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Glucose Promotes Stress Resistance in the Fungal
Pathogen Candida albicans

Alexandra Rodaki,* Iryna M. Bohovych,* Brice Enjalbert,** Tim Young,*
Frank C. Odds,* Neil A.R. Gow,* and Alistair ]J.P. Brown*

*Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25
27D, United Kingdom; and *Discovery Biology, Pfizer Ltd, Sandwich, Kent CT13 9NJ, United Kingdom

Metabolic adaptation, and in particular the modulation of carbon assimilatory pathways during disease progression, is
thought to contribute to the pathogenicity of Candida albicans. Therefore, we have examined the global impact of glucose
upon the C. albicans transcriptome, testing the sensitivity of this pathogen to wide-ranging glucose levels (0.01, 0.1, and
1.0%). We show that, like Saccharomyces cerevisiae, C. albicans is exquisitely sensitive to glucose, regulating central
metabolic genes even in response to 0.01% glucose. This indicates that glucose concentrations in the bloodstream
(approximate range 0.05-0.1%) have a significant impact upon C. albicans gene regulation. However, in contrast to S.
cerevisiae where glucose down-regulates stress responses, some stress genes were induced by glucose in C. albicans. This
was reflected in elevated resistance to oxidative and cationic stresses and resistance to an azole antifungal agent. Cap1 and
Hogl probably mediate glucose-enhanced resistance to oxidative stress, but neither is essential for this effect. However,
Hog1 is phosphorylated in response to glucose and is essential for glucose-enhanced resistance to cationic stress. The data
suggest that, upon entering the bloodstream, C. albicans cells respond to glucose increasing their resistance to the

oxidative and cationic stresses central to the armory of immunoprotective phagocytic cells.

INTRODUCTION

Effective responses to environmental change are fundamen-
tally important for the survival of microbes. Environmental
adaptation is particularly relevant for pathogenic microbes,
which must counteract the defense systems of their host as
well as tune their metabolism and stress homeostatic mech-
anisms to the complex microenvironments they encounter in
the host.

Candida albicans is a major fungal pathogen of humans
(Odds, 1988; Calderone, 2002). It exists as a commensal
organism in the urogenital and gastrointestinal tracts and on
the skin. It causes mucosal infections such as oral candidiasis
and vaginitis in otherwise healthy individuals. Furthermore,
it causes potentially fatal infections of the bloodstream and
internal organs in severely immunocompromised patients.
Therefore, C. albicans can thrive in diverse and complex
niches within its human host.

The ability of this yeast to respond effectively to its mi-
croenvironment must contribute to its success as a pathogen.
Two main observations reinforce this view. First, the disrup-
tion of certain metabolic or stress genes attenuates the vir-
ulence of C. albicans. For example, mutations that inactivate
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the glyoxylate cycle, gluconeogenesis, glycolysis, or fatty
acid B-oxidation reduce virulence, albeit slightly in some
cases (Lorenz and Fink, 2001; Barelle et al., 2006; Piekarska et
al., 2006; Ramirez and Lorenz, 2007; Zhou and Lorenz, 2008).
Therefore, this yeast requires metabolic flexibility, particu-
larly in its pathways of carbon assimilation if it is to display
normal levels of virulence even in the classical mouse model
of disseminated candidiasis. Similarly, the inactivation of
catalase, superoxide dismutase or the Hogl stress-activated
protein kinase (SAPK) attenuates the virulence of C. albicans
(Wysong et al., 1998; Alonso-Monge et al., 1999; Hwang et al.,
2002; Martchenko et al., 2004; Fradin ef al., 2005). Therefore,
both stress signaling and stress protective functions also
contribute to the virulence of C. albicans.

