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Classifying (Weak) Coideal Subalgebras of
Weak Hopf C�-Algebras

Leonid Vainerman Jean-Michel Vallin

Dedicated to the Memory of Etienne Blanchard

Abstract

We develop a general approach to the problem of classification
of weak coideal C�-subalgebras of weak Hopf C�-algebras. As an
example, we consider weak Hopf C�-algebras and their weak coideal
C�-subalgebras associated with Tambara Yamagami categories.
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1 Introduction

It is known that any finite tensor category equipped with a fiber functor
to the category of finite dimensional vector spaces is equivalent to the rep-
resentation category of some Hopf algebra - see, for example, [5], Theorem
5.3.12. But many tensor categories do not admit a fiber functor, so they
cannot be presented as representation categories of Hopf algebras. On the
other hand, T. Hayashi [7] showed that any fusion category always admits
a tensor functor to the category of bimodules over some semisimple (even
commutative) algebra. Using this, it was proved in [7], [15], [17] that any
fusion category is equivalent to the representation category of some algebraic
structure generalizing Hopf algebras called a weak Hopf algebra [2] or a finite
quantum groupoid [14]. The main difference between weak and usual Hopf
algebra is that in the former the coproduct ∆ is not necessarily unital.

Apart from tensor categories, weak Hopf algebras have interesting ap-
plications to the subfactor theory. In particular, for any finite index and
finite depth II1-subfactor N � M , there exists a weak Hopf C�-algebra G
such that the corresponding Jones tower can be expressed in terms of crossed
products of N and M with G and its dual. Moreover, there is a Galois cor-
respondence between intermediate subfactors in this Jones tower and coideal
C�-subalgebras of G - see [13]. This motivates the study of coideal C�-
subalgebras of weak Hopf C�-algebras which is the subject of the present
paper. The abbreviation WHA will always mean a weak Hopf C�-algebra.

A coideal C�-subalgebra is a special case of the notion of a G-C�-algebra,
which is, by definition, a unital C� algebra A equipped with a coaction a of
a WHA G � pB,∆, S, εq. More exactly, we will use the following

Definition 1.1 A weak right coideal C�-subalgebra of B is a right G-C�-
algebra pA, aq with a C�-algebra inclusion i : A ÞÑ B (not necessarily unital)
satisfying ∆ � pi b idBqa. One can think of A as of a C�-subalgebra of B
such that a � ∆. If i is unital, we call A a coideal C�-subalgebra of B.

For the sake of brevity, we will call a (weak) coideal C�-subalgebra a
(weak) coideal of B. Note that if G is a usual Hopf C�-algebra, then one can
prove that necessarily 1A � 1B, so weak and usual coideals coincide.

It was shown in [20] that any G-C�-algebra pA, aq corresponds to a pair
pM,Mq, where M is a module category with a generatorM over the category
of unitary corepresentations of G.
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In Preliminaries we recall definitions and facts needed for the exact formu-
lation of this result expressed in Theorem 2.9. Note that similar categorical
duality for compact quantum group coactions was obtained earlier in [4], [11].

Section 3 is devoted to necessary conditions which a pair pM,Mq satisfies
if pA, aq is an indecomposable (weak) coideal.

In Sections 4 and 5 the above mentioned general approach is applied
to the problem of classification of G-algebras and weak coideals of WHA’s
associated with a concrete class of fusion categories - Tambara-Yamagami
categories T YpG,χ, τq [18].

Recall that simple objects of T YpG,χ, τq are exactly the elements of a
finite abelian group G and one separate element m satisfying the fusion rule
g �h � gh, g �m � m�g � m, m2 � Σ

gPG
g, g� � �g, m � m� pg, h P Gq. These

categories are parameterized by non degenerate symmetric bicharacters χ :
G � G Ñ Czt0u and τ � �|G|�1{2. For any subset K � G, we shall denote
KK :� tg P G|χpk, gq � 1, @k P Ku.

The Hayashi’s reconstruction theorem allows to construct a WHA GT Y
associated with T YpG,χ, τq - see [10]. We recall this construction in slightly
different form in Subsection 4.1. Then, using the methods elaborated in [6],
[8], [9], we classify in Subsection 4.2 indecomposable module categories over
representations of GT Y , their autoequivalences and generators. Together
with the above mentioned results this leads to the following classification
theorem:

Theorem 1.2 There are two types of isomorphism classes of indecomposable
finite dimensional GT Y-C�-algebras:

(i) those parameterized by pairs pK, tmλu
orbq, where K   G and tmλu

orb

is the orbit of a nonzero collection tmλ P Z�|λ P G{Ku under the action of
the group of translations on G{K.

(ii) those parameterized by pairs pK, ptmλu, tmµuq
orbq, where K   G and

ptmλu, tmµuq
orb is the orbit of a nonzero double collection ptmλ P Z�|λ P

G{Ku, tmµ P Z�|µ P G{K
Kuq under the action of:

a) the group of translations on G{K �G{KK if K � KK;
b) the semi-direct product pG{K � G{Kq 


σ
Z2 generated by translations

on G{K �G{K and the flip σ : ptmλu, tmµuq Ø ptmµu, tmλuq if K � KK.

Finally, Section 5 is devoted to the classification of indecomposable (weak)
coideals of GT Y . Their classification is given by the following
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Theorem 1.3 Isomorphism classes of indecomposable weak coideals of GT Y
are parameterized by pairs pK, pZ0, Z1q

orbq, where K is a subgroup of G and
pZ0, Z1q

orb is the orbit of a nonempty subset pZ0, Z1q � G{K � G{KK such
that either |Z0| ¤ 1 or |Z1| ¤ 1, under the action of:

a) the group of translations on G{K �G{KK if K � KK;
b) the semi-direct product pG{K � G{Kq 


σ
Z2 generated by translations

on G{K �G{K and the flip σ : pZ0, Z1q Ø pZ1, Z0q if K � KK.
Given a subgroup K   G, the isomorphism classes containing coideals

correspond exactly to the following orbits:
when K �� KK, to the four orbits tpλ,Hq{λ P G{Ku, tpH, µq, {µ P

G{KKu, tpG{K,µq{µ P G{KKu, tpλ,G{KKq{λ P G{Ku,
when K � KK, to the two orbits tpλ,Hq Y pH, λq, {λ P G{Ku and

tpG{K,λq Y pλ,G{Kq{λ P G{Ku.

In fact, we give an explicit construction of representatives of all isomor-
phism classes of indecomposable finite dimensional GT Y-C�-algebras and in-
decomposable (weak) coideals of GT Y .

Our references are: to [5] for tensor categories, to [12] for C�-tensor cat-
egories and to [14] for weak Hopf algebras (finite quantum groupoids).

2 Preliminaries

2.1 Weak Hopf C�-algebras

A weak Hopf C�-algebra (WHA) G � pB,∆, S, εq is a finite dimensional C�-
algebra B with the comultiplication ∆ : B Ñ B b B, counit ε : B Ñ C,
and antipode S : B Ñ B such that pB,∆, εq is a coalgebra and the following
axioms hold for all b, c, d P B :

(1) ∆ is a (not necessarily unital) �-homomorphism :

∆pbcq � ∆pbq∆pcq, ∆pb�q � ∆pbq�,

(2) The unit and counit satisfy the identities (we use the Sweedler leg
notation ∆pcq � c1 b c2, p∆b idBq∆pcq � c1 b c2 b c3 etc.):

εpbc1qεpc2dq � εpbcdq,

p∆p1q b 1qp1b∆p1qq � p∆b idBq∆p1q,
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(3) S is an anti-algebra and anti-coalgebra map such that

mpidB b Sq∆pbq � pεb idBqp∆p1qpbb 1qq,

mpS b idBq∆pbq � pidB b εqpp1b bq∆p1qq,

where m denotes the multiplication.

