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Martingale Representation in the Enlargement
of the Filtration Generated by a Point Process

Paolo Di Tella1,2 and Monique Jeanblanc3

Abstract
Let X be a point process and let X denote the filtration generated by X . In this paper we

study martingale representation theorems in the filtration G obtained as an initial and progressive
enlargement of the filtration X. In particular, the progressive enlargement is done by means of a
whole point process H. We work here in full generality, without requiring any further assumption
on the process H and we recover the special case in which X is enlarged progressively by a random
time τ .

Keywords: Point processes, martingale representation, progressive enlargement, initial enlargement,
random measures.

1 Introduction

In this paper we study martingale representation theorems in the enlargement G of the filtration X
generated by a point process X (see Theorem 3.6 below). The filtration G here is obtained first
enlarging X initially by a sigma-field R and then progressively by a whole point process H (and not
only by a random time). In other words, G is the smallest right-continuous filtration containing R
and such that X and H are adapted. We show that in G all local martingales can be represented as a
stochastic integral with respect to a compensated random measure and also as the sum of stochastic
integrals with respect to three fundamental martingales. Due to the particular structure of the filtration
G, we work in full generality without requiring any additional condition on the point processes X and
H. In this way, for the setting of point process, we generalize all the results from literature (which we
describe below) about the propagation of martingale representation theorems to the enlarged filtration.

We recall that the multiplicity (see Davis and Varaiya [6]) or the spanning number (see Duffie [9])
of a filtration F is the minimal number of locally square integrable orthogonal martingales which is
necessary to represent all the square integrable martingales in F.

It is well-known that the multiplicity of X is equal to one. In some special cases we shall show
that the multiplicity of the filtration G is equal to two or three.

We now give an overview of the literature about the propagation of martingale representation
theorems to the enlarged filtration. We denote now by F a reference filtration and by G an (initial or
progressive) enlargement of F.
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A local martingale M is said to possesses the predictable representation property (from now on the
PRP) with respect F if all F-local martingales can be represented as a stochastic integral of predictable
integrands with respect to M.

In [10], Fontana proved that the PRP of a d-dimensional local martingale M with respect to F
propagates to G, if G the initial enlargement of F by a random time τ which satisfies Jacod’s abso-
lutely continuity hypothesis. In particular, in [10] it is shown that the multiplicity of G is also d.

If G is the progressive enlargement of F by a random time τ such that F-martingales remain
G-semimartingales, first results were obtained by Barlow in [3], for the case of honest times. In
[17], Kusuoka studied the propagation of the PRP if F is a Brownian filtration and τ is a random
time satisfying, among other additional conditions, the immersion property, i.e., τ is such that F-
martingales remain G martingales, and avoiding F-stopping times. In the case of [17] the multiplicity
of G is equal to two. In [14], Jeanblanc and Song considered more general random times and they
proved that the multiplicity of G usually increases by one and for the case of honest times by two. In
[2], Aksamit, Jeanblanc and Rutkowski studied the propagation of the PRP to G by a random time τ

if F is a Poisson filtration. The representation results obtained in [2] concerns however only a special
class of G-local martingales stopped at τ .

We stress that, if τ : Ω −→ (0,+∞] is a random time, taking the point process H = 1Jτ,+∞), we
recover in the present paper the special case in which F is progressively enlarged by τ . Furthermore,
if H = 1Jτ,+∞), the martingale representation theorems which we obtain here hold for every G-local
martingale and not only for G-local martingales stopped at τ .

Another important (and more general than the PRP) martingale representation theorem is the so
called weak representation property (from now on WRP) (see [11, Definition 13.13]). The propagation
of the WRP to the progressive enlargement G of F by a random time τ has been established in [8,
Theorem 5.3] under the assumptions of the immersion property and the avoidance of F-stopping times.

If the filtration G is obtained by F by adding a whole process and not only a random time, the
propagation of martingale representation theorems to G has been up to now very little studied and all
the existing results make use of independence assumptions.

For example, in [19], Xue considered two semimartingales X and Y possessing the WRP each in
its own filtration and, under the assumptions of the independence and the quasi-left continuity of X
and Y , the author shows that the WRP propagates to G, the smallest right-continuous filtration with
respect to which both X and Y are adapted.

Similarly, in [4], Calzolari and Torti consider two local martingales M and N possessing the PRP
each in its own filtration and then they study the propagation of the PRP to G. The assumptions in [4]
imply that M and N are independent and that G0 is trivial. In [4] it is also shown that the multiplicity
of G is, in general, equal to three. In [5], the results of [4] are generalized to multidimensional
martingales M and N.

The present paper has the following structure. In Section 2, we recall some basics on point pro-
cesses, martingale theory and progressive enlargement of filtrations which are needed in this work. In
Section 3, we establish the main results of the present paper, Theorem 3.6 below, about the propaga-
tion of the WRP and the PRP. Section 4 is devoted to the study of the orthogonality of the fundamental
martingales which are used for the martingale representation in G. In particular, as a consequence of
Theorem 3.6, we generalize the results obtained in [4] on the martingale representation to the case of
a non-trivial initial filtration in the context of point processes. In the appendix we discuss a lemma
which will be useful to study the orthogonality of the involved martingales.
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2 Basic Notions

Filtrations, martingales and increasing processes. Let (Ω,F ,P) be a complete probability space.
For any càdlàg process X , we denote by ∆X its jump process ∆Xt = Xt−Xt− and we define X0− := X0
so that the jump process ∆X is equal to zero in t = 0.

We denote by F= (Ft)t≥0 a right-continuous filtration and by O(F) (resp. P(F)) the σ -algebra
of the F-optional (resp. F-predictable) sets of Ω×R+.

For an F-adapted process X and an F-stopping time σ , we denote by Xσ the process stopped at σ ,
that is, Xσ

t := Xt∧σ , t ≥ 0.
An F-adapted càdlàg process X is called quasi-left continuous if ∆Xσ = 0 for every finite-valued

and F-predictable stopping time σ .
For p ≥ 1, we denote by H p(F) the space of F-uniformly integrable martingales X such that

‖X‖H p := E[supt≥0 |Xt |p]1/p < +∞. Recall that (H p,‖ · ‖H p) is a Banach space. For X ∈H 2(F),
we also introduce the equivalent norm ‖X‖2 := E[X2

∞]
1/2 and (H 2,‖ · ‖2) is a Hilbert space.

For each p ≥ 1, the space H p
loc(F) is introduced from H p(F) by localization. We observe that

H 1
loc(F) coincides with the space of all F-local martingales (see [12, Lemma 2.38]). We denote by

H p
0 (F) (resp., H p

loc,0(F)) the subspace of martingales (resp., local martingales) Z ∈H p(F) (resp.,
Z ∈H p

loc(F)) such that Z0 = 0.
We recall that X ,Y ∈H 1

loc(F) are called orthogonal if XY ∈H 1
loc,0(F) holds.

For X ,Y ∈H 2
loc(F) we denote by 〈X ,Y 〉 the predictable covariation of X and Y . We recall that

XY −〈X ,Y 〉 ∈H 1
loc(F). Hence, if X0Y0 = 0, then X and Y are orthogonal if and only if 〈X ,Y 〉= 0.

An R-valued F-adapted process X such that X0 = 0 is called increasing if X is càdlàg and the paths
t 7→ Xt(ω) are non-decreasing, ω ∈Ω. We denote by A + =A +(F) the space of F-adapted integrable
processes, that is, A + is the space of increasing process X such that E[X∞]<+∞ (see [13, I.3.6]). We
denote by A +

loc = A +
loc(F) the localized version of A +.