The second main observation that revealed the environ-
mental flexibility of C. albicans arose through studies of gene
regulation. Genome-wide expression profiling has revealed
that C. albicans modulates its metabolism and activates spe-
cific stress responses upon host contact. For example, glyco-
lytic genes are down-regulated and glyoxylate cycle and
fatty acid B-oxidation genes are up-regulated when C. albi-
cans cells are exposed to blood, macrophages, or granulo-
cytes (Fradin ef al., 2003, 2005; Rubin-Bejerano et al., 2003;
Lorenz et al., 2004). Furthermore, oxidative stress functions
are up-regulated after phagocytosis by granulocytes (Fradin
et al., 2005). Similar observations were made using more
complex ex vivo and in vivo infection models (Thewes et al.,
2007; Zakikhany et al., 2007). The metabolic and stress ad-
aptation of C. albicans during the infection process has been
confirmed by profiling the molecular behavior of single
yeast cells by using diagnostic green fluorescent protein
(GFP) fusions (Barelle et al., 2006; Enjalbert et al., 2007).
However, this single-cell approach has revealed that C.
albicans populations infecting the kidney are highly hetero-
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geneous with respect to their molecular behavior. For exam-
ple, only a small proportion of C. albicans cells infecting renal
tissue activate the oxidative stress response (Enjalbert et al.,
2007). Also, some C. albicans cells infecting kidney seem to
assimilate carbon via glycolysis, whereas others seem to
exploit the anabolic pathways of carbon metabolism (Barelle
et al., 2006).

One must define the molecular responses of C. albicans to
specific environmental stimuli if one is to understand the
heterogeneous behavior of this pathogen within the complex
microenvironments in vivo. We reasoned that the differen-
tial exposure of individual C. albicans cells to glucose might
contribute to their heterogeneous metabolic behavior in
vivo. Therefore in this study we have examined the re-
sponses of C. albicans to glucose by genome-wide expression
profiling. We have compared the responses of this pathogen
to those of the relatively benign yeast Saccharomyces cerevisiae
because glucose responses are well characterized in this
species.

Glucose has profound effects upon the metabolism and
physiology of S. cerevisiae. In particular, metabolic pathways
for the assimilation of alternative carbon sources are re-
pressed in response to glucose. In addition, fermentative
metabolism is up-regulated, and respiratory metabolism is
down-regulated. Ribosome biogenesis and other growth re-
lated functions are up-regulated in cells exposed to glucose,
whereas stress responses are down-regulated. S. cerevisiae
has evolved complex and partially redundant signaling
mechanisms to regulate its glucose responses (for reviews,
see Gancedo, 1998, 2008; Carlson, 1999; Johnston, 1999;
Thevelein and de Winde, 1999; Rolland ef al., 2001). These
include the Ras-cAMP-protein kinase A and the Snf3-Rgt2
and the Snfl-Glc7-Regl signaling pathways (Gancedo,
2008). In particular, the Ras-cAMP-protein kinase A path-
way plays a key role in the activation of ribosome biogenesis
as well as in the down-regulation of stress responses
(Gounalaki and Thireos, 1994; Gorner ef al., 1998; Stanhill et
al., 1999; Garreau et al., 2000).

The S. cerevisiae cell is exquisitely sensitive to low concen-
trations of glucose, up-regulating glycolysis and down-reg-
ulating alternative pathways of carbon assimilation in re-

sponse to glucose concentrations as low as 0.01% (Yin ef al.,
1996, 2003). This exquisite glucose sensitivity may have
evolved because this yeast has adapted to cope with sudden
transitions from famine to feast in the wild (Johnston, 1999).
In contrast, the fungal pathogen C. albicans is thought to
have evolved on warm-blooded animals (Odds, 1988). In the
human host, blood glucose concentrations are maintained
within homeostatic limits (0.05-0.1% glucose, equivalent to
~3-5 mM glucose) that are well below the concentrations
that are often applied in experimental yeast cultures (1-2%
glucose). Furthermore, in contrast to S. cerevisiae (Postma et
al., 1989), C. albicans has been classified as a Crabtree-nega-
tive yeast on the basis that it retains respiratory activity
during growth at high glucose concentrations (Aoki and
Ito-Kuwa, 1982; Niimi et al., 1988). Therefore, we reasoned
that glucose responses might have diverged significantly in
these pathogenic and benign yeasts. In this article, we show
that there are broad similarities between C. albicans and S.
cerevisiae with regard to the impact of glucose on their tran-
scriptomes but that there are fundamental differences with
respect to the impact of glucose upon stress responses in
these yeasts.

