. Its spectral mutually
orthogonal projectors are v, where I' € Q (i = 1,...,ky = dim(XO)) are
disjoint subsets of , the unit of X, i.e., the image of F(idy), is v2, where
=0Ty As 1y =X ®7Y and 1p = UQ®UQ, A is a coideal if and only if
r=qQ.

c¢) One checks that B, = H° ® v, and that any nontrivial orthoprojector
p € [Z(A) n By] gives a decomposition A = pA@® (1 —p)A into the direct sum
of two weak coideals of B. As 14 = v ® T, p must be of the form v} @77,
where 'y is a proper nonempty subset of I'.

d) The two B-C*-algebras are isomorphic because they correspond to the
same couple (M, M). o

Corollary 3.4 It follows from the definition of the functor F that X° =
F(U®) = Endpm(M). This finite dimensional C*-algebra is commutative due
to the statement b) which is only possible if my € {0,1} for all A € A.
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4 Weak Hopf C"-Algebras related to Tambara-
Yamagami categories

4.1 Tambara-Yamagami categories

These categories denoted by TY(G, x,7) (G is a finite group; we consider
them only over C) are Zs-graded fusion categories whose 0-component is
Vecg - the category of finite dimensional G-graded vector spaces with trivial
associativities (its simple objects are g € G) and 1-component is generated by
single simple object m. The Grothendieck ring of TY(G, x, 7) is isomorphic
to the Zs-graded fusion ring TYVs = ZG @ Z{m} such that g - m = m -

g =m, m*> = EGg, m = m*. These categories exist if and only if G is
g€

abelian, they are parameterized by non degenerate symmetric bicharacters

X : G x G — C\{0} and 7 = |G| - see [18], [7], Example 4.10.5. The

associativities ¢(U, V, W) : (UQV)QW - U (V QW) are
¢(g7 ha k) = idg+h+k’7 ¢(ga h7 m) = de> (b(ma g, h) = de7
¢(gvma h) = X(g7h)de7 qb(g,m,m) = @idiu qb(m,m,g) = @idha
heG heG
d(m, g,m) = @ x(g, M)idn,  $(m,m,m) = (Tx(9,h) " idm)g,n,

where g, h, k € G. The unit isomorphisms are trivial. 7Y(G, x, T) becomes
a C*-tensor category when x : G x G — T = {z € C||z|] = 1}, from now

on we assume that this is the case. The dual objects are: ¢g* = —g, for all
g € G, and m* = m. The rigidity morphisms are defined by R, : 0 g 9 g,

R, : 0™ g®g* R, = 7|G|Y%, and R,, = |G|, where 1 : 0 » m @ m is

the inclusion. Then dim,(g) = 1, for all g € G, and dim,(m) = 1/|G]|.

Let us apply Theorem 2.3 to the category TY(G, x,7) in order to con-
struct a biconnected regular WHA &1y = (B, A, S, ¢) with UCorep(&1y) =
TY(G, x, 7). The Hayashi’s functor H : TY(G, x,7) — Corrs(R), where
C*-algebra R := End(@® r) = C/%*! was constructed in [10]. Denoting

z€e()
Q, = Q:=Gu{m}and Q,, := GuG, where g € G and G is the second copy
of G, one easily computes that H9 =~ Cl¢1+1 for all g € G and H™ := C¢l,
Let us fix a basis {vj }(y € ;) in each H* (x € ) choosing a norm one
vector in every 1l-dimensional vector subspace: vj € Hom(h,(h — g) ® g),
v, € Hom(m,m ® g), vy € Hom(m,g ® m), and vy’ € Hom(g,m ® m),
where g € G.
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Lemma 4.1 Using notations (10) and 2.4, for all g,h,k € G, x € §, one
has:
v ol = x,h+kUZiZ, vd ol = 5y vt

m g _ m
v 0V = OpmX (9, K)Vy", Vi ovd =4, g+kvg+k:7

m m
vd o vy = OpmX (g, k), viovt = Oz kUL g5
k—h m m_ § b)) ( h)—l g
Uh O/UE = Uk 3 /UE ka - hJ{,‘TgeGX g’ Um'

() = v 2y, (V5)F = v, (u)F = |G, (o) = 774G oy

Proof. For equations related to product o, these are computations made
in [10] 2.1.5, where H,, must be replaced by F!. Moreover, in the case of