Let X ∈A + and let K ≥ 0 be a progressively measurable process. We denote by K ·X = (K ·Xt)t≥0
the process defined by the (Lebesgue–Stieltjes) integral of K with respect to X , that is, K ·Xt(ω) :=∫ t

0 Ks(ω)dXs(ω), if
∫ t

0 Ks(ω)dXs(ω) is finite-valued, for every ω ∈ Ω and t ≥ 0. Notice that K ·X is
an increasing process.

If X ∈A +
loc, there exists a unique F-predictable process X p,F ∈A +

loc such that X−X p,F ∈H 1
loc(F)

(see [13, Theorem I.3.17]). The process X p,F is called the F-compensator or the F-dual predictable
projection of X . We use the notation XF := X −X p,F. If X ∈A +

loc has bounded jumps, then also X p,F

has bounded jumps and X is quasi-left continuous if and only if X p,F is continuous (see [11, Corollary
5.28] for these results).

A point process X with respect to F is an N-valued and F-adapted increasing process such that
∆X ∈ {0,1}. Notice that a point process X is locally bounded and therefore X ∈A +

loc.
Random measures. Let µ be a nonnegative random measure on R+×E in the sense of [13,

Definition II.1.3], where E coincides with Rd or with a Borel subset of Rd . We stress that we assume
µ(ω,{0}×E) = 0 identically.

We denote Ω̃ := Ω×R+×E, Õ(F) := O(F)⊗B(E) and P̃(F) := P(F)⊗B(E).
Let W be an Õ(F)-measurable (resp. P̃(F)-measurable) mapping from Ω̃ into R. We say that W

is an F-optional (resp. F-predictable) function.
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Let W be an F-optional function. As in [13, II.1.5], we define

W ∗µ(ω)t :=


∫
[0,t]×E

W (ω, t,x)µ(ω,dt,dx), if
∫
[0,t]×E

|W (ω, t,x)|µ(ω,dt,dx)<+∞;

+∞, else.

The process W ∗µ is finite-valued (and hence of finite variation) if and only if, for every (ω, t,x) ∈ Ω̃,∫
[0,t]×E |W (ω, t,x)|µ(ω,dt,dx)<+∞ holds.

We say that µ is an F-optional (resp. F-predictable) random measure if W ∗µ is F-optional (resp.
F-predictable), for every optional (resp. F-predictable) function W .

Semimartingales. Let X be an Rd-valued F-semimartingale. We denote by µX the jump measure
of X , that is,

µ
X(ω,dt,dx) = ∑

s>0
1{∆Xs(ω)6=0}δ(s,∆Xs(ω))(dt,dx),

where, here and in the whole paper, δa denotes the Dirac measure at point a (which can be n-
dimensional, n ≥ 1). From [13, Theorem II.1.16], µX is an integer-valued random measure with
respect to F (see [13, Definition II.1.13]). Thus, µX is, in particular, an F-optional random measure.
We recall that, according to [13, Definition III.1.23], µX is an Rd-valued marked point process (with
respect to F) if µX(ω; [0, t]×Rd)<+∞, for every ω ∈Ω and t ∈ R+.

By (BX ,CX ,νX) we denote the F-predictable characteristics of X with respect to the Rd-valued
truncation function h(x) := 1{|x|≤1}x (see [13, Definition II.2.6]). We recall that νX is a predictable
random measure characterized by the following two properties: For any F-predictable mapping W
such that |W | ∗µX ∈A +

loc, we have |W | ∗νX ∈A +
loc and W ∗µX −W ∗νX ∈H 1

loc(F).
For two F-semimartingales X and Y , we denote by [X ,Y ] the quadratic variation of X and Y :

[X ,Y ]t := 〈Xc,Y c〉t +∑
s≤t

∆Xs∆Ys,

where Xc and Y c denote the continuous local martingale part of X and Y , respectively. Recall that
X ,Y ∈H 1

loc,0(F) are orthogonal if and only if [X ,Y ] ∈H 1
loc,0(F).

For X ∈H 1
loc(F) and p ≥ 1, we denote by Lp(X) the space of F-predictable processes K such

that (K2 · [X ,X ])p/2 ∈ A +(F). The space Lp
loc(X) is defined analogously but making use of A +

loc(F)
instead. For K ∈ L1

loc(X) we denote by K ·X the stochastic integral of K with respect to X , which
is a local martingale starting at zero and, by [12, Proposition 2.46 b)], K ·X ∈H p(F) if and only if
K ∈ Lp(X). We observe that if X ∈H 1

loc(G) is of finite variation and K ∈ L1
loc(X), then the stochastic

integral K ·X coincides with the Stieltjes-Lebesgue integral, whenever this latter one exists and is
finite. Sometimes, to stress the underlying filtration, we write Lp

loc(X ,F), p≥ 1.
Let X ∈H 1

loc(F). Then we say that X possesses the predictable representation property (from
now on the PRP) with respect to F if for every Y ∈H 1

loc(F) there exists K ∈ L1
loc(X ,F) such that

Y = Y0 +K ·X .
The progressive enlargement by a process. Let H be a stochastic process and let H = (Ht)t≥0

be the smallest right-continuous filtration generated by H, i.e., Ht :=
⋂

s>t σ(Hu, 0≤ u≤ s), t ≥ 0.
We consider a right-continuous filtration F= (Ft)t≥0 and denote by G= (Gt)t≥0 the progressive

enlargement of F by H: That is, G is defined by

Gt :=
⋂
s>t

G̃s, G̃s := Fs∨Hs, s, t ≥ 0. (2.1)
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In other words, G is the smallest right-continuous filtration containing F and H.
As a special example of H, one can take the default process associated with a random time τ ,

i.e., Ht(ω) := 1Jτ,+∞)(ω, t), where τ is a (0,+∞]-valued random variable. In this case, G is called
progressive enlargement of F by τ and it is the smallest filtration satisfying the usual conditions
containing F and such that τ is a G-stopping time.

Proposition 2.1. Let H be a point process with respect to H. Then H is a point process with respect
to G and therefore there exists the G-dual predictable projection H p,G of H. Moreover, every F-point
process X is a G-point process and, hence, there exists the G-dual predictable projection X p,G of X.

Proof. Let A ∈ {F,H} and let Y = X if A = F and Y = H if A = H. The A-point process Y has the
representation Y = ∑

∞
n=1 1Jτn,+∞), where τn := inf{t ≥ 0 : Yt = n} n≥ 0, is an A-stopping time. Since

Y is G-adapted, τn is also a G-stopping time and therefore Y is a point process also in the filtration G.
Since Y is locally bounded and increasing, we also have Y ∈A +

loc(G). In conclusion, there exists the
G-dual predictable projection Y p,G ∈A +

loc(G) of Y . The proof is complete.

3 Martingale Representation

Let X be a point process, let R be a σ -field, called the initial σ -field, and let X= (Xt)t≥0 denote the
smallest right-continuous filtration with respect to which X is adapted, i.e.,

Xt :=
⋂
s>t

σ(Xu, 0≤ u≤ s), t ≥ 0.

By F = (Ft)t≥0 we denote the filtration given by Ft := R ∨Xt . Clearly, X is a point process with
respect to F.

Lemma 3.1. (i) The filtration F is right-continuous.
(ii) The F-local martingale XF := X−X p,F possesses the PRP with respect to F.

Proof. The statement (i) follows by [12, Proposition 3.39 a)] and the definition of Ft . The statement
(ii) is [13, Theorem III.4.37]. The proof is complete.

We remark that the filtration F is the initial enlargement of the filtration X with an arbitrary initial
σ -field R.

Let now H be a stochastic process and let H denote the smallest right-continuous filtration with
respect to which H is adapted. As in (2.1), we consider the progressive enlargement G of F by H. We
now state the following assumptions on H which will be in force for the remaining part of this paper.

Assumption 3.2. The process H is a point process with respect to the filtration H.

We denote by H p,H the H-dual predictable projection of H. The local martingale HH := H−H p,H

possesses the PRP with respect to the filtration H.
In other words, we are in the following situation: The local martingale XF has the PRP with respect

to F and the local martingale HH has the PRP with respect to H. We are now going to investigate the
martingale representation in the filtration G.