The right hand sides of two last formulas are called target and source
counital maps εt and εs, respectively. Their images are unital C�-subalgebras
of B called target and source counital subalgebras Bt and Bs, respectively.

The dual vector space B̂ has a natural structure of a weak Hopf C�-
algebra Ĝ � pB̂, ∆̂, Ŝ, ε̂q given by dualizing the structure operations of B:

  ϕψ, b ¡ �   ϕb ψ, ∆pbq ¡,

  ∆̂pϕq, bb c ¡ �   ϕ, bc ¡,

  Ŝpϕq, b ¡ �   ϕ, Spbq ¡,

  φ�, b ¡ �   ϕ, Spbq� ¡,

for all b, c P B and ϕ, ψ P B̂. The unit of B̂ is ε and the counit is 1.
The counital subalgebras commute elementwise, we have S � εs � εt � S

and SpBtq � Bs. We say that B is connected if BtXZpBq � C (where ZpBq
is the center of B), coconnected if Bt X Bs � C, and biconnected if both
conditions are satisfied.

The antipode S is unique, invertible, and satisfies pS � �q2 � idB. We
will only consider regular quantum groupoids, i.e., such that S2|Bt � id. In
this case, there exists a canonical positive element H in the center of Bt

such that S2 is an inner automorphism implemented by G � HSpHq�1, i.e.,
S2pbq � GbG�1 for all b P B. The element G is called the canonical group-like
element of B, it satisfies the relation ∆pGq � pGbGq∆p1q � ∆p1qpGbGq.

There exists a unique positive functional h on B, called a normalized
Haar measure such that

pidB b hq∆ � pεt b hq∆, h � S � h, h � εt � ε, pidB b hq∆p1Bq � 1B.

We will dehote by Hh the GNS Hilbert space generated by B and h and by
Λh : B Ñ Hh the corresponding GNS map.
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2.2 Unitary representations and corepresentations of
a weak Hopf C�-algebra

Let G � pB,∆, S, εq be a weak Hopf C�-algebra. We denote by εt, εs its
target and source counital maps, by Bt and Bs its target and source subalge-
bras, respectively, and by G its canonical group-like element. We also denote
by h the normalized Haar measure of G.

Any object of the category UReppGq of unitary representations of G is a
left B-module of finite rank such that the underlying vector space is a Hilbert
space H with a scalar product   �, � ¡ satisfying

  b � v, w ¡�  v, b� � w ¡, for all v, w P H, b P B.

UReppGq is a semisimple category whose morphisms are B-linear maps and
simple objects are irreducible B-modules. One defines the tensor product of
two objects H1, H2 P UReppGq as the Hilbert subspace ∆p1Bq � pH1 bH2q of
the usual tensor product together with the action of B given by ∆. Here we
use the fact that ∆p1Bq is an orthogonal projection.

Tensor product of morphisms is the restriction of the usual tensor product
of B-module morphisms. Let us note that any H P UReppGq is automatically
a Bt-bimodule via z � v � t :� zSptq � v, @z, t P Bt, v P E, and that the
above tensor product is in fact bBt , moreover the Bt-bimodule structure for
H1 bBt H2 is given by z � ξ � t � pz b Sptqq � ξ, @z, t P Bt, ξ P H1 bBt H2.
The above tensor product is associative, so the associativity isomorphisms
are trivial. The unit object of UReppGq is Bt with the action of B given by
b � z :� εtpbzq, @b P B, z P Bt and the scalar product   z, t ¡� hpt�zq.

For any morphism f : H1 Ñ H2, let f� : H2 Ñ H1 be the adjoint linear
map:   fpvq, w ¡�  v, f�pwq ¡, @v P H1, w P H2. Clearly, f� is B-linear,
f�� � f , pf bBt gq

� � f�bBt g
�, and EndpHq is a C�-algebra, for any object

H. So UReppGq is a finite C�-multitensor category (1 can be decomposable).
The conjugate object for any H P UReppGq is the dual vector space Ĥ

naturally identified (v ÞÑ v) with the conjugate Hilbert space H with the

action of B defined by b � v � G1{2Spbq�G�1{2 � v, where G is the canonical
group-like element of G. Then the rigidity morphisms defined by

RHp1Bq � ΣipG
1{2 � ei bBt �eiq, RHp1Bq � Σipei bBt G

�1{2 � eiq, (1)

where teiui is any orthogonal basis in H, satisfy all the needed properties -
see [3], 3.6. Also, it is known that the B-module Bt is irreducible if and only
if Bs X ZpBq � C1B, i.e., if G is connected. So that, we have
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Proposition 2.1 UReppGq is a rigid finite C�-multitensor category with
trivial associativity constraints. It is C�-tensor if and only if G is connected.

Definition 2.2 A right unitary corepresentation U of G on a Hilbert
space HU is a partial isometry U P BpHUq bB such that:

(i) pidb∆qpUq � U12U13.
(ii) pidb εqpUq � id.
If U and V are two right corepresentations on Hilbert spaces HU and

HV , respectively, a morphism between them is a bounded linear map T P
BpHU , HV q such that pT b1BqU � V pT b1Bq. We denote by UCoreppGq the
category whose objects are unitary corepresentations on finite dimensional
vector spaces with morphisms as above.

If G is coconnected (i.e., if Bt X Bs � C1B), UCoreppGq is a rigid C�-
tensor category with trivial associativities isomorphic to UReppĜq. Namely,
any HU is a right B-comodule via v ÞÑ Upvb 1Bq, therefore, automatically a
pBs, Bsq-bimodule. Then tensor product UjV :� U13V23 acts on HUbBsHV ,
the unit object Uε P BpBsq b B is defined by z b b ÞÑ ∆p1Bqp1B b zbq, @z P
Bs, b P B, and the rigidity morphisms related to the conjugate U of an object
U which acts on the conjugate Hilbert space HU of HU , are

RUp1Bq � ΣipĜ
1{2 � ei bBs eiq, RUp1Bq � Σipei bBs Ĝ

�1{2 � eiq, (2)

where teiui is any orthogonal basis in HU . We denote by Ω an exhaustive set
of representatives of the equivalence classes of irreducibles in UCoreppGq.

Denote HUx by Hx, then Ux � `i,jm
x
i,j b Ux

i,j, where mx
i,j are the matrix

units of BpHxq with respect to some orthogonal basis teiu P Hx and Ux
i,j

are the corresponding matrix coefficients of Ux. Recall that B � `xPΩBUx ,
where BUx � SpanpUx

i,jq.

2.3 The Hayashi’s fiber functor and reconstruction
theorem.

Let C be a rigid finite C�-tensor category and Ω � IrrpCq be an exhaustive
set of representatives of equivalence classes of its simple objects. Let R be
the C�-algebra R � CΩ �

À

xPΩ

Cpx, where px � p�x are mutually orthogonal

idempotents: pxpy � δx,ypx, for all x, y P Ω. Let us define a functor H from C
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to the category Corrf pRq of finite dimensional Hilbert R-bimodules (called
R-correspondences) by:

Hpxq � Hx �
à

y,zPΩ

Hompz, y b xq, for every x P Ω,

where Hompx, yq is the vector space of morphisms x Ñ y. The R-bimodule
structure on Hx is given by:

py �H
x � pz � Hompz, y b xq, for all x, y, z P Ω.

If f P Hompx, yq, then Hpfq : Hx Ñ Hy is defined by:

Hpfqpgq � pidz b fq � g, for any z, t P Ω and g P pz �H
x � pt.