TY(G, x, 7), the formulas of (8) imply that the 1somorph1sms ®, : H* — H**
and U, : H® — H* (1 € Q) of Theorem 2.3 are given, for all g,h € G, by:

By(0f) = v,y Dy(v3) = v, B(v]') = |G| VU, B (v]) = 7|G|

Uy (vf) = 0,20, Uyvh) = 0,7, Ua(vf) = |G 2oy, Wi(ug) = 771G 20y

which implies, by (10) the formulas for involution f. o

Now the whole structure of a WHA &y, is given by formulas (4), (5), (6),

and (7). It was shown in [10] that this WHA is isomorphic to its dual whose

C*-algebra B =~ @QB(H"”). This implies that U Rep(&1y) = UCorep(Bry).
xe

The isomorphisms ®, : H* — H** and U, : H® — H*" (z € Q) of
Theorem 2.3 are now given by:

By(vf) = vy Dy(v3) = v, B(v]) = |G|V, B (v]) = 7| G,

Wy(v]) = 0,2 We(vh) = 0,7, Un(0Fr) = [GI20], W (v77) = 771G 20y,
which implies, for all g, h, k € G:

S @V]) = 1,2, ®v,%, SEI@) = v, ®v,%,, S(vS,®v)) = v,%, @va’,

S(? @v%) = v, I @un’ , S(ug@u) = v @ul, S(vy'@ul) = 7 (v @ul),
S(v%”@v;”) = 7(v; @uyY), S(vy ®@) = v @I
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and

(W@ =07 ®u . (VI®VR)* =17, ®un’, (v, ®VL)* = v, Y @y’
(08, ®@Vh)" = v @i, (v @UT)* = vf @V, (v @ ul)* = (vy' @ V),
(Wl @) = 7 (I @UT), (I @UF) = v @ U,

We have B = g(e@GBg ® B™, where BY = M 41(C), Yge G, B™ = My (C)

4.2 Classification of Indecomposable Finite Dimensional
&y-C*-algebras

Let us first recall the following well known (see, for instance, [5], 7.4)

Lemma 4.2 Fquivalence classes of left indecomposable Vecg-module cate-
gories (G is abelian) are parameterized by couples (K, ¢), where K is a sta-
bilizing subgroup of G and ¢ € H*(K,C*). The set of irreducibles of such
a category M(K,¢) is Ax = G/K and ¢ defines the associativities. The
corresponding fusion rule is gXIA =g+ A\, Vge G, A e G/K.

Although C = UCorep(&1y) = TY(G, x, T), these categories have differ-
ent associativities, so we cannot apply directly the classification of module
categories from [3], Section 9. We will use the reasonings similar to those
from [6], [¢] and [9]. The category C is Zs-graded, i.e., C = Cy @ Cy, where
Co = Vecg (both these categories have trivial associativities) and C; is gen-
erated by a single simple object U™. Indecomposable Cy-module categories
with trivial associativities are parameterized by their stabilizer subgroups
K < G, they correspond to Vecg-module categories of the form M(K,1),
where 1 is the trivial cocycle. Let us denote them by M(K).

Then, according to [3], any indecomposable C-module category M is ei-
ther indecomposable over Cy (we say that it is of type (I), it is then of
the form M(K)) or equivalent to M(Ky) ® M(K;), where K, and K; are
subgroups of G (they can be equal) - a category of type (D).

Moreover, C; is an invertible Cy-bimodule category, so one can define an
action of Zy =< o > on the set of (equivalence classes) indecomposable
semisimple Cyp-module categories: o - M(K) := C; I M(K).

Notations 4.3 For K < G, pe K denote K, ={g€Glx(g,k) = p(—Fk), Yk €
K}. If p = 1 is trivial, denote Ki- by K*. Note that K ~ G/K*.
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Lemma 4.4 For any K < G, we have o - M(K) = M(K?).