Because of Lemma 2.1, we know that in G both X and H are point processes and that the G-dual
predictable projections X p,G and H p,G of X and H, respectively, exist.
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Proposition 3.3. Let X and H be two point processes with respect to F and H, respectively. Then, the
processes X − [X ,H], H− [X ,H] and [X ,H] are point processes with respect to G. Furthermore, they
have pairwise no common jumps.

Proof. By Proposition 2.1, X and H are G-point processes. Therefore, in particular, ∆X ,∆H ∈ {0,1}
holds. We show that X − [X ,H] is a point process with respect to G. Clearly, this is a G-adapted
process and, using the definition of the quadratic variation, we get X− [X ,H] = ∑0≤s≤·∆Xs(1−∆Hs),
which shows that X− [X ,H] is an N-valued increasing process. Furthermore, we have ∆(X− [X ,H]) =
∆X(1−∆H)∈ {0,1}, showing that X− [X ,H] is a point process. The proof that H− [X ,H] and [X ,H]
are G-point processes is similar. It is clear that these processes have pairwise no common jumps.
Indeed, for example, we have [X− [X ,H], [X ,H]] = [X , [X ,H]]− [[X ,H], [X ,H]] = [X ,H]− [X ,H] = 0.
The proof of the lemma is complete.

We now consider the R2-valued G-semimartingale X̃ = (X ,H)>. Then, the jump measure µ X̃ of
X̃ is an integer-valued random measure on R+×E, where E = {(1,0);(0,1);(1,1)}. We then have
Ω̃ := Ω×R+×E.

For a G-predictable function W on Ω̃, we introduce the G-predictable processes W (1,0), W (0,1)
and W (1,1) defined by

Wt(0,1) :=W (t,0,1), Wt(1,0) :=W (t,1,0), Wt(1,1) :=W (t,1,1), t ≥ 0.

In the next theorem we compute the jump measure µ X̃ of the R2-valued semimartingale X̃ and the
G-predictable compensator ν X̃ of µ X̃ .

Theorem 3.4. Let X be a point process with respect to F and let H be a point process with respect to
H. Let G be the progressive enlargement of F by H. Let us consider the R2-valued G-semimartingale
X̃ = (X ,H)>. We then have:

(i) The jump measure µ X̃ of X̃ on R+×E is given by

µ
X̃(dt,dx1,dx2) = d(Xt−[X ,H]t)δ(1,0)(dx1,dx2)

+d(Ht − [X ,H]t)δ(0,1)(dx1,dx2)+d[X ,H]tδ(1,1)(dx1,dx2).
(3.1)

(ii) The G-predictable compensator ν X̃ of µ X̃ is given by

ν
X̃(dt,dx1,dx2) = d(Xt−[X ,H]t)

p,G
δ(1,0)(dx1,dx2)

+d(Ht − [X ,H]t)
p,G

δ(0,1)(dx1,dx2)+d[X ,H]p,Gt δ(1,1)(dx1,dx2).
(3.2)

(iii) The integer-valued random measure µ X̃ is an R2-valued marked point process with respect to
G.

Proof. We start verifying (i). By the definition of the jump measure of the semimartingale X̃ , by direct
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computation, we get:

µ
X̃(ω,dt,dx1,dx2) = ∑

s>0
1{∆X̃s(ω)6=0}δ(s,∆X̃s(ω))(dt,dx1,dx2)

= ∑
s>0

1{∆Xs(ω)=1}1{∆Hs(ω)=0}δ(s,1,0)(dt,dx1,dx2)

+ ∑
s>0

1{∆Xs(ω)=0}1{∆Hs(ω)=1}δ(s,0,1)(dt,dx1,dx2)

+ ∑
s>0

1{∆Xs(ω)=1}1{∆Hs(ω)=1}δ(s,1,1)(dt,dx1,dx2)

= ∑
s>0

∆Xs(ω)(1−∆Hs(ω))δ(s,1,0)(dt,dx1,dx2)

+ ∑
s>0

∆Hs(ω)(1−∆Xs(ω))δ(s,0,1)(dt,dx1,dx2)

+ ∑
s>0

∆Xs(ω)∆Hs(ω)δ(s,1,1)(dt,dx1,dx2),

which is (3.1). We now come to (ii). Let us denote by ν the G-predictable random measure on the
right-hand side of (3.2) and let ν X̃ denote the G-predictable compensator of µ X̃ . We have to show that
ν coincides (up to a null set) with ν X̃ . To this goal, it is enough to consider a G-predictable function
W such that |W | ∗ µ X̃ ∈ A +

loc(G) and show that |W | ∗ ν ∈ A +
loc(G) and W ∗ µ X̃ −W ∗ ν ∈H 1

loc(G).
So, let W be a G-predictable function such that |W | ∗ µ X̃ ∈ A +

loc(G). By (i) we immediately get the
identity

|W | ∗µ
X̃ = |W (1,0)| · (X− [X ,H])+ |W (0,1)| · (H− [X ,H])+ |W (1,1)| · [X ,H]. (3.3)

We now denote by Y 1, Y 2 and Y 3 the first, the second and the third term on the right-hand side
of (3.3), respectively. By Lemma 3.3, X − [X ,H], H − [X ,H] and [X ,H] being point processes, we
deduce from (3.3) that Y i ∈ A +

loc(G), i = 1,2,3, since |W | ∗ µ X̃ ∈ A +
loc(G). Then, the G-dual pre-

dictable projection (Y i)p,G of Y i, i = 1,2,3, exists and it belongs to A +
loc(G). Since W (1,0), W (0,1)

and W (1,1) are G-predictable processes, the properties of the G-dual predictable projection yield
the identities (Y 1)p,G = |W (1,0)| · (X − [X ,H])p,G, (Y 2)p,G = |W (0,1)| · (H− [X ,H])p,G and finally
(Y 3)p,G = |W (1,1)| · [X ,H]p,G. By the definition of ν , we deduce

|W | ∗ν = |W (1,0)| · (X− [X ,H])p,G+ |W (0,1)| · (H− [X ,H])p,G+ |W (1,1)| · [X ,H]p,G

= (Y 1)p,G+(Y 2)p,G+(Y 3)p,G (3.4)

showing that |W | ∗ ν ∈ A +
loc(G) holds, since (Y i)p,G ∈ A +

loc(G), i = 1,2,3. It remains to show that
W ∗ µ X̃ −W ∗ ν ∈H 1

loc(G). By (3.3) and (3.4), it is clear that both the integrals W ∗ µ X̃ and W ∗ ν

exist and are finite. The linearity of the integral with respect to the integrator, (i) and the definition of
ν then yield

W ∗µ
X̃ −W ∗ν =W (1,0) · ((X− [X ,H])− (X− [X ,H])p,G)

+W (0,1) · ((H− [X ,H])− (H− [X ,H])p,G)

+W (1,1) · ([X ,H]− [X ,H]p,G).

Since, by the properties of the G-dual predictable projection, each addend on the right-hand side of
the previous formula belongs to H 1

loc(G), we deduce that W ∗µ X̃ −W ∗ν ∈H 1
loc(G) too. Therefore,
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we get that the G-predictable measure ν coincides with the G-predictable compensator ν X̃ of µ X̃ .
The proof of (ii) is complete. We now come to (iii). We observe that, from (i) and recalling that
E = {(1,0);(0,1);(1,1)}, we get

µ
X̃(ω, [0, t]×R2) = µ

X̃(ω, [0, t]×E) = Xt(ω)− [X ,H]t(ω)+Ht(ω)<+∞, ω ∈Ω, t ≥ 0,

meaning that µ X̃ is an R2-valued marked point process with respect to the filtration G. The proof of
the theorem is now complete.

We now denote by G̃= (G̃t)t≥0 the smallest right-continuous filtration such that µ X̃ is an optional
random measure. By GX̃ = (G X̃

t )t≥0 we indicate the smallest right-continuous filtration such that X̃
is adapted. We then introduce G∗ = (G ∗t )t≥0 and G′ = (G ′t )t≥0 by setting G ∗t := R ∨ G̃t and G ′t :=
R ∨G X̃

t , t ≥ 0, respectively, where, we recall, R denotes an initial σ -field. From [12, Proposition
3.39 a)], we know that G∗ is a right-continuous filtration.