The tensor structure of H is a family of natural isomorphisms Hx,y : Hx b
Hy Ñ Hx b

R
Hy defined by:

Hx,ypv b wq � az,x,y � pv b idyq � w P pz �H
pxbyq � ps, (3)

for all v P pz �H
x �pt, w P pt �H

y �ps, z, s, t P Ω. Here az,x,y are the associativity
isomorphisms of C.

We define the scalar product on Hx as follows. If x, y, z P Ω and f, g P
Hompz, y b xq, then g� P Hompy b x, zq and g� � f P Endpzq � C, so one
can put   f, g ¡x� g� � f . The subspaces Hompz, y b xq are declared to
be orthogonal, so Hx P Corrf pRq. Dually, H

x
P Corrf pRq via z1 � v � z2 �

z�2 � v � z
�
1 , for all z1, z2 P R, v P H

x. Now one can check that H is a unitary
tensor functor in the sense of [12] 2.1.3.

Theorem 2.3 (a C�-version of the Hayashi’s theorem -see [7], [16])
Let C be a rigid finite C�-tensor category, Ω � IrrpCq and H : C Ñ

Corrf pRq be the Hayashi’s functor, where R � C|Ω|. Then the vector space

B �
à

xPΩ

Hx bHx, (4)

has a regular biconnected weak Hopf C�-algebra structure G such that C �
UCoreppGq as rigid C�-tensor categories.
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Explicitly, if v, w P Hx, g, h P Hy and texj u is an orthonormal basis in Hx, for
all x, y P Ω, then:

pw b vqx � pg b hqy � pHx,ypw b gq bHx,ypv b hqqxby P H
pxbyq bHpxbyq (5)

∆pw b vq �
à

j

pw b exj qx b pexj b vqx, (6)

εpw b vq �  w, v ¡x . (7)

Now define an antipode and an involution. Consider the natural isomor-

phisms Φx : Hx Ñ H
x�

and Ψx : H
x
Ñ Hx� , where x� is the dual of x P Ω:

Φxpvq � pidybRx
�
q �ay,x,x� � pvb idx�q,Ψxpvq � pvb idx�q �a

�1
y,x,x� � pidybRxq,

(8)
where x, y, z P Ω, we identify y with yb 1, v P py �H

x � pz, Rx and ay,x,x� are,
respectively, the rigidity morphisms and the associativities in C. Then:

Spw b vq � Ψxpvq b Φxpwq, (9)

pw b vq� � w6 b v5, where w6 � Ψxpwq, v
5 � Φxpvq. (10)

Any Hx is a right B-comodule via

axpvq � Σ
j
exj b exj b v, where v P Hx,

one checks that it is unitary which gives the equivalence C � UCoreppGq.
The algebra of the dual quantum groupoid Ĝ is

B̂ �
à

xPΩ

BpHxq, (11)

the duality is given, for all x P Ω, A P BpHxq, v, w P Hx by:

  A,w b v ¡�  Aw, v ¡x .

B̂ is clearly a C�-algebra with the obvious matrix product and involution,

Notations 2.4 For all x, y P Ω and all v P Hx, w P Hy, we denote:

v � w � Hx,ypv bR wq
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Remark 2.5 Let 0 be the unit element of C, and H0 :� `
xPΩ

Hompx, xq, then

using (3) and (8) it is easy to check that pH0, �, 7q is a commutative C�-
algebra and if, for all x P Ω, v0

x is a normalized vector in Hompx, xq, then
pv0
xqxPΩ is a basis of mutually orthogonal projections in H0.

Remark 2.6 Let C be a rigid finite C�-tensor category and F : C Ñ Corrf pRq
be a unitary tensor functor, where R is a finite dimensional unital C�-algebra.
Then there exists [17] a regular biconnected finite quantum groupoid G with
Bt � Bs � R such that C � UCoreppGq as C�-tensor categories. For any
fixed C, the set of C�-algebras R for which the above mentioned functor F
exists, contains at least R � C|Ω| (where Ω � IrrpCq), then F � H. In
general, this set contains several elements, and the corresponding WHAs are
called Morita equivalent.

In particular, if the above set of functors contains a fiber functor F :
C Ñ Hilbf , i.e., R � C, the corresponding quantum groupoids are Morita
equivalent to a usual C�-Hopf algebra.

2.4 Coactions.

Definition 2.7 A right coaction of a WHA G on a unital �-algebra A, is a
�-homomorphism a : AÑ AbB such that:

1) pab iqa � pidA b∆qa.
2) pidA b εqa � idA.
3) ap1Aq P AbBt.
One also says that pA, aq is a G-�-algebra.

If A is a C�-algebra, then a is automatically continuous, even an isometry.
There are �-homomorphism α : Bs Ñ A and �-antihomomorphism β :

Bs Ñ A with commuting images defined by αpxqβpyq :� pidA b εqrp1A b
xqap1Aqp1A b yqs, for all x, y P Bs. We also have ap1Aq � pα b idBq∆p1Bq,

apαpxqaβpyqq � p1A b xqapaqp1A b yq, (12)

and

pαpxq b 1Bqapaqpβpyq b 1Bq � p1A b Spxqqapaqp1A b Spyqq. (13)

The set Aa � ta P A|apaq � ap1Aqpa b 1Bqu is a unital �-subalgebra of A (it
is a unital C�-subalgebra of A when A is a C�-algebra) commuting pointwise
with αpBsq. A coaction a is called ergodic if Aa � C1A.
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Definition 2.8 A G � C�-algebra pA, aq is said to be indecomposable if it
cannot be presented as a direct sum of two G� C�-algebras.

It is easy to see that pA, aq is indecomposable if and only if ZpAqXAa � C1A.
Clearly, any ergodic G� C�-algebra is indecomposable.

For any pU,HUq P UCoreppGq, we define the spectral subspace of A cor-
responding to pU,HUq by

AU :� ta P A|apaq P ap1AqpAbBUqu.

Let us recall the properties of the spectral subspaces:
(i) All AU are closed.
(ii) A � `xPΩAUx .
(iii) AUxAUy � `zAUz , where z runs over the set of all irreducible direct

summands of Ux j Uy.
(iv) apAUq � ap1AqpAU bBUq and AU � pAUq

�.
(v) Aε is a unital C�-algebra.

2.5 Categorical duality.

Let us recall the main result of [20]:

Theorem 2.9 Given a regular coconnected WHA G, the following two cat-
egories are equivalent:

(i) The category of unital G-C�-algebras with unital G-equivariant �-
homomorphisms as morphisms.

(ii) The category of pairs pM,Mq, where M is a left module C�-category
with trivial module associativities over the C�-tensor category UCoreppGq
and M is a generator in M, with equivalence classes of unitary module func-
tors respecting the prescribed generators as morphisms.

In particular, given a unital G-C�-algebra A, one constructs the C�-category
M � DA of finitely generated right Hilbert A-modules which are equivariant,
that is, equipped with a compatible right coaction [1]. Any its object is
automatically a pBs, Aq-bimodule, and the bifunctor U bX :� HU bBs X P
DA, for all U P UCoreppGq and X P DA, turns DA into a left module C�-
category over UCoreppGq with generator A and trivial associativities.

Vice versa, if a pair pM,Mq is given, the construction of a G-C�-algebra
pA, aq contains the following steps. First, denote by R the unital C�-algebra
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EndpMq and consider the functor F : C Ñ CorrpRq defined on the objects
by F pUq � HomMpM,U bMq @U P C. Here X � F pUq is a right R-module
via the composition of morphisms, a left R-module via rX � pidb rqX, the
R-valued inner product is given by   X, Y ¡� X�Y , the action of F on
morphisms is defined by F pT qX � pT b idqX. The weak tensor structure
of F (in the sense of [11]) is given by JX,Y pX b Y q � pid b Y qX, for all
X P F pUq, Y P F pV q, U, V P UCoreppGq.