Proof. Adopting the strategy of the proof of [8], Lemma 30 to our context,

let Ax = @ H* be an algebra in the category Cy - the analog of the algebra
keK

CK in Vecg. Viewed as a usual C*-algebra, Ax has the following minimal
central orthoprojectors:

1, 1 . .
Yv,, P,= |K|k§Kp(k)v (Ae G/K, pe K)

Py = —
T Kgew m

So indecomposable right Ax-modules with support in Cy are: Vy = Vec{v}|k €
K} with the action v§ o H" = " (h,k € K) and V, = (CkEKp(k)v,’fl with
€

the action (kEKp(k’)vfjl) o H" = p(—h)kZKp(k‘)vﬁl (h € H), where we denote
S (S
v} 1= E/\vg for any x € ). In both cases the stabilizer subgroup is K.
g€

Then the category C; X M(K) can be described as the category of right
Ag-modules in C with support in C; which are of the form H™ ®gr V) =
Vec{vr'|p € A} with the action v'o H" = v (pe X he K)and H"®RV, =
Vec{v]'|r € K} with the action v]" o H" = x(h,r)v]* (re Hy,he H).

T
In order to determine the stabilizer of H™ ®g V), we calculate, as in the

proof of [8], Lemma 30, for all ¢ € G the modules HY @r (H™ Qg V) =

Vec{x(g,p)vylp € A} with the action x(g,p)vy o H" = x(g,—h)x(g,p +
h)v}% (p € A\, h € K). Therefore, the stabilizer is K.

Similarly, we calculate for all g € G the modules HY @z (H™ ®r V,) =
Vec{u |re K}, but 7 — g € K, is equivalent to g € K. o
Thus, in case (I) necessarily K = K*, so |G| must be a square, and

A =G/K. In case (D) M = M(K)®M(K*) and A = G/K uG/K™*.

Corollary 4.5 The fusion rules for indecomposable UCorep(&y)-module
categories are: UIXI My = Mg\ (Yge G, My e Irr(M)) in all cases and:

For M= M(K): UMK M, = é?/KM“’ where My, M, € Irr(M(K))
pe
For M = M(K)® M(K™):
U"RMy= S M, U"®RM,= X M,
HeEG/K+ XeG/K

where My (A € G/K) and M, (€ G/K*) are in Irr(M).
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Proof. A priori, we have the following fusion rules with U™

For M = M(K) : U"XIM,, = E/an\”Mu, (M, M, € Irr(M(K)), nk € Z,)
LE

For M = M(K)® M(K%):

"My = X mhM "KM, = X m)M
u AT el T u N
where My (A€ G/K), M, (ne G/K") are in Irr(M) and mk,m), € Z,..
The relations of the type (U/QU™)XIM, = UIR(U™XIM,), (U"QUI)X
M, = U™ (U K] M) and similar relations with M, show that nf, m) and
mi‘L do not depend on A and p. Then it remains to apply again U™ to the

above equalities and to use the last remark, the relation U™ Q U™ = ZGU g
ge

and the fact that |G| = |K||K*|. o

Corollary 4.6 Any object M = @ myM, of an indecomposable semisimple
AEA

UCorep(®ry)-module category is a generator. Indeed, Corollary 4.5 shows
that already any M, is a generator.

Therefore, the set of all couples (M, M) is parameterized:

in case (I) by couples (K,{my|\ € G/K}), where K = K+ < G and
my € Z, are such that at least one my > 0.

in case (D) by triples (K, {m{|\ € G/K},{m/|ue G/K*}), where K < G
and mY, mL € Z, are such that at least one of them is nonzero.

Lemma 4.7 The group Aut(M) of autoequivalences of an indecomposable
semisimple UCorep(&ry)-module category M with trivial associativities is
as follows:

(1) In case (1) for any ¢ € Aut(M), there ezists a unique p € G/K such
that (M) = My, for all A\ € G/K, so Aut(M) = G/K.
(2) In case (D) and:
a) K # K=+, for all ¢ € Aut(M), there exists a unique (py,p1) €
G/K x G/K* such that ¢(My) = Mpy+r and ¢(M,) = M, ., for all X €
G/K,ue G/K*, so Aut(M)) = G/K x G/K*.
b) K = K*, Aut(M), viewed as a bijection of G/K x G/K on itself,
is generated by translations of irreducibles (My, M,) by elements (py,p1) €
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G/K x G/K and the flip (M, M,) — (M,, M,). Therefore, Aut(M) =
(G/K x G/K) x Zs, where o is the flip of G/K x G/K.

Proof. (1) By definition of ¢, we must have ¢(UIXIM,) = UIXp(M,),
for all g € G, € G/K. Then, putting M, = ¢(Mg), we have the needed
formula for ¢. Conversely, it is easy to check that for such a ¢ we have
O(URIMy) = UK p(M,), for all z € Q, N e G/K.