Lemma 3.5. The following statements hold:
(i) The filtration GX̃ coincides with G̃.
(ii) The filtration G′ coincides with G∗.
(iii) The filtration G′ (and hence the filtration G∗) coincides with G.

Proof. We start showing (i). First of all we observe that the inclusion G̃ ⊆ GX̃ holds. Indeed, by
definition, GX̃ is right-continuous and X̃ is a GX̃ -semimartingale. Since µ X̃ is the jump measure of
X̃ , by [13, Proposition II.1.16], µ X̃ is an integer-valued random measure with respect to GX̃ (see [13,
Definition II.1.13]). Hence, µ X̃ is, in particular, a GX̃ -optional random measure. We now show the
converse inclusion, i.e., GX̃ ⊆ G̃. From (3.1), it follows that

X = (1{x1=1,x2=0}+1{x1=1,x2=1})∗µ
X̃ , H = (1{x1=0,x2=1}+1{x1=1,x2=1})∗µ

X̃ .

Clearly, (ω, t,x1,x2) −→ 1{x1=1,x2=0}, (ω, t,x1,x2) −→ 1{x1=0,x2=1} and (ω, t,x1,x2) −→ 1{x1=1,x2=1}

are G̃-optional functions. Therefore, X and H are G̃-optional processes. So, since G̃ is right con-
tinuous by definition, this yields GX̃ ⊆ G̃ and the proof of (i) is complete. We now come to (ii). By
definition and (i) we have G ∗t =R∨ G̃t =R∨G X̃

t = G ′t , for every t ≥ 0. Hence, we also have G∗ =G′
and the proof of (ii) is complete. We now come to (iii). To this aim, we recall that G is the smallest
right continuous filtration containing F and H. We now show the inclusion G ⊆ G′. We observe
that, because of (ii), the filtration G′ is right-continuous, G∗ being right-continuous. Furthermore, G X̃

t

contains σ(Xu, 0 ≤ u ≤ t) and σ(Hu, 0 ≤ u ≤ t), for every t ≥ 0. So, by the right-continuity of GX̃ ,
we also get that GX̃ contains both X and H. But then G′ is right-continuous and it contains R, X and
H. Therefore, since by definition F is the smallest right-continuous filtration containing X and R, we
get F ⊆ G′. This yields the inclusion G ⊆ G′, G′ being right-continuous and containing both F and
H. We now verify the converse inclusion, i.e., G′ ⊆ G. Clearly, G contains both R and X, since the
inclusion F ⊆ G holds. Furthermore, by definition, G contains H. So, by the right-continuity of G,
we deduce that G contains GX̃ and R. On the other side, G′ is the smallest right-continuous filtration
containing both GX̃ and R. This yields G′ ⊆ G. Hence, G = G′ and by (ii) we also have G = G∗.
The proof of the lemma is now complete.
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We now come to the martingale representation result in the enlarged filtration G. First, we intro-
duce the following G-local martingales:

Z1 := (X− [X ,H])− (X− [X ,H])p,G, (3.5)

Z2 := (H− [X ,H])− (H− [X ,H])p,G, (3.6)

Z3 := [X ,H]− [X ,H]p,G. (3.7)

We observe that the local martingales Z1, Z2 and Z3 are locally bounded. Indeed, by Proposition 3.3,
we have that Zi is a compensated point process and, therefore, Zi has bounded jumps, i = 1,2,3. In
particular, we have Zi ∈H p

loc(G) for every p≥ 1, i = 1,2,3.

Theorem 3.6. (i) Let Y ∈H 1
loc(G). Then, there exists a G-predictable function W such that |W | ∗µ X̃

belongs to A +
loc(G) and

Y = Y0 +W ∗µ
X̃ −W ∗ν

X̃ . (3.8)

(ii) Let Y ∈H 1
loc(G). Then Y has the following representation:

Y = Y0 +K1 ·Z1 +K2 ·Z2 +K3 ·Z3, Ki ∈ L1
loc(Z

i,G), i = 1,2,3. (3.9)

Proof. We first verify (i). Because of Theorem 3.4 (iii), the random measure µ X̃ is a marked point
process with respect to the filtration G. Furthermore, by Lemma 3.5 (iii), the filtration G coincides
with G∗. Hence, we can apply [13, Theorem III.4.37], to get that all G-local martingales Y have the
representation in (3.8). The proof of (i) is complete.

We now come to (ii). Let Y ∈H 1
loc(G). By (i), there exists a G-predictable function W such that

|W | ∗µ X̃ ∈A +
loc(G) and Y =Y0 +W ∗µ X̃ −W ∗ν X̃ . Since |W | ∗µ X̃ ∈A +

loc(G), we clearly get that the
G-predictable mappings W j,k := W1{x1= j,x2=k}, ( j,k) ∈ E (recall E = {(1,0);(0,1);(1,1)}), satisfy

|W j,k| ∗ µ X̃ ∈ A +
loc(G). Therefore, we obtain W j,k ∗ µ X̃ −W j,k ∗ ν X̃ = W j,k ∗ (µ X̃ − ν X̃) ∈H 1

loc(G).
From (3.1) and (3.2), the relations

W 1,0 ∗ (µ X̃ −ν
X̃) =W (1,0) ·Z1, (3.10)

W 0,1 ∗ (µ X̃ −ν
X̃) =W (0,1) ·Z2, (3.11)

W 1,1 ∗ (µ X̃ −ν
X̃) =W (1,1) ·Z3 (3.12)

hold. So from (3.8), Theorem 3.4 and (3.10), (3.11), (3.12), we get

Y = Y0 +W ∗µ
X̃ −W ∗ν

X̃

= Y0 +W 1,0 ∗ (µ X̃ −ν
X̃)+W 0,1 ∗ (µ X̃ −ν

X̃)+W 1,1 ∗ (µ X̃ −ν
X̃)

= Y0 +W (1,0) ·Z1 +W (0,1) ·Z2 +W (1,1) ·Z3.

We now define the G-predictable processes K1 := W (1,0), K2 := W (0,1) and K3 := W (1,1). It
remains to show that Ki ∈ L1

loc(Z
i,G), i = 1,2,3. To this aim, we observe that, by Theorem 3.4 and

(3.5), (3.6), (3.7), the following estimates hold:

∑
0≤s≤·

|K1
s ∆Z1

s | ≤ |W 1,0| ∗µ
X̃ + |W 1,0| ∗ν

X̃ ∈A +
loc(G),

∑
0≤s≤·

|K2
s ∆Z2

s | ≤ |W 0,1| ∗µ
X̃ + |W 0,1| ∗ν

X̃ ∈A +
loc(G),

∑
0≤s≤·

|K3
s ∆Z3

s | ≤ |W 1,1| ∗µ
X̃ + |W 1,1| ∗ν

X̃ ∈A +
loc(G).
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So, [11, Theorem 9.5.1], yields Ki ∈ L1
loc(Z

i,G), i = 1,2,3. The proof of (ii) is complete. The proof
of the theorem is now complete.

Theorem 3.6 shows that the martingale representation property of the process X in F propagates
to G. This martingale representation result is obtained in full generality, without requiring any further
condition on the point processes X and H. Additionally, the progressive enlargement G is obtained
adding to the filtration F a whole process and not, as commonly done in the literature, only a random
time.

Remark 3.7 (Comparison with the existing literature). We now review some results from the literature
which are generalized by Theorem 3.6, at least in the special case of point processes.

• For a process Y we denote by FY the smallest right-continuous filtration such that Y is adapted.
In [4], Calzolari and Torti have proven the following result (see Theorem 4.5 therein): Let
M ∈H 2(FM) and let N ∈H 2(FN). Let M have the PRP with respect to FM and let N have the
PRP with respect to FN . Let F M

0 and F N
0 be trivial. Let G= FM ∨FN and assume that:

(1) M,N ∈H 2(G), that is, FM and FN are both immersed in G.