Then consider two vector spaces:

A �
à

xPΩ

AUx :�
à

xPΩ

pF pUxq bHxq (14)

and
Ã �

à

UP}UCoreppGq}

AU :�
à

UP}UCoreppGq}

pF pUq bHUq, (15)

where F pUq �
À

i

F pUiq corresponds to the decomposition U �
À

Ui into

irreducibles, and }UCoreppGq} is an exhaustive set of representatives of the
equivalence classes of objects in UCoreppGq (these classes constitute a count-
able set). Ã is a unital associative algebra with the product

pX b ξqpY b ηq � pidb Y qX b pξ bBs ηq, @pX b ξq P AU , pY b ηq P AV ,

and the unit
1Ã � idM b 1B.

Note that pid b Y qX � JX,Y pX b Y q P F pU j V q. Then, for any U P
UCoreppGq, choose isometries wi : Hi Ñ HU defining the decomposition of
U into irreducibles, and construct the projection p : ÃÑ A by

ppX b ξq � ΣipF pw
�
i qX b w�

i ξq, @pX b ξq P AU , (16)

which does not depend on the choice of wi. Then A is a unital �-algebra with
the product x � y :� ppxyq, for all x, y P A and the involution x� :� ppxq,

where pX b ξq :� pid b X�qF pRUq b Ĝ1{2ξ, for all ξ P HU , X P F pUq, U P
UCoreppGq. Here RU is the rigidity morphism from (2). Finally, the map

apX b ξiq � X b Σjpξj b Ux
j,iq, (17)

where tξiu is an orthogonal basis in Hx and pUx
i,j are the matrix elements of

Ux in this basis, is a right coaction of G on A. Moreover, A admits a unique
C�-completion A such that a extends to a continuous coaction of G on it.

13



Remark 2.10 1) We say that a UCoreppGq-module category is indecompos-
able if it is not equivalent to a direct sum of two nontrivial UCoreppGq-module
subcategories. Theorem 2.9 implies that a G�C�-algebra pA, aq is indecom-
posable if and only if the UCoreppGq-module category M is indecomposable.

2) Let I be a unital right coideal �-subalgebra of B. Then IUx � I XBUx

and F pUxq can be identified with a Hilbert subspace of Hx p@x P Ωq and the
coaction is the restriction of ∆.

Example 2.11 The C�-algebra B with coproduct ∆ viewed as G-C�-algebra,
corresponds to the UCoreppGq-module C�-category Corrf pBsq with genera-
tor M � Bs: for any element U P UCoreppGq and N P Corrf pBsq, one
defines U b N :� F pUq bBs N , where the functor F : UCoreppGq Ñ
Corrf pBsq pF pUq � HUq is the forgetful functor. Indeed, identifying MpBs, HUq
with HU , we get an isomorphism of the algebra Ã constructed from the pair
pM,Mq onto B̃ �

À

U

pHU b HUq and then an isomorphism A � B �
À

xPĜ

pHx b Hxq such that p : Ã Ñ A turns into the map B̃ Ñ B sending

ξ b η P HU bHU into the matrix coefficient Uξ,η.

3 Classifying Indecomposable Weak Coideals

If dimpAq   8, we have the following remarks.

Remark 3.1 If pA, aq is a finite dimensional G � C�-algebra, then M �
DA is a semisimple C�-category. Indeed, dimpHomMpE , Eqq   8, for any
E P DA which is finitely generated. Then the proof of [4], Proposition 3.9
applies. As A is a generator of M, the set tMλ|λ P Λu of its (classes of)
simple objects is finite and we have the corresponding fusion rule

Ux bMλ � Σ
µ
nµx,λMµ, where x P Ω, nµx,λ � dimpHomMpUx bMλ,Mµqq P Z�.

(18)
The associativity and the unit object conditions mean, respectively, that

Σ
zPΩ
czx,yn

ρ
z,λ � Σ

µPΛ
nρx,µn

µ
y,λ, and nρ1,λ � δρ,λ, @x, y P Ω, ρ, λ P Λ, (19)

where czx,y are the fusion coefficients of C � UCoreppGq. Proposition 7.1.6
of [5] gives nµx,λ � nλx�,µ, for all λ, µ P Λ, x P Ω.

14



Remark 3.2 If A is a coideal of B, then, due to [19], Theorem 1.1, there is
an inclusion j : M ÞÑ C such that

jpMq � `
xPΩ

Ux, (20)

where M is the left C-module category with generator M coming from pA,∆|Aq
and C � UCoreppGq is viewed as a C-module category with generator the
`
xPΩ

Ux.

If Λ is the set of irreducibles of M (we denote them by Mλ), we can write
jpMλq � Σ

xPΩ
aλ,xU

x, for all λ P Λ, where aλ,x P Z�. Writing M � Σ
λPΛ

mλMλ,

we must have:
Σ
λPΛ

mλaλ,x � 1, for all x P Ω. (21)

Recall that due to the reconstruction theorem for G, any Hxpx P Ωq is
the direct sum of 1-dimensional subspaces Hompz, yb xq, where y, z P Ω are
such that z � py b xq. In particular, H0 � `

zPΩ
Hompz, zq (where 0 denotes

the trivial corepresentation of G); we will denote by v0
z a norm one vector

generating Hompz, zq viewed as a subspace of H0.
The following lemma allows to select weak coideals of B from all G�C�-

algebras.

Lemma 3.3 Let us fix a UCoreppGq-module category M and a generator
M in it, and let pA, aq be a G-algebra constructed from this data using the
weak tensor functor pF, JU,V q. Then:

a) pA, aq is a weak coideal of B if and only if each F pUxq can be identified
with a subspace Xx � Hx such that the map ζ ÞÑ ζ6 � Ψxpζq sends Xx onto
Xx � F pUxq and JUx,Uy � Hx,y, for all x, y P Ω.

b) X0 is a C�-subalgebra of H0. The unit of X0 is v0
Γ :� `

xPΓ
v0
x, where

Γ � Ω is some nonempty subset. A � `
xPΩ

pXx bH
x
q is a coideal if and only

if Γ � Ω.
c) A weak coideal A � `

xPΩ
pXxbH

x
q is decomposable if and only if ZpAq

contains an element of the form p � v0
Γ0
bv0

Ω, where Γ0 is a proper nonempty
subset of Γ.

d) For any two identifications, F pUxq � Xx and F pUxq � X̃x, @x P Ω,
satisfying the above mentioned conditions, the corresponding weak coideals
`
xPΩ

pXx bH
x
q and `

xPΩ
pX̃x bH

x
q are isomorphic as G-C�-algebras.
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Proof. a) If pA, aq is a weak coideal of B, then AU � BU , for any
U P UCoreppGq. Indeed, by [20], Proposition 3.17 AU � ta P A|∆paq P
∆p1AqpA b BUqu, but ∆p1Aq � ∆p1Bqp1A b 1Bq, hence ∆paq P ∆p1BqpA b
BUq � ∆p1BqpBbBUq, so that AU � BU . It follows from [20], Theorem 4.12
and Theorem 2.21, respectively, that AUx � F pUxqbHx and BUx � HxbHx,
so the above inclusions mean that F pUxq � Hx, for all x P Ω.

The multiplication in A is the restriction of that in B, therefore, compar-
ing the formulas (15) and [20], (16) and using the relation JUx,UypXbBs Y q �
pidb Y qXp@X P F pUxq, Y P F pUyqq, we have JUx,Uy � Hx,y.

The involution in A sends Xbη onto X�bpηq5 (see Subsection 2.4) and is
the restriction of that in B, the last one is defined by ζbη ÞÑ ζ6bpηq5 @ζ, η P
Hx, x P Ω. Then for X P F pUxq � Hx we have X� � X6.