(2a) As M = M(K)® M(K*) and M(K) £ M(K*), the above result
applies to the corresponding restrictions of ¢.
(2b) Now the above mentioned components have equal rights, so ¢ can
permute them and we are done. O
Corollary 4.6 implies that any object M = /\@Am A M), of a module category
€

M as above can be identified either with a collection {my|\ € G/K} or with
a double collection ({my|\ € G/K},{m,|u € G/K"'}), where my,m,, € Z..
These considerations and Theorem 2.9 prove Theorem 1.2.

Remark 4.8 Let us compute the dimensions of the spectral subspaces of a
finite dimensional &1y-C*-algebra (A,«). By Theorem 2.9, given a C*-

module category M over UCorep(&1y) with a generator M = @ myM,, we
AEA

have Ay = F(U*) ®@ H, (Vz € Q), where F : UCorep(&7y) — Corry(R) is
the functor defined by F(U*) := Hom(M,U*[xIM), R = End(M). Clearly,

X*:=F{U") = )\p@e)\mAmpHom(MA, U* X M,).

As Hom(My, U9 X1 M,) = 65 4.,C, YA, p€ X, we have dim(X9) = EAmpmg.p.
pE
Now, in case (I), Hom(My,U™XIM,) = C, so dim(X™) = R %/Km,\mp.
»,PE
And in case (D), Hom(My, U™ XI M,) = 0 when \,p € G/K or A\, p €

G/K*, and Hom(M,,U*XIM,) = C otherwise. So, dim(X™) = 2/\ (X;J/Km,\x
€

x % m,. Therefore, in case (D), dimX™ must be even.
peG/KL

5 Indecomposable Weak Coideals of &y

We begin the classification of indecomposable weak coideals of &1y by giving
a canonical basis for them.
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Notations 5.1 For all g€ G and X < G u {m}, let us denote:

Lemma 5.2 Let A be a weak coideal of B. Then:
a) For any g € G such that X9 # {0} , there exists a subset [9 < I° =
{Tili = 1,2,..., ko} of cardinality ky and a set of vectors {v{, (©9)]i € 19} which

is a basis of X9, where ©9 is a map from 'Y = u [y toT:={zeC|lz| = 1}.
€19
b) If X™ = {0}, then 02, € X°, so we can chose {m} € I°, and there

exists a subset I™ < I°\{m} of cardinality k,, and a basis of X™ of the
form {vf(©™),v2(@™)]i € I™}, where O™ is a map from ' = ) I; to
g i jelm

T :={2€eC||z| = 1}. If ky, = ko — 1, this weak coideal is indecomposable.

Proof. a) Let v9 = Zanvg be a nonzero vector from X9. Then v9 =
xe
v9 o) = ¥ vI(Ty), where v9(I;) = ¥ a,vd. Hence X9 = @ X7, where
il zel’; iel9

X, (i € 19) are subspaces of X9 containing v9(I';) # 0. We have:

V() ovd([) = I |ag[*v) = Cop, where C > 0.

IEEF,L'

Let w9(I';) = X byvd € X? be another vector with |b,| = 1, then:
el YTy I; Yy

() ow!(Ty) = X agbynl = Dol

zel;

where |D| = 1. Then b, = Da, for all x € I'; which shows that any X7 (i € I9)
is generated by a unique, up to a scalar D € T, vector as above. We fix such
elements and denote them by vf (©7), the map ©Y being defined by the
coefficients of the chosen elements.
b) Let X™ # {0} and let v™ = ¥ agu;* + X by be its nonzero vector.
geG heG

m\f . __ amYy 1/2 = ,m 5 ~—1,m .
Then (v™)* := ¥, (3™) = |G|V (ggaag% + hgcb;ﬂ' vi"). Next, we compute:
m myf _ 1/2 — k—g T 12 D
v™ o (V") = |G (g’gécagakvk +p%éG|bh| x(p, h)vy,)

and similarly

m\ m _ 1/2 2 (o NP -1 7 h—k
(V") ow |G| (TgEeG|ag| X(p,gvp, + 7 h,i?ecbkbhvh )-
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Hence, the components of index p of these vectors are:
[0 0 ("l = IG5 ausateg + 50X )T
and similarly
(™) 0 0™y = (G % Jag X )08, + 71 5 Bipintl )
In particular, the components of index 0 of these vectors are:
m myt (/2 2.0 2y 0