(2) M and N are orthogonal in G, that is, [M,N] ∈H 1
loc(G)-local martingale.

Then FM and FN are independent, M, N and [M,N] are pairwise orthogonal martingales in
H 2(G) and every Y ∈H 2(G) has the representation

Y = Y0 +K1 ·M+K2 ·N +K3 · [M,N], K1 ∈ L2(M,G), K2 ∈ L2(N,G), K3 ∈ L2([M,N],G).

In the setting of point processes, Theorem 3.6 generalizes [4, Theorem 4.5] since we do not
assume the double immersion of F and H in G, hence, X −X p,F and H −H p,H will not be,
in general, G-local martingales. Moreover, we do not assume that the G-local martingales
M = X−X p,G and N = H−H p,G are orthogonal in G, nor the triviality of F0 and, nevertheless,
we show that the PRP propagates to G. Notice that the main idea here is to use the special
structure of the process X and H which ensures that, independently of the filtration, they can be
always compensated to local martingales.

• In [8, Theorem 5.3] it was shown that if X is an Rd-dimensional semimartingale possessing the
weak representation property with respect to a filtration F and G is the progressive enlargement
of F by a random time τ such that F is immersed in G and τ avoids F stopping times, that is,
P[τ = σ < +∞] = 0, for every F-stopping time σ , then the semimartingale (X ,H) possesses
the weak representation property with respect to G, where H = 1Jτ,+∞) (see [8, Definition 3.1]).
Theorem 3.6 above generalizes [8, Theorem 5.3] because, in the special case in which H =
1Jτ,+∞) and X is a point process, it shows that the weak representation property propagates to
G, without any further assumption on τ .

• In [2] Aksamit, Jeanblanc and Rutkowski considered the case of a Poisson process X with re-
spect to X and enlarged X progressively by a random time τ . They obtained a predictable
representation result for a particular class of G-martingales stopped at τ . Theorem 3.6 gener-
alizes the results of [2] first because X is generated by an arbitrary point process, it is initially
enlarged to F and then progressively enlarged by a whole process H and not only by a random
time. Second because we obtain a predictable representation result which is valid for every
G-local martingale and not only for G-local martingales stopped at τ .
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• In [19], Xue has shown that the weak representation property of a quasi-left continuous semi-
martingale X with respect to a filtration F propagates to the filtration G = F∨H, where H is a
filtration independent of F which supports a quasi-left continuous semimartingale Y possessing
the weak representation property with respect to H. If X and H are point processes, Theorem
3.6 generalizes the work of Xue because we require neither the independence of F and H nor
the quasi-left continuity of X and H.

Our next aim is to study the stable subspaces generated by the local martingales Z1, Z2 and Z3 in
H p

0 (G), for p≥ 1. We refer to [12, Chapter IV] for this topic and we now shortly recall some basics
about stable subspaces.

Let H be a linear subspace of (H p
0 (G),‖·‖H p). Then H is called a stable subspace of H p

0 (G)
if H is closed in (H p

0 (G),‖ · ‖H p) and stable under stopping, that is, for every G-stopping time σ

and Z ∈H , then Zσ ∈H .
For a family Z ⊆ H p

loc,0(G), the stable subspace generated by Z in H p
0 (G) is denoted by

L p
G(Z ) and it is defined as the closure in (H p

0 (G),‖ · ‖H p) of the set of all stochastic integrals
with respect to Z, that is, of the set {K ·Z, Z ∈Z , K ∈ Lp(Z,G)}. Notice that L p

G(Z ) is the smallest
stable subspace of H p

0 (G) containing the set S := {Zσ , σ G-stopping time : Zσ ∈H p(G)} (see
[12, Definition 4.4] and the subsequent comment therein).

We stress that, since Zi is locally bounded, i = 1,2,3, it follows that L p
G(Z ) 6= /0 , for every p≥ 1,

where Z := {Z1,Z2,Z3}.

Corollary 3.8. Let p≥ 1 and let Z := {Z1,Z2,Z3}.
(i) The identity L p

G(Z ) = H p
0 (G) holds.

(ii) If furthermore p= 2 and the local martingales Z1,Z2,Z3 ∈H 2
loc,0(G) are pairwise orthogonal,

then every Y ∈H 2(G) can be represented as

Y = Y0 +K1 ·Z1 +K2 ·Z2 +K3 ·Z3, Ki ∈ L2(Zi,G), i = 1,2,3,

and this is an orthogonal decomposition of Y in (H 2(G),‖ · ‖2).

Proof. We first verify (i). To this aim we show that every bounded Y ∈H 1
loc,0(G) which is orthogonal

to Z vanishes. Then, [12, Theorem 4.11 (b)] yields L 1
G(Z ) = H 1

0 (G). Let now Y ∈H 1
loc,0(G) be

bounded and orthogonal to Z . Then, [Y,Zi] ∈H 1
loc,0(G) holds, for i = 1,2,3. By Theorem 3.6 (ii),

we can represent Y as in (3.9). Hence,

[Y,Y ] = K1 · [Y,Z1]+K2 · [Y,Z2]+K3 · [Y,Z3], Ki ∈ L1
loc(Z

i,G). (3.13)

Now, using that Y is bounded by a constant, say C > 0, and that Ki ∈ L1
loc(Z

i,G), we obtain

(Ki)2 · [[Y,Zi], [Y,Zi]] = ∑(Ki
∆Y ∆Zi)2 ≤ 4C2(Ki)2 · [Zi,Zi] ∈A +

loc(G), i = 1,2,3.

This shows that each addend on the right-hand side of (3.13) belongs to H 1
loc,0(G). Therefore,

we also have [Y,Y ] ∈ H 1
loc,0(G), implying that Y is orthogonal to itself. Hence, by [13, Lemma

4.13], we get that Y vanishes. This implies L 1
G(Z ) = H 1

0 (G). Applying now [12, Theorem 4.67],
if Y ∈H 1

loc,0(G) is orthogonal to Z (and not necessarily bounded), then Y vanishes. Hence, since
for every p ≥ 1 we have Z ⊆ H p

loc,0(G), [12, Theorem 4.11 (b)] yields L p
G(Z ) = H p

0 (G), for
every p ≥ 1. This completes the proof of (i). We now come to (ii). If Z1, Z2 and Z3 are pairwise
orthogonal, then L 2

G(Z ) = L 2
G(Z

1)⊕L 2
G(Z

2)⊕L 2
G(Z

3) (see [12, Remark 4.36]). Then, since we
have Y −Y0 ∈H 2

0 (G) and, by (i), L 2
G(Z ) = H 2

0 (G), we deduce (ii) from [12, Theorem 4.6]. The
proof of the corollary is complete.
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According to Lemma A.1 (iv) and (v), since by Proposition 3.3 X − [X ,H], H− [X ,H] and [X ,H]
have pairwise no common jumps, then Z1, Z2 and Z3 are pairwise orthogonal, if and only if (X −
[X ,H])p,G, (H − [X ,H])p,G and [X ,H]p,G have pairwise no common jumps, which is equivalent to
[Zi,Z j] = 0, i 6= j.

We conclude this section giving a more suggestive interpretation of Corollary 3.8 (i). Let us regard
the family Z = {Z1,Z2,Z3} ⊆H 1

loc,0 as the multidimensional local martingale Z := (Z1,Z2,Z3)>.
Since Zi ∈H p

loc(G) for every p ≥ 1, combining Corollary 3.8 and [12, Theorem 4.60], yields that
every Y ∈H p(G) can be represented as

Y = Y0 +K ·Z, K ∈ Lp
(Z,G),

where we now make use of the multidimensional stochastic integral with respect to Z and Lp
(Z,G)

denotes the space of multidimensional predictable integrands for the local-martingale Z (see [12, Eq.
(4.59)]).