Conversely, suppose that F pUxq � Hx and JUx,Uy � Hx,y, for all x, y P
Ω. It follows from the argument above that the multiplication in A is the
restriction of that in B. Next, compare the formulas [20], (29) for a and
[20], (14) for ∆. Since BUx � Hx b H

x
, for any Ux - see [20], (12), the

matrix coefficient Ux
ζ,η with respect to a basis tζxu of Hx can be identified

with ζx b ηx, for all x P Ω. Now it is clear that a is the restriction of
∆. Finally, putting X� � X6 for any X P F pUxq and using the fact that
F pUxq6 � F pUxq, one checks that pA, aq is a coideal of B.

b) By Remark 2.5, H0 � `
xPΩ

Cv0
x is a commutative unital C�-algebra,

v0
x px P Ωq are mutually orthogonal projections, and if A � `

xPΩ
pXxbH

x
q is a

weak coideal of B, then X0 is a C�-subalgebra of H0. Its spectral mutually
orthogonal projectors are v0

Γi
, where Γi � Ω pi � 1, ..., k0 � dimpX0qq are

disjoint subsets of Ω, the unit of X0, i.e., the image of F pidMq, is v0
Γ, where

Γ � \k0
i�1Γi. As 1A � v0

Γ b v0
Ω and 1B � v0

Ω b v0
Ω, A is a coideal if and only if

Γ � Ω.
c) One checks that Bt � H0 b v0

Ω and that any nontrivial orthoprojector
p P rZpAqXBts gives a decomposition A � pA`p1�pqA into the direct sum
of two weak coideals of B. As 1A � v0

Γ b v
0
Ω, p must be of the form v0

Γ0
b v0

Ω,
where Γ0 is a proper nonempty subset of Γ.

d) The two G-C�-algebras are isomorphic because they correspond to the
same couple pM,Mq. �

Corollary 3.4 It follows from the definition of the functor F that X0 �
F pU0q � EndMpMq. This finite dimensional C�-algebra is commutative due
to the statement b) which is only possible if mλ P t0, 1u for all λ P Λ.
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4 Weak Hopf C�-Algebras related to Tambara-

Yamagami categories

4.1 Tambara-Yamagami categories

These categories denoted by T YpG,χ, τq (G is a finite group; we consider
them only over C) are Z2-graded fusion categories whose 0-component is
V ecG - the category of finite dimensional G-graded vector spaces with trivial
associativities (its simple objects are g P G) and 1-component is generated by
single simple object m. The Grothendieck ring of T YpG,χ, τq is isomorphic
to the Z2-graded fusion ring T YG � ZG ` Ztmu such that g � m � m �
g � m, m2 � Σ

gPG
g, m � m�. These categories exist if and only if G is

abelian, they are parameterized by non degenerate symmetric bicharacters
χ : G � G Ñ Czt0u and τ � �|G|�1{2 - see [18], [5], Example 4.10.5. The
associativities φpU, V,W q : pU b V q bW Ñ U b pV bW q are

φpg, h, kq � idg�h�k, φpg, h,mq � idm, φpm, g, hq � idm,

φpg,m, hq � χpg, hqidm, φpg,m,mq � `
hPG

idh, φpm,m, gq � `
hPG

idh,

φpm, g,mq � `
hPG

χpg, hqidh, φpm,m,mq � pτχpg, hq�1idmqg,h,

where g, h, k P G. The unit isomorphisms are trivial. T YpG,χ, τq becomes
a C�-tensor category when χ : G � G Ñ T � tz P C||z| � 1u, from now
on we assume that this is the case. The dual objects are: g� � �g, for all

g P G, and m� � m. The rigidity morphisms are defined by Rg : 0
id0Ñ g�b g,

Rg : 0
id0Ñ g b g�, Rm � τ |G|1{2ι, and Rm � |G|1{2ι, where ι : 0 Ñ m bm is

the inclusion. Then dimqpgq � 1, for all g P G, and dimqpmq �
a
|G|.

Let us apply Theorem 2.3 to the category T YpG,χ, τq in order to con-
struct a biconnected regular WHA GT Y � pB,∆, S, εq with UCoreppGT Yq �
T YpG,χ, τq. The Hayashi’s functor H : T YpG,χ, τq Ñ Corrf pRq, where
C�-algebra R :� Endp `

xPΩ
xq � C|G|�1, was constructed in [10]. Denoting

Ωg � Ω :� G\tmu and Ωm :� G\G, where g P G and G is the second copy
of G, one easily computes that Hg � C|G|�1, for all g P G and Hm :� C2|G|.

Let us fix a basis tvxyupy P Ωxq in each Hx px P Ωq choosing a norm one
vector in every 1-dimensional vector subspace: vgh P Homph, ph � gq b gq,
vgm P Hompm,m b gq, vmg P Hompm, g b mq, and vmg P Hompg,m b mq,
where g P G.
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Lemma 4.1 Using notations (10) and 2.4, for all g, h, k P G, x P Ω, one
has:

vgk � v
h
x � δx,h�kv

g�h
h�k, v

g
m � v

h
x � δx,mv

g�h
m ,

vmk � vgx � δx,mχpg, kqv
m
k , v

m
k
� vgx � δx,g�kv

m
g�k

,

vgx � v
m
k
� δx,mχpg, kqv

m
k
, vgx � v

m
k � δx,kv

m
k�g,

vmh � vm
k
� vk�hk , vm

h
� vmk � δh,kτ Σ

gPG
χpg, hq�1vgm.

pvgkq
7 � v�gk�g, pv

g
mq

7 � v�gm , pvmg q
7 � |G|1{2vmg , pv

m
g q

7 � τ�1|G|1{2vmg

Proof. For equations related to product �, these are computations made
in [10] 2.1.5, where Hx,y must be replaced by F�1

x,y . Moreover, in the case of

T YpG,χ, τq, the formulas of (8) imply that the isomorphisms Φx : Hx Ñ Hx�

and Ψx : Hx Ñ Hx� px P Ωq of Theorem 2.3 are given, for all g, h P G, by:

Φgpv
g
hq � v�gh�g, Φgpv

g
mq � v�gm , Φmpv

m
g q � |G|�1{2vmg , Φmpv

m
g q � τ |G|�1{2vmg ,

Ψgpv
g
hq � v�gh�g, Ψgpv

g
mq � v�gm , Ψmpvmg q � |G|1{2vmg , Ψmpvmg q � τ�1|G|1{2vmg ,

which implies, by (10) the formulas for involution 7. �

Now the whole structure of a WHA GT Y is given by formulas (4), (5), (6),
and (7). It was shown in [10] that this WHA is isomorphic to its dual whose
C�-algebra B̂ � `

xPΩ
BpHxq. This implies that UReppGT Yq � UCoreppGT Yq.

The isomorphisms Φx : Hx Ñ Hx� and Ψx : Hx Ñ Hx� px P Ωq of
Theorem 2.3 are now given by:

Φgpv
g
hq � v�gh�g, Φgpv

g
mq � v�gm , Φmpv

m
g q � |G|�1{2vmg , Φmpv

m
g q � τ |G|�1{2vmg ,

Ψgpv
g
hq � v�gh�g, Ψgpv

g
mq � v�gm , Ψmpvmg q � |G|1{2vmg , Ψmpvmg q � τ�1|G|1{2vmg ,

which implies, for all g, h, k P G:

Spvghbv
g
kq � v�gk�gbv

�g
h�g, Spv

g
hbv

g
mq � v�gm bv�gh�g, Spv

g
mbv

g
hq � v�gh�gbv

�g
m ,

Spvgmbv
g
mq � v�gm bv�gm , Spvmg bv

m
h q � vm

h
bvmg , Spv

m
g bv

m
h
q � τ�1pvmh bv

m
g q,

Spvmg b vmh q � τpv
h
b vmg q, Spv

m
g b vm

h
q � vmh b vmg
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and

pvghb v
g
kq

� � v�gh�g b v
�g
k�g, pv

g
hb v

g
mq

� � v�gh�g b v
�g
m , pvgmb v

g
hq

� � v�gm b v�gh�g,

pvgm b vgmq
� � v�gm b v�gm , pvmg b vmh q

� � vmg b vm
h
, pvmg b vm

h
q� � τpvmg b vmh q,

pvmg b vmh q � τ�1pvmg b vm
h
q, pvmg b vm

h
q � vmg b vmh .