[0 0 (" lo = IGIV2( S Ja ) + (5 fou)es)

and similarly

(6™ 0 0o = [GI2(r( S JaglPh, + 77 5 Jufed)

Since at least one of a, or by, is nonzero, it follows that v2, € X°, so we can
chose {m} € I°. Further:

0 m m m m 0 m m
v, o = YhvtelX vmouv, = YauteX
m heG h ’ m geG’gg ’

which shows that v2, ¢ Z(A) and that X™ = X7"@® X", where the subspaces

X, XTI < X™ consist, respectively, of vectors of the form Egagv;” and
ge
thbhv%. As (X1)F = X7 and (X7 = X7, dim(X™) must be even.
Now, the relations v o v™ = X% agvg' 1= wi show that X™ has a basis
T ge N k2

of the form {w{, (w)?|i € I"™}, and using the same reasoning as in part

a), one can normalize: w’ = v (©™). Finally, if k,, = ko — 1, there is
no a combination of ’UIQZ_ which would commute with all vf!(©™), so A is
indecomposable. =

Corollary 3.4 implies that for weak coideals we have m, € {0, 1} for all
A € A, so that the generator M can be identified either with a nonempty
subset Z < G/K or with a couple of subsets (Zy, Z,) ¢ G/K x G/K*, at

least one of which is nonempty.

5.1 The case A™ = {0}

Remark 5.3 Let A be an indecomposable weak coideal such that dim(X™) =
0. Then either the set I° consists of only one subset I' < () containing {m}
(so that dim(X°) = 1) or does not contain subset T' = Q containing {m}.
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Indeed, if T € I°, it suffices to show that Ug commutes with any basis
element v%i(@g) of X. Using the fact that no more than one element of I°

can contain {m} as well as Lemma 5.2, one can see that for any T'; € I°\{T'}

we have v2ovl (09) = vf, (09)ovd = 0 and vRovl(09) = vi(07)ov) = v (69).
It follows that either the basis of X consists only from wvectors of the form

vZ(©7) or does not contain such vectors at all.

The equality dimX® = 1 implies M = M,, for some \g € A. Then
dimF(U%) = 1if g e K and dimF(UY%) = 0 otherwise. This gives a unique,

up to isomorphism of B-C*algebras, connected coideal I = @ (Cv¥, ®ﬁk).
keK

Now suppose that T'; = G, Vi € I°. As dimF(U™) = 0, M is supported
only on G/K or only on G/K*. Let us consider the first of these cases, the
second one is completely similar. Identify the generator M with a nonempty
subset Z < G/K. The following example shows that any such Z gives rise
to an indecomposable weak coideal of &y.

Example 5.4 Let Z be a nonempty subset of G/K, then Remark /.8 gives
dimX9 = X mymgir=1Zn(g+ 2)|.
XeG/K

Put X9 =Vec{vi|\e Zn(g+ Z)} and X™ = {0}. For any v§ € X9 (g€
G), we have (v3)* = v,? € X79. Indeed, as \€ Z n (g + Z), there is N € Z
such that A = g+ N, so A\—g = XN € Z. Clearly, (A —g) € Z — g, hence
(A—g)e Zn (Z—g). We also have:

g h _ g+h g+h g g g h
v{ ov, = Ounavy € X forall vie X9 vie X" (g,hed).

Indeed, as N\ € Zn(g+ Z), pe Zn (h+ Z), there are X', i € Z such
that A = g+ N, u = h+ i/, so the above product is nonzero if and only
ifu =h4+X=h+g+ XN €g+h+ Z. Since p € Z, it follows that
we Zn(g+h+2). Thus, Lemma 5.3, a) implies that the family {X*|z € Q}
generates a weak coideal A = B with unit 14 = v) @ vQ,, where L := |J .

NeZ
Remark 5.5 A is never a coideal but when |Z| = 1 it is isomorphic to a
connected coideal 1§ = @ (C( EQUQ)(@Fk), which is the "right sided” version
keK T€
of the left coideal I from [10]. I3 is also isomorphic to I above. If |Z| > 1,

A is also indecomposable because for an arbitrary proper subset Zy < Z, the

element )\EZ v} does not commute with any v9 (€ Zy, g ¢ K).
€Zo
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It follows from Remark 4.8 that &1y-C*-algebras (A, o) with A™ = {0}
can be only of type (D).
We can summarize the above considerations as follows:

Proposition 5.6 Isomorphism classes of indecomposable weak coideals A of
By with A™ = {0} are parameterized by couples (K, Z°™), where K < G
and Z°™ is the orbit of a nonempty subset Z < G/K or Z < G/K* under
the action of the group of the translations on G/K (resp., on G/K*). A is
isomorphic to a coideal if and only if |Z| = 1.