4 Predictable Representation with respect to Orthogonal Martingales

We recall that X denotes a point process and R an initial σ -field. The filtration X is the smallest
right-continuous filtration such that X is adapted and F denotes the initial enlargement of X by R. We
also consider another point process H with respect to H, i.e., the smallest right-continuous filtration
such that H is adapted, and denote by G the progressive enlargement of F by H.

In this section we discuss some cases in which the martingale representation in G yields with
respect to orthogonal local martingales.

In Subsection 4.1 we study the situation of the independent enlargement, that is, the filtrations F
and H are assumed to be independent. In this particular case, as a consequence of Theorem 3.6, we
obtain a martingale representation result with respect to the pairwise orthogonal local martingales XG,
HG and [XG

,HG
] (see Section 2 for this notation). In other words, we show that, for the case of point

processes, [4, Theorem 4.5] is a direct consequence of Theorem 3.6. We stress that in the general
case, without the further assumption on the independence of F and H, the process [XG

,HG
] will not

be a G-local martingale, in general.
In Subsection 4.2 we consider the case in which F is progressively enlarged by a random time

τ , that is, H = 1Jτ,+∞) and we do not require the independence of the filtrations F and H. We then
investigate the orthogonality of the martingales Z1, Z2 and Z3 introduced in (3.5), (3.6) and (3.7). We
recall that, because of Lemma 3.3 (v), the local martingales Z1, Z2 and Z3 are pairwise orthogonal, if
and only if (X − [X ,H])p,G, (H− [X ,H])p,G and [X ,H]p,G have pairwise no common jumps. There-
fore, we will concentrate on sufficient conditions on τ which ensure that these G-dual predictable
projections have pairwise no common jumps.

4.1 The independent enlargement

Let F and H be independent, that is, the process H is independent of {R,X}. We observe that from
[18, Theorem 1], the filtration F∨H is right-continuous. Therefore, G = F∨H holds. Furthermore,
since by the assumed independence, F-local martingales and H-local martingales remain G-local
martingales, we obtain that X p,G = X p,F and H p,G = H p,H. Hence, the identities XG

= XF and HG
=

HH hold.
We stress that the local martingales XG and HG have bounded jumps and hence they are locally

bounded.
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Lemma 4.1. Let F and H be independent.
(i) The local martingales XG and HG are orthogonal, i.e., [XG

,HG
] ∈H 1

loc(G). Additionally,
[XG

,HG
] is locally bounded.

(ii) The local martingales XG, HG and [XG
,HG

] are pairwise orthogonal.

Proof. We first show (i). To this aim it is sufficient to verify that XGHG ∈ H 1
loc(G) or, equival-

ently, that [XG
,HG

] ∈H 1
loc(G). Since XG

= XF ∈H 2
loc(F), we find a sequence (τn)n≥0 of F-stopping

times localizing XG
= XF to H 2(F). Analogously, we find a sequence (σn)n≥0 of H-stopping times

localizing HG
= HH to H 2(H). By the independence of F and H, the process (XG

)τn(HG
)σn be-

longs to H 2(G). Therefore, we get [(XG
)τn ,(HG

)σn ] ∈H 1
loc(G) and, by Kunita–Watanabe’s inequal-

ity (see [12, Theorem 2.32]), this is a process of integrable variation. Therefore, from the estim-
ate E[supt≥0 |[(X

G
)τn ,(HG

)σn ]t |]≤ E[Var([(XG
)τn ,(HG

)σn ])∞]<+∞, where Var(·) denotes the total-

variation process, we get [(XG
)τn ,(HG

)σn ] ∈H 1(G). By the properties of the covariation, we deduce
the identity [(XG

)τn ,(HG
)σn ] = [XG

,HG
]τn∧σn . Hence, [XG

,HG
] ∈H 1

loc(G) and a localizing sequence
is given by (ρn)n≥0, ρn := τn ∧σn, n ≥ 1. Notice that [XG

,HG
] is locally bounded because XG

,HG

are locally bounded and the identity ∆[XG
,HG

] = ∆XG
∆HG holds. The proof of (i) is complete. For

(ii) we refer to the proof of [5, Proposition 3.4]. The proof of the lemma is complete.

Theorem 4.2. Let F and H be independent. Then every Y ∈H 2(G) can be represented as follow:

Y = Y0 +K1 ·XG
+K2 ·HG

+K3 · [XG
,HG

] (4.1)

where K1 ∈ L2(XG
,G), K2 ∈ L2(HG

,G) and K3 ∈ L2([XG
,HG

],G). Additionally, (4.1) is an ortho-
gonal decomposition of Y in (H 2(G),‖ · ‖2).

Proof. First, using [13, Proposition I.4.49 (b)], we compute

[XG
,HG

] = [X ,H]− [X p,G,H]− [X ,H p,G]+ [X p,G,H p,G]

= [X ,H]− [X p,G,H]−∆H p,G ·XG

= [X ,H]− [X p,G,H p,G]+ [X p,G,H p,G]− [X p,G,H]−∆H p,G ·XG

= [X ,H]− [X p,G,H p,G]−∆X p,G ·HG−∆H p,G ·XG

(4.2)

Because of Lemma 4.1, [XG
,HG

] ∈ H 1
loc(G) holds. Hence, Lemma A.1 (iii) yields the identity

[X ,H]p,G = [X p,G,H p,G]. Therefore, since Z3 = [X ,H]− [X ,H]p,G, from the previous computation
and from (3.5) and (3.6) we obtain

Z3 = [XG
,HG

]+∆X p,G ·HG
+∆H p,G ·XG (4.3)

Z1 = [XG
,HG

]+∆X p,G ·HG
+(1−∆H p,G) ·XG (4.4)

Z2 = [XG
,HG

]+ (1−∆X p,G) ·HG
+∆H p,G ·XG

. (4.5)

Let us denote Z := {Z1,Z2,Z3} and X := {XG
,HG

, [XG
,HG

]}. We are now going to show the
inclusion L 2

G(Z ) ⊆L 2
G(X ). To this aim, it is enough to verify the inclusion R ⊆L 2

G(X ), where
we define

S := {{(Zi)σ , σ G-stopping time : (Zi)σ ∈H 2(G)}, i = 1,2,3}.
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Indeed, by the property of the stable subspaces, L 2
G(Z ) is the smallest stable subspace of H 2

0 (G)
containing R. Let now σ be an arbitrary G-stopping time such that the stopped process (Z3)σ belongs
to H 2(G). Notice that such stopping times exist, because Z3 ∈H 2

loc(G), Z3 being locally bounded.
From (4.3), since by Lemma 4.1 (iii) the locally bounded G-local martingales XG, HG and [XG

,HG
]

are pairwise orthogonal, we get

〈(Z3)σ ,(Z3)σ 〉=

1J0,σK · 〈[X
G
,HG

], [XG
,HG

]〉+1J0,σK(∆X p,G)2 · 〈HG
,HG〉+1J0,σK(∆H p,G)2 · 〈XG

,XG〉.

Since (Z3)σ ∈H 2
0 (G), it follows that 〈(Z3)σ ,(Z3)σ 〉 ∈A +(G). From this we obtain the following in-

clusions: 1J0,σK ∈ L2([XG
,HG

],G), 1J0,σK∆X p,G ∈ L2(HG
,G) and 1J0,σK∆H p,G ∈ L2(XG

,G). Hence,
we have (Z3)σ ∈L 2

G(X ), for every G-stopping time σ such that (Z3)σ belongs to H 2(G). Ana-
logously, we see that the same holds also for Z1 and Z2. Hence, we get the inclusion S ⊆L 2

G(X )
and so the inclusion L 2

G(Z )⊆L 2
G(X ) holds. From Corollary 3.8 (i), we have L 2

G(Z ) = H 2
0 (G).

Therefore, we obtain the identity L 2
G(X ) = H 2

0 (G). By the pairwise orthogonality of XG, HG and
[XG

,HG
] we have L 2

G(X ) = L 2
G(H

G
)⊕L 2

G(X
G)⊕L 2

G([X
G
,HG

]) (see [12, Remark 4.36]. This,
recalling [12, Theorem 4.6], shows (4.1). The proof of the theorem is now complete.