We have B � `
gPG

Bg `Bm, where Bg �M|G|�1pCq, @g P G, Bm �M2|G|pCq

4.2 Classification of Indecomposable Finite Dimensional
GT Y-C�-algebras

Let us first recall the following well known (see, for instance, [5], 7.4)

Lemma 4.2 Equivalence classes of left indecomposable V ecG-module cate-
gories (G is abelian) are parameterized by couples pK,φq, where K is a sta-
bilizing subgroup of G and φ P H2pK,C�q. The set of irreducibles of such
a category MpK,φq is ΛK � G{K and φ defines the associativities. The
corresponding fusion rule is g b λ :� g � λ, @g P G, λ P G{K.

Although C � UCoreppGT Yq � T YpG,χ, τq, these categories have differ-
ent associativities, so we cannot apply directly the classification of module
categories from [8], Section 9. We will use the reasonings similar to those
from [6], [8] and [9]. The category C is Z2-graded, i.e., C � C0 ` C1, where
C0 � V ecG (both these categories have trivial associativities) and C1 is gen-
erated by a single simple object Um. Indecomposable C0-module categories
with trivial associativities are parameterized by their stabilizer subgroups
K   G, they correspond to V ecG-module categories of the form MpK,1q,
where 1 is the trivial cocycle. Let us denote them by MpKq.

Then, according to [8], any indecomposable C-module category M is ei-
ther indecomposable over C0 (we say that it is of type (I), it is then of
the form MpKq) or equivalent to MpK0q `MpK1q, where K0 and K1 are
subgroups of G (they can be equal) - a category of type (D).

Moreover, C1 is an invertible C0-bimodule category, so one can define an
action of Z2 �  σ ¡ on the set of (equivalence classes) indecomposable
semisimple C0-module categories: σ �MpKq :� C1 bMpKq.

Notations 4.3 For K   G, ρ P K̂ denote KK
ρ � tg P G|χpg, kq � ρp�kq, @k P

Ku. If ρ � 1 is trivial, denote KK
1 by KK. Note that K̂ � G{KK.
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Lemma 4.4 For any K   G, we have σ �MpKq �MpKKq.

Proof. Adopting the strategy of the proof of [8], Lemma 30 to our context,
let AK � `

kPK
Hk be an algebra in the category C0 - the analog of the algebra

CK in V ecG. Viewed as a usual C�-algebra, AK has the following minimal
central orthoprojectors:

Pλ �
1

|K|
Σ
gPλ
v0
g , Pρ �

1

|K|
Σ
kPK

ρpkqvkm pλ P G{K, ρ P K̂q

So indecomposable rightAK-modules with support in C0 are: Vλ � V ectvkλ|k P
Ku with the action vkλ � H

h � vh�kλ ph, k P Kq and Vρ � C Σ
kPK

ρpkqvkm with

the action p Σ
kPK

ρpkqvkmq � H
h � ρp�hq Σ

kPK
ρpkqvkm ph P Hq, where we denote

vxλ :� Σ
gPλ
vxg for any x P Ω. In both cases the stabilizer subgroup is K.

Then the category C1 bMpKq can be described as the category of right
AK-modules in C with support in C1 which are of the form Hm bR Vλ �
V ectvmp |p P λu with the action vmp �H

h � vm
p�h

pp P λ, h P Kq and HmbRVρ �

V ectvmr |r P K
K
ρ u with the action vmr �Hh � χph, rqvmr pr P HK

ρ , h P Hq.
In order to determine the stabilizer of Hm bR Vλ, we calculate, as in the

proof of [8], Lemma 30, for all g P G the modules Hg bR pH
m bR Vλq �

V ectχpg, pqvmp |p P λu with the action χpg, pqvmp � Hh � χpg,�hqχpg, p �
hqvm

p�h
pp P λ, h P Kq. Therefore, the stabilizer is KK.

Similarly, we calculate for all g P G the modules Hg bR pH
m bR Vρq �

V ectvmr�g|r P K
K
ρ u, but r � g P KK

ρ is equivalent to g P KK. �

Thus, in case (I) necessarily K � KK, so |G| must be a square, and
Λ � G{K. In case (D) M �MpKq `MpKKq and Λ � G{K \G{KK.

Corollary 4.5 The fusion rules for indecomposable UCoreppGT Yq-module
categories are: U g bMλ �Mg�λ p@g P G, Mλ P IrrpMq) in all cases and:

For M �MpKq : Um
bMλ � Σ

µPG{K
Mµ, where Mλ,Mµ P IrrpMpKqq

For M �MpKq `MpKKq:

Um
bMλ � Σ

µPG{KK

Mµ, Um
bMµ � Σ

λPG{K
Mλ,

where Mλ pλ P G{Kq and Mµ pµ P G{K
Kq are in IrrpMq.
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Proof. A priori, we have the following fusion rules with Um:

For M �MpKq : Um
bMλ � Σ

µPG{K
nµλMµ, pMλ,Mµ P IrrpMpKqq, nµλ P Z�q

For M �MpKq `MpKKq:

Um
bMλ � Σ

µPG{KK

mµ
λMµ, Um

bMµ � Σ
λPG{K

mλ
µMλ,

where Mλ pλ P G{Kq, Mµ pµ P G{K
Kq are in IrrpMq and mµ

λ,m
λ
µ P Z�.

The relations of the type pU gbUmqbMλ � U gbpUmbMλq, pU
mbU gqb

Mλ � Um b pU g bMλq and similar relations with Mµ show that nµλ,m
µ
λ and

mλ
µ do not depend on λ and µ. Then it remains to apply again Um to the

above equalities and to use the last remark, the relation Um b Um � Σ
gPG

U g

and the fact that |G| � |K||KK|. �

Corollary 4.6 Any object M � `
λPΛ

mλMλ of an indecomposable semisimple

UCoreppGT Yq-module category is a generator. Indeed, Corollary 4.5 shows
that already any Mλ is a generator.

Therefore, the set of all couples pM,Mq is parameterized:
in case (I) by couples pK, tmλ|λ P G{Kuq, where K � KK   G and

mλ P Z� are such that at least one mλ ¡ 0.
in case (D) by triples pK, tm0

λ|λ P G{Ku, tm
1
µ|µ P G{K

Kuq, where K   G
and m0

λ,m
1
µ P Z� are such that at least one of them is nonzero.

Lemma 4.7 The group AutpMq of autoequivalences of an indecomposable
semisimple UCoreppGT Yq-module category M with trivial associativities is
as follows:

(1) In case (I) for any φ P AutpMq, there exists a unique p P G{K such
that φpMλq �Mp�λ, for all λ P G{K, so AutpMq � G{K.

(2) In case (D) and:
a) K � KK, for all φ P AutpMq, there exists a unique pp0, p1q P

G{K � G{KK such that φpMλq � Mp0�λ and φpMµq � Mp1�µ for all λ P
G{K,µ P G{KK, so AutpMqq � G{K �G{KK.

b) K � KK, AutpMq, viewed as a bijection of G{K � G{K on itself,
is generated by translations of irreducibles pMλ,Mµq by elements pp0, p1q P
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G{K � G{K and the flip pMλ,Mµq ÞÑ pMµ,Mλq. Therefore, AutpMq �
pG{K �G{Kq 


σ
Z2, where σ is the flip of G{K �G{K.