5.2 The case A™ # {0}

Proposition 5.7 There is no weak coideals of &1y corresponding to module
categories M with A = G/K.

Proof. Let A be such a weak coideal and M be the corresponding gen-
erator identified with the subset Z of G/K. Then ko = dim(X°) = |Z| and
dim(X™) = |Z|?. In terms of Lemma 5.2, b) we have dim(X™) = 2k,,, where
km < ko — 1, so that |Z|? < 2(]Z| — 1) which is only possible if |Z] = 1. But
then dim(X™) = 1 - contradicts to the fact that dim(X™) must be even. o

Proposition 5.8 Let A be a weak coideal of &1y corresponding to a module
category M with A = G/KUuG/K* and a generator M defined by a nonempty
subset (Zy, Z1) < G/K x G/K=*. Then either |Zy| =1 or |Z;| = 1.

Proof. We have ky = dim(X°) = |Zy| + | Z1] and dim(X™) = 2|Zy]|Z1|.
In terms of Lemma 5.2, b) we have dim(X™) = 2k,,, where k,, < ko — 1, so
|Zo||Z1] < |Zo| + |Z1| — 1 from where either |Zy| =1 or |Z;]| = 1. o

The following example shows that any such set (Zy, Z;) gives rise to an
indecomposable weak coideal of &ry.

Example 5.9 Let Z be a nonempty subset of G/K and py € G/K*. For
the generator corresponding to Z 1 py we have dimX™ = 2|Z|, dimX9 =
Z g+ Z)] ifg¢ K and dimX9 =|Zn(g+ Z)|+1ifge K*.

Put X™ = Vec{v', v\, p e Z}, X9 = Vec{vd, I\ € Z n (g+ 2)} if
ge K+ and X9 =Vec{viINe Z n(g+ Z =} if g¢ K. The next relations,
where g, h € G k,l € Kt \ € Z u(\) is a representative of the coset ),
show that the family {X*|x € Q} satisfies the conditions a) of Lemma 3.3:

(W) = |G, (0F)F = 7GR, (un)f = vt (0)F = 0,
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k L k+l h g+h k h h k _ ..k m o __
Uy, © Uy = Up, U5 00, = G g a9, vy 0 vy = vy ovy, = v, oy =0,
k m m k
Uy © = X(k u()‘)) Uy 7U>\ © U =0, Ux CUp = X(u(/\)v ]{Z)U)\ )
g g g _ ,9.,m __ . m, . m __ . m_ . m __
U, = Ox VXL g, UX'OV) = Ox Vg, UX OV = vxoug = vytouy' = vitovy’ =0,

and finally, using the fact that kEKx(g, k) = |K| if g€ K+ and is 0 otherwise:
€

m m g m
vy ovg = X W, vy o

m k
vt =T|K|0y\, X vl.
ge(=N) A o | | ’MkeKi m

So, this family generates an indecomposable weak coideal A < B, 14 = (v, +

V)@Y, where L = [JA. A is a coideal if and only if L = G in which case
AeZ
it is the analog of the left connected coideal Jx constructed in [10)].

Now we can summarize the above considerations as follows:

Proposition 5.10 Isomorphism classes of indecomposable weak coideals A
of 1y with A™ # {0} are parameterized by pairs (K, (Zy, Z1)°"), where
K < G and (Zy, Z,)°™ is the orbit of a subset (Zy, Z1) € G/K x G/K* such
that min{|Zy|, |Z1|} = 1 under the action of:

a) the group G/K x G/K* by translations, if K # K=+;

b) the semi direct product (G/K x G/K) x Zs generated by the group

G/K x G/K acting by translations and the flip o : (Zy, Z1) — (Z1,Z0) if
K =K*.

A is isomorphic to a coideal if and only if either Zy = G/K or Z; =
G/K*.

Finally, Theorem 1.3 follows from Propositions 5.6 and 5.10.
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