Remark 4.3 (The multiplicity of G in the independent enlargement). We remark that, because of the
independence of F and H, we have the identities XG

= XF and HG
= HH. Theorem 4.2 shows that

every Y ∈H 2(G) can be represented as a stochastic integral with respect to the pairwise orthogonal
local martingales [XG

,HG
], XG, HG. Therefore, we conclude that, in general, the multiplicity of the

filtration G is equal to three. However, if X p,G = X p,F or H p,G = H p,H is continuous, i.e., if X or H
is quasi-left continuous in G, then [X p,G,H p,G] = 0 and the multiplicity of G is equal to two. Indeed,
since [XG

,HG
]∈H 1

loc(G), Lemma A.1 (iii) implies that [X ,H] = 0. Hence, X and H have no common
jumps and Lemma A.1 (iv) yields [XG

,HG
] = 0.

4.2 The Progressive Enlargement by a Random Time

Let F denote the initial enlargement of X by R. In this subsection we state the following further
assumptions:

(A1) The process H is given by H = 1Jτ,+∞), where τ : Ω−→ (0,+∞] is a random time.

(A2) The process X is quasi-left continuous with respect to F, i.e., X p,F is continuous.

We stress that in this subsection we do not assume that the random time τ and the filtration F are
independent.

Let o,F(H) denote the F-optional projection of H. We set A := o,F(H). The process A is càdlàg
and satisfies At = P[τ > t|Ft ], because of the properties of the F-optional projection. In particular,
A is a càdlàg F-supermartingale of class (D), which is called the Azéma supermartingale of H. We
recall that A− does not vanish on [0,τ] while A does not vanish on [0,τ).

From [15, Proposition 5.9.4.5], we have

H p,G
t =

∫
τ∧t

0

1
As−

dH p,F
s , t ∈ [0,T ], (4.6)

14



We now state the first result about the orthogonality in this subsection: Notice that for this the
quasi-left continuity of X with respect to F is not required. We recall that τ is said to avoid F-stopping
times if P[τ = σ <+∞] = 0 for every F-stopping time σ .

Proposition 4.4. Let τ avoid F-stopping times and X be an arbitrary point process with respect to F
(non-necessarily quasi-left continuous). Then [X ,H] = Z3 = 0, Z1 =X p,G, Z2 =H p,G and [Z1,Z2] = 0.

Proof. Because of the avoidance assumption, we have [X ,H] = 0 and hence Z3 = 0. So, Z1 = XG and
Z2 = HG hold. Furthermore, by (4.6), H p,F being continuous because of the avoidance assumption
(see [15, p. 324]), we also get that H p,G is continuous. So, [X ,H]p,G= [X p,G,H p,G] = 0. In conclusion,
Lemma A.1 (iii) and (iv) yield [Z1,Z2] = 0. The proof is complete.

In the remaining part of this section we investigate the pairwise orthogonality of Z1, Z2 and Z3

without requiring that τ avoids F-stopping times.
Notice that XF ∈H 2

loc(F) and if furthermore X is quasi-left continuous with respect to F, then
X p,F is continuous and we have the identity

〈XF
,XF〉F = X p,F. (4.7)

Indeed, by the continuity of X p,F and the properties of the predictable covariation, since X = [X ,X ],
we have

〈XF
,XF〉F = [XF

,XF
]p,F = [X ,X ]p,F = X p,F.

Lemma 4.5. Let Assumptions (A1) and (A2) hold.
(i) There exists an F-predictable process K such that

[X ,H]p,G = 1[0,τ]A
−1
− K ·X p,F. (4.8)

In particular, [X ,H] is a quasi-left continuous process.
(ii) The process Xτ is quasi-left continuous in G.

Proof. We first verify (i). We clearly have [X ,H] = ∆X ·H = ∆XτH. We can then apply [2, Lemma
A.1] to deduce

[X ,H]p,G = 1[0,τ]A
−1
− · [X ,H]p,F = 1[0,τ]A

−1
− · [X

F
,H]p,F,

where in the last-but-one equality we have used that X p,F is continuous. By [2, Corollary 2.1], there
exists Y ∈H 2

loc(F) such that

1[0,τ]A
−1
− · [X

F
,H]p,F = 1[0,τ]A

−1
− · 〈X

F
,Y 〉F.

But XF has the PRP with respect to F (see Lemma 3.1 (ii)). Therefore, there exists an F-predictable
process K ∈ L2

loc(X
F
,F) such that Y =Y0 +K ·XF. Hence, 〈XF

,Y 〉F = K · 〈XF
,XF〉F and (4.8) follows

by (4.7). By (4.8) we in particular get that [X ,H]p,G is continuous, meaning that [X ,H] is quasi-
left continuous. The proof of (i) is complete. We now verify (ii). Clearly, Xτ is a point process
and (Xτ)p,G = (1J0,τK ·X)p,G = (X p,G)τ holds. By [16, Proposition 2.1], we know that there exists
Y ∈H 2

loc(F) such that

X̂t = XF
t∧τ −

∫ t∧τ

0

1
As−

d〈XF
,Y 〉Fs
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belongs to H 1
loc(G), where Y is the same local martingale as in the proof of (i). Therefore, by (4.7),

we get:

X̂t = Xt∧τ −
∫ t∧τ

0

(
1+

Ks

As−

)
dX p,F

s .

The process B :=
∫ ·∧τ

0 (1+ Ks
As−

)dX p,F
s is predictable and of locally-integrable variation. Because of

the uniqueness of the compensator for processes of locally integrable variation (see [13, Theorem
I.3.18]), we get B = (Xτ)p,G. Since X p,F is a continuous process, X being quasi-left continuous in F
by assumption, we deduce that (X p,G)τ is continuous as well. The proof of the lemma is complete.

In the next theorem we give sufficient conditions for the orthogonality of the local martingales Z1,
Z2 and Z3.

Theorem 4.6. Let Assumptions (A1) and (A2) hold.
(i) The local martingales Z1 and Z2 are orthogonal to Z3. If furthermore H p,G is continuous, then

Z1 and Z2 are orthogonal as well and hence Z1, Z2 and Z3 are pairwise orthogonal.
(ii) The local martingales (Z1)τ , Z2 and Z3 are pairwise orthogonal.

Proof. We first verify (i). We define the processes Y = X − [X ,H] and Z = [X ,H]. Then ∆Y ∆Z = 0.
From Lemma 4.5, we know that Zp,G is continuous. So ∆Y p,G∆Zp,G = 0. Applying Lemma A.1 (iv)
and (v) we deduce [Z1,Z3] = 0. Hence, Z1 and Z3 are orthogonal. The proof of the orthogonality
of Z2 and Z3 is completely analogous. If we now assume that H p,G is continuous, then Lemma
4.5 (i) implies that (H− [X ,H])p,G is continuous as well. Hence, Lemma A.1 (v) with Y = Z1 and
Z = Z2 yields the orthogonality of Z1 and Z2, since X − [X ,H] and H − [X ,H] have no common
jumps. We now come to (ii). By (i), it is enough to verify that (Z1)τ and Z2 are orthogonal. We have
[X ,H]τ = [X ,H]. Hence, (X − [X ,H])τ is a point process and (X p,G)τ − [X ,H]p,G is its compensator
which, because of Lemma 4.5 (ii), is continuous. Since Y = Xτ − [X ,H] and Z = H− [X ,H] have no
common jumps and ∆Y p∆Zp = 0, by Lemma A.1 (v), we get that (Z1)τ and Z2 are orthogonal. The
proof of the theorem is complete.

We stress that the assumption on the continuity of H p,G made in Theorem 4.6 is equivalent to
the following property: P[τ = σ <+∞] = 0 for every F-predictable stopping time σ (see [16, p.65]),
meaning that τ avoids F-predictable stopping times, i.e., τ is G-totally inaccessible.