Proof. (1) By definition of φ, we must have φpU gbMλq � U gbφpMλq,
for all g P G, λ P G{K. Then, putting Mp � φpMKq, we have the needed
formula for φ. Conversely, it is easy to check that for such a φ we have
φpUx bMλq � Ux b φpMλq, for all x P Ω, λ P G{K.

(2a) As M � MpKq `MpKKq and MpKq � MpKKq, the above result
applies to the corresponding restrictions of φ.

(2b) Now the above mentioned components have equal rights, so φ can
permute them and we are done. �

Corollary 4.6 implies that any object M � `
λPΛ

mλMλ of a module category

M as above can be identified either with a collection tmλ|λ P G{Ku or with
a double collection ptmλ|λ P G{Ku, tmµ|µ P G{K

Kuq, where mλ,mµ P Z�.
These considerations and Theorem 2.9 prove Theorem 1.2.

Remark 4.8 Let us compute the dimensions of the spectral subspaces of a
finite dimensional GT Y-C�-algebra pA,αq. By Theorem 2.9, given a C�-
module category M over UCoreppGT Yq with a generator M � `

λPλ
mλMλ, we

have AUx � F pUxq bHx p@x P Ωq, where F : UCoreppGT Yq Ñ Corrf pRq is
the functor defined by F pUxq :� HompM,Ux bMq, R � EndpMq. Clearly,

Xx :� F pUxq � `
λ,ρPλ

mλmρHompMλ, U
x
bMρq.

As HompMλ, U
g bMρq � δλ,g�ρC, @λ, ρ P λ, we have dimpXgq � Σ

ρPλ
mρmg�ρ.

Now, in case (I), HompMλ, U
mbMρq � C, so dimpXmq � Σ

λ,ρPG{K
mλmρ.

And in case (D), HompMλ, U
m bMρq � 0 when λ, ρ P G{K or λ, ρ P

G{KK, and HompMλ, U
xbMρq � C otherwise. So, dimpXmq � 2 Σ

λPG{K
mλ�

� Σ
ρPG{KK

mρ. Therefore, in case (D), dimXm must be even.

5 Indecomposable Weak Coideals of GTY

We begin the classification of indecomposable weak coideals of GTY by giving
a canonical basis for them.
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Notations 5.1 For all g P G and X � G\ tmu, let us denote:

vgX � Σ
xPX

vgx, vmX � Σ
gPGXX

vmg , vm
X
� Σ

gPGXX
vmg .

Lemma 5.2 Let A be a weak coideal of B. Then:
a) For any g P G such that Xg � t0u , there exists a subset Ig � I0 �

tΓi|i � 1, 2, ..., k0u of cardinality kg and a set of vectors tvgΓi
pΘgq|i P Igu which

is a basis of Xg, where Θg is a map from Γg � \
iPIg

Γi to T :� tz P C||z| � 1u.

b) If Xm � t0u, then v0
m P X0, so we can chose tmu P I0, and there

exists a subset Im � I0ztmu of cardinality km and a basis of Xm of the
form tvmΓi

pΘmq, vm
Γi
pΘmq|i P Imu, where Θm is a map from Γm � \

iPIm
Γi to

T :� tz P C||z| � 1u. If km � k0 � 1, this weak coideal is indecomposable.

Proof. a) Let vg � Σ
xPΩ

axv
g
x be a nonzero vector from Xg. Then vg �

vg � v0
Γ � Σ

iPI0
vgpΓiq, where vgpΓiq � Σ

xPΓi

axv
g
x. Hence Xg � `

iPIg
Xg

Γi
, where

Xg
Γi
pi P Igq are subspaces of Xg containing vgpΓiq � 0. We have:

vgpΓiq
7 � vgpΓiq � Σ

xPΓi

|ax|
2v0
x � Cv0

Γi
, where C ¡ 0.

Let wgpΓiq � Σ
yPΓi

byv
g
y P X

g
Γi

be another vector with |by| � 1, then:

ṽgpΓiq
7 � wgpΓiq � Σ

xPΓi

axbxv
0
x � Dv0

Γi
,

where |D| � 1. Then bx � Dax for all x P Γi which shows that any Xg
Γi
pi P Igq

is generated by a unique, up to a scalar D P T, vector as above. We fix such
elements and denote them by vgΓi

pΘgq, the map Θg being defined by the
coefficients of the chosen elements.

b) Let Xm � t0u and let vm � Σ
gPG

agv
m
g � Σ

hPG
bhv

m
h

be its nonzero vector.

Then pvmq7 :� Ψmpv
mq � |G|1{2p Σ

gPG
agv

m
g � Σ

hPG
bhτ

�1vmh ). Next, we compute:

vm � pvmq7 � |G|1{2p Σ
g,kPG

agakv
k�g
k � Σ

p,hPG
|bh|

2χpp, hqvpmq

and similarly

pvmq7 � vm � |G|1{2pτ Σ
g,pPG

|ag|
2χpp, gqvpm � τ�1 Σ

h,kPG
bkbhv

h�k
h q.
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Hence, the components of index p of these vectors are:

rvm � pvmq7sp � |G|1{2p Σ
gPG

agap�gv
p
p�g � Σ

hPG
|bh|

2χpp, hqvpmq

and similarly

rpvmq7 � vmsp � |G|1{2pτ Σ
gPG

|ag|
2χpp, gqvpm � τ�1 Σ

kPG
bkbp�kv

p
p�kq.

In particular, the components of index 0 of these vectors are:

rvm � pvmq7s0 � |G|1{2p Σ
gPG

|ag|
2v0
g � p Σ

hPG
|bh|

2qv0
mq

and similarly

rpvmq7 � vms0 � |G|1{2pτp Σ
gPG

|ag|
2qv0

m � τ�1 Σ
kPG

|bk|
2v0
kq.

Since at least one of ag or bh is nonzero, it follows that v0
m P X0, so we can

chose tmu P I0. Further:

v0
m � v

m � Σ
hPG

bhv
m
h
P Xm, vm � v0

m � Σ
gPG

agv
m
g P Xm,

which shows that v0
m R ZpAq and that Xm � Xm

1 `Xm
2 , where the subspaces

Xm
1 , X

m
2 � Xm consist, respectively, of vectors of the form Σ

gPG
agv

m
g and

Σ
hPG

bhv
m
h

. As pXm
1 q

7 � Xm
2 and pXm

2 q
7 � Xm

1 , dimpXmq must be even.

Now, the relations v0
Γi
� vm � Σ

gPΓi

agv
m
g :� wmΓi

show that Xm has a basis

of the form twmΓi
, pwmΓi

q7|i P Imu, and using the same reasoning as in part
a), one can normalize: wmΓi

� vmΓi
pΘmq. Finally, if km � k0 � 1, there is

no a combination of v0
Γi

which would commute with all vmΓi
pΘmq, so A is

indecomposable. �

Corollary 3.4 implies that for weak coideals we have mλ P t0, 1u for all
λ P Λ, so that the generator M can be identified either with a nonempty
subset Z � G{K or with a couple of subsets pZ0, Z1q � G{K � G{KK, at
least one of which is nonempty.