Let Y ∈H 2(G) and let X be quasi-left continuous with respect to F. Combining Corollary 3.8
(ii) and Theorem 4.6 (ii) we get

Y τ = Y0 +K1 · (Z1)τ +K2 ·Z2 +K3 ·Z3, Ki ∈ L2(Zi,G), i = 1,2,3, (4.9)

and this is an orthogonal representation in (H 2(G),‖ · ‖2).

Remark 4.7 (The multiplicity of G). Because of Corollary 3.8 and Theorem 4.6 (ii) we see that, if
H p,G is continuous, then the local martingales Z1, Z2 and Z3 are orthogonal and the multiplicity of
the filtration G is equal to three. From Proposition 4.4, we see that, if τ avoids F-stopping times
then the multiplicity of G is equal to two. Finally, from (4.9), we see that the space H 2

τ (G) of
square integrable martingale stopped at τ has always an integral representation with respect to three
orthogonal martingales. So, following [2, Remark 3.3], we can say that the multiplicity of the class
H 2

τ (G) in G is, in general, equal to three.
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The quasi-left continuity of X . We conclude this subsection with a short discussion about the quasi-
left-continuity of X with respect to F, which played a crucial role here.

Let A be a right-continuous filtration. First, we stress that the quasi-left continuity of an A-adapted
càdlàg process Y is a property of the process but also of the filtration A. The intuition of this fact is
the following: Since in the enlargement of A there will be more predictable times than in A, we
cannot expect, in general, that the quasi-left continuity of Y with respect to A is preserved in the in
the enlargement of A. The following simple example shows that this intuition is indeed correct.

Counterexample 4.8. Let X be a Poisson process with respect to X and let (τn)n≥1 be the sequence
of jump-times of X. The process X is quasi-left continuous in X but it is not quasi-left continuous in
the filtration F obtained enlarging X initially by the initial σ -field R = σ(τ1). Also, X is not quasi-
left continuous in the progressively enlarged filtration G obtained enlarging X progressively by the
random time τ = 1

2(τ1 + τ2), since τ2 is predictable in G and it is charged by X .

We have assumed in this subsection 4.2 that the process X is quasi-left continuous with respect to
the filtration F, which is obtained from the filtration X by an initial enlargement with respect to the
initial σ -field R.

Clearly, if R is trivial, then the quasi-left continuity of X with respect to F is the same as the
quasi-left continuity with respect to X. However, in general, it is more interesting to start assuming
the quasi-left continuity of X with respect to X and then to initially enlarge X by R in such a way to
preserve the quasi-left continuity of X in F. As an example in which this is possible, we consider the
case of a quasi-left continuous point process X with respect to the filtration X and then we enlarge
X initially with a nonnegative random variable L (i.e., R = σ(L)) which satisfies Jacod’s absolute
continuity hypothesis (see, e.g., [1, Section 4.4]). Indeed, in this special but important case, from
[1, Theorem 4.25] and the PRP of XX with respect to X, we deduce as in Lemma 4.5 that X p,F is
continuous or, equivalently, that X is quasi-left continuous with respect to F.

A A lemma on the orthogonality of compensated point processes

In this appendix we give a lemma which is helpful to investigate whether two compensated point
processes are orthogonal local martingales.

Let F be an arbitrary right-continuous filtration. We recall that two processes A and B in A +
loc(F)

are called associated if they have the same compensator, that is Ap = Bp. Notice that A and B are
associated if and only if A−B ∈H 1

loc (see [7, Theorem V.38]).

Lemma A.1. Let Y and Z be point processes with respect to F and let Y p and Zp denote the F-dual
predictable projection of Y and Z, respectively. Let us denote Y := Y −Y p and Z := Z−Zp.

(i) The processes [Y p,Z], [Y,Zp] and [Y p,Zp] are locally bounded and increasing, hence they
belong to A +

loc.
(ii) The processes [Y p,Z] and [Y,Zp] are associated and their compensator is [Y p,Zp].
(iii) The process [Y ,Z] belongs to H 1

loc if and only if [Y,Z]p = [Y p,Zp].
(iv) Let ∆Y ∆Z = 0. Then [Y ,Z] ∈H 1

loc if and only [Y ,Z] = 0.
(v) Let ∆Y ∆Z = 0. Then [Y ,Z] ∈H 1

loc if and only if ∆Y p∆Zp = 0.

Proof. We first verify (i). We only show that [Y,Zp] is a locally bounded increasing process, the proof
for [Y p,Z] and [Y p,Zp] being completely analogous. We have ∆[Y,Zp] = ∆Y ∆Zp ≥ 0, because Y and
Zp are both increasing. Since [Y,Zp] = ∑s≤·∆Ys∆Zp

s , we obtain that [Y,Zp] is an increasing process.
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Furthermore, since Y and Zp have bounded jumps, [Y,Zp] has bounded jumps too. Hence, it is a
locally bounded process. The proof of (i) is complete.

We now come to (ii). By [13, Proposition I.4.49 a)] we have [Y p,Z] =∆Y p ·Z and [Y,Zp] =∆Zp ·Y .
Then, since ∆Y p is a predictable process, we have [Y p,Z]p = (∆Y p ·Z)p = ∆Y p ·Zp = [Y p,Zp], where
in the last equality we again used [13, Proposition I.4.49 a)]. Analogously, we get [Y,Zp]p = [Y p,Zp]
and the proof of (ii) is complete.

We now show (iii). First, we compute

[Y ,Z] = [Y,Z]− [Y p,Z]− [Y,Zp]+ [Y p,Zp]. (A.1)

By (A.1) and (ii), since [Y p,Zp]− [Y,Zp] ∈H 1
loc, we get [Y ,Z] ∈H 1

loc if and only if [Y,Z]− [Y p,Z] ∈
H 1

loc. But this is the case if and only if [Y,Z] and [Y p,Z] are associated processes thus, by (ii), if and
only if [Y,Z]p = [Y p,Zp] holds. This shows (iii).

We now verify (iv). It is enough to show that if [Y ,Z] ∈H 1
loc, then [Y ,Z] = 0. Therefore, let

[Y ,Z] ∈H 1
loc and ∆Y ∆Z = 0. By (iii), we get [Y p,Zp] = 0, since [Y,Z] = 0 by assumption. Hence,

by (ii), we obtain [Y,Zp], [Y p,Z] ∈H 1
loc implying that [Y,Zp] = [Y p,Z] = 0 since these are increasing

processes starting at zero. Then (iii) follows immediately from (A.1).
We now verify (v). Let us assume ∆Y ∆Z = 0. Then [Y,Z]p = 0. So, by (iii), [Y ,Z] ∈H 1

loc if and
only if [Y p,Zp] = 0 or, equivalently, if and only if ∆Y p∆Zp = 0. This shows (v). The proof of the
lemma is now complete.

Notice that the relation [Y,Z]p = [Y p,Zp] of Lemma A.1 (iii) does not hold, in general. For a
counterexample we consider the case in which Y is a homogeneous Poisson process with parameter
λ > 0 and Z = Y . Then [Y,Y ]pt = Y p

t = λ t, while [Y p,Y p] = 0.
By Lemma A.1 (v), if ∆Y ∆Z = 0, then [Y ,Z]∈H 1

loc if and only if ∆Y p∆Zp = 0. However, the con-
dition ∆Y ∆Z = 0 is not sufficient to ensure ∆Y p∆Zp = 0, in general, as the following counterexample
shows.

Counterexample A.2. 1 Let F = (Ft)t≥0 be such that Ft is trivial for t < 1 and Ft = F for t ≥ 1.
Then F is obviously a right-continuous filtration. Let A,B ∈F be disjoint. Then the processes Y and
Z defined by Yt = 1A1{t≥1} and Zt = 1B1{t≥1}, respectively, are point processes with respect to F and
they satisfy ∆Y ∆Z = 0. For the dual predictable projections Y p and Zp we have Y p

t = P[A]1{t≥1} and
Zp

t = P[B]1{t≥1}, respectively, and they have a common jump in t = 1.
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