5.1 The case Am � t0u

Remark 5.3 Let A be an indecomposable weak coideal such that dimpXmq �
0. Then either the set I0 consists of only one subset Γ̃ � Ω containing tmu
(so that dimpX0q � 1) or does not contain subset Γ̃ � Ω containing tmu.
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Indeed, if Γ̃ P I0, it suffices to show that v0
Γ̃

commutes with any basis
element vgΓi

pΘgq of X. Using the fact that no more than one element of I0

can contain tmu as well as Lemma 5.2, one can see that for any Γi P I
0ztΓ̃u

we have v0
Γ̃
�vgΓi

pΘgq � vgΓi
pΘgq�v0

Γ̃
� 0 and v0

Γ̃
�vg

Γ̃
pΘgq � vg

Γ̃
pΘgq�v0

Γ̃
� vg

Γ̃
pΘgq.

It follows that either the basis of X consists only from vectors of the form
vg

Γ̃
pΘgq or does not contain such vectors at all.

The equality dimX0 � 1 implies M � Mλ0 for some λ0 P Λ. Then
dimF pU gq � 1 if g P K and dimF pU gq � 0 otherwise. This gives a unique,

up to isomorphism of G-C�algebras, connected coideal ImK � `
kPK

pCvkmbH
k
q.

Now suppose that Γi � G, @i P I0. As dimF pUmq � 0, M is supported
only on G{K or only on G{KK. Let us consider the first of these cases, the
second one is completely similar. Identify the generator M with a nonempty
subset Z � G{K. The following example shows that any such Z gives rise
to an indecomposable weak coideal of GT Y .

Example 5.4 Let Z be a nonempty subset of G{K, then Remark 4.8 gives
dimXg � Σ

λPG{K
mλmg�λ � |Z X pg � Zq|.

Put Xg � V ectvgλ|λ P Z X pg�Zqu and Xm � t0u. For any vgλ P X
g pg P

Gq, we have pvgλq
7 � v�gλ�g P X

�g. Indeed, as λ P Z X pg � Zq, there is λ1 P Z
such that λ � g � λ1, so λ � g � λ1 P Z. Clearly, pλ � gq P Z � g, hence
pλ� gq P Z X pZ � gq. We also have:

vgλ � v
h
µ � δµ,h�λv

g�h
µ P Xg�h for all vgλ P X

g, vgµ P X
h pg, h P Gq.

Indeed, as λ P Z X pg � Zq, µ P Z X ph � Zq, there are λ1, µ1 P Z such
that λ � g � λ1, µ � h � µ1, so the above product is nonzero if and only
if µ � h � λ � h � g � λ1 P g � h � Z. Since µ P Z, it follows that
µ P ZXpg�h�Zq. Thus, Lemma 3.3, a) implies that the family tXx|x P Ωu
generates a weak coideal A � B with unit 1A � v0

L b v0
Ω, where L :�

�

λPZ

λ.

Remark 5.5 A is never a coideal but when |Z| � 1 it is isomorphic to a

connected coideal IΩ
K � `

kPK
pCp Σ

xPΩ
vhxqbH

k
q, which is the ”right sided” version

of the left coideal IK from [10]. IΩ
K is also isomorphic to ImK above. If |Z| ¡ 1,

A is also indecomposable because for an arbitrary proper subset Z0 � Z, the
element Σ

λPZ0

v0
λ does not commute with any vgµ pµ P Z0, g R Kq.
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It follows from Remark 4.8 that GT Y-C�-algebras pA,αq with Am � t0u
can be only of type (D).

We can summarize the above considerations as follows:

Proposition 5.6 Isomorphism classes of indecomposable weak coideals A of
GT Y with Am � t0u are parameterized by couples pK,Zorbq, where K   G
and Zorb is the orbit of a nonempty subset Z � G{K or Z � G{KK under
the action of the group of the translations on G{K (resp., on G{KK). A is
isomorphic to a coideal if and only if |Z| � 1.

5.2 The case Am � t0u

Proposition 5.7 There is no weak coideals of GT Y corresponding to module
categories M with Λ � G{K.

Proof. Let A be such a weak coideal and M be the corresponding gen-
erator identified with the subset Z of G{K. Then k0 � dimpX0q � |Z| and
dimpXmq � |Z|2. In terms of Lemma 5.2, b) we have dimpXmq � 2km, where
km ¤ k0 � 1, so that |Z|2 ¤ 2p|Z| � 1q which is only possible if |Z| � 1. But
then dimpXmq � 1 - contradicts to the fact that dimpXmq must be even. �

Proposition 5.8 Let A be a weak coideal of GT Y corresponding to a module
category M with Λ � G{K\G{KK and a generator M defined by a nonempty
subset pZ0, Z1q � G{K �G{KK. Then either |Z0| � 1 or |Z1| � 1.

Proof. We have k0 � dimpX0q � |Z0| � |Z1| and dimpXmq � 2|Z0||Z1|.
In terms of Lemma 5.2, b) we have dimpXmq � 2km, where km ¤ k0 � 1, so
|Z0||Z1| ¤ |Z0| � |Z1| � 1 from where either |Z0| � 1 or |Z1| � 1. �

The following example shows that any such set pZ0, Z1q gives rise to an
indecomposable weak coideal of GT Y .

Example 5.9 Let Z be a nonempty subset of G{K and ρ0 P G{K
K. For

the generator corresponding to Z \ ρ0 we have dimXm � 2|Z|, dimXg �
|Z X pg � Zq| if g R KK and dimXg � |Z X pg � Zq| � 1 if g P KK.

Put Xm � V ectvmλ , v
m
µ |λ, µ P Zu, X

g � V ectvgm, v
g
λ|λ P Z X pg � Zqu if

g P KK and Xg � V ectvgλ|λ P Z X pg � Z �u if g R KK. The next relations,
where g, h P G, k, l P KK, λ, µ P Z, upλq is a representative of the coset λ,
show that the family tXx|x P Ωu satisfies the conditions a) of Lemma 3.3:

pvmλ q
7 � |G|1{2vm

λ
, pvm

λ
q7 � τ�1|G|1{2vmλ , pv

k
mq

7 � v�km , pvgλq
7 � v�gλ�g,
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vkm � v
l
m � vk�lm , vgλ � v

h
µ � δµ,g�λv

g�h
µ , vkm � v

h
λ � vhλ � v

k
m � vkm � v

m
λ � 0,

vkm � v
m
λ
� χpk, upλqqvm

λ
, vm
λ
� vkm � 0, vmλ � vkm � χpupλq, kqvmλ ,

vgλ�v
m
µ � δλ,µv

m
λ�g, v

m
λ
�vgµ � δλ,µv

m
g�λ

, vmλ �v
g
µ � vgλ�v

m
µ � vmλ �v

m
µ � vm

λ
�vmµ � 0,

and finally, using the fact that Σ
kPK

χpg, kq � |K| if g P KK and is 0 otherwise:

vmλ � vmµ � Σ
gPpµ�λq

vgµ, v
m
λ
� vmµ � τ |K|δλ,µ Σ

kPKK

vkm.

So, this family generates an indecomposable weak coideal A � B, 1A � pv0
m�

v0
Lq b v0

Ω, where L �
�

λPZ

λ. A is a coideal if and only if L � G in which case

it is the analog of the left connected coideal JK constructed in [10].

Now we can summarize the above considerations as follows:

Proposition 5.10 Isomorphism classes of indecomposable weak coideals A
of GT Y with Am � t0u are parameterized by pairs pK, pZ0, Z1q

orbq, where
K   G and pZ0, Z1q

orb is the orbit of a subset pZ0, Z1q � G{K �G{KK such
that mint|Z0|, |Z1|u � 1 under the action of:

a) the group G{K �G{KK by translations, if K � KK;
b) the semi direct product pG{K � G{Kq 


σ
Z2 generated by the group

G{K � G{K acting by translations and the flip σ : pZ0, Z1q ÞÑ pZ1, Z0q if
K � KK.

A is isomorphic to a coideal if and only if either Z0 � G{K or Z1 �
G{KK.

Finally, Theorem 1.3 follows from Propositions 5.6 and 5.10.
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