MATERIALS AND METHODS

Strains and Growth Conditions

Strains used in this study are in Table 1. Strains were grown at 30°C in either
YPD or YPLactate (2% Bacto-peptone and 1% yeast extract containing either
2% p-glucose or 2% lactate).

Transcript Profiling

Transcript profiling was performed with the C. albicans strain THE1 (Table 1)
by using procedures described for S. cerevisiae by Yin et al. (2003). C. albicans
cells were grown to mid-log phase (ODg,, = 0.5) overnight in YPLactate at
30°C, reinoculated into 200 ml of fresh YPLactate at ODgy, = 0.05, and
regrown at 30°C to mid-log phase (ODgq = 0.5). Cultures were divided into
four 50-ml cultures, and glucose was added to a final concentration of 0%,
0.01% (=0.56 mM), 0.1% (=5.6 mM), or 1% (=56 mM). Cells were harvested
30 min later and frozen rapidly in liquid N,. RNA was prepared as described
previously (Hauser et al., 1998), and cyanine (Cy)3- and Cy5-labeled cDNA
probes were prepared and hybridized against C. albicans microarrays (Euro-
gentec, Seraing, Belgium) as described previously (Enjalbert et al., 2006).
Slides were scanned using a ScanArray Lite scanner (PerkinElmer Life and

Table 1. Strains used in this study

Strain Genotype Source
SC5314 Clinical isolate from the blood: Clade 1 MacCallum et al. (2009)
AM2003-016 Clinical isolate from the oropharynx: Clade 1 MacCallum et al. (2009)
AM?2003/0182 Clinical isolate from the blood: Clade 2 MacCallum et al. (2009)
AM2004/0028 Clinical isolate from the oropharynx: Clade 2 MacCallum et al. (2009)
b30708/5 Clinical isolate from the blood: Clade 3 MacCallum et al. (2009)
T101 Clinical isolate from the oropharynx: Clade 3 MacCallum et al. (2009)
s20122.073 Clinical isolate from the blood: Clade 4 MacCallum et al. (2009)
AM2003-020 Clinical isolate from the oropharynx: Clade 4 MacCallum et al. (2009)
CAl4 ura3:\ imm434/ura3:: X imm434 Fonzi and Irwin (1993)
RM1000 ura3:\ imm434/ura3:: X imm434, his1::hisG/his1::hisG Wilson et al. (1999)
THE1 Ade2::hisG/ade2::hisG, ura3:: X imm434/ura3:: X imm434, Nakayama et al. (2000)
ENO1/enol::ENO1-tetR-ScHAP4AD-3XHA-ADE2
Ahog1 ura3:\ imm434/ura3:: X imm434, his1::hisG/his1:hisG, hog1:: loxP-URA3-loxP, Smith et al. (2004)
hog1::loxP-HIS1-loxP
Acapl ura3:\ imm434/ura3::Nimm434, his1::hisG/his1:hisG, arg4::hisG/arg4::hisG, Enjalbert et al. (2006)

cap1::hisG/cap1::hisG-URA3-hisG
Acapl Ahogl

ura3::\ imm434/ura3::Nimm434, his1::hisG/his1::hisG, arg4::hisG/arg4::hisG,

Enjalbert et al. (2006)

hog1::loxP-ARG4-ura3-loxP/hog1::loxP-HIS1-loxP, capl::hisG/cap1::hisG-URA3-hisG

ras1-2/ras1-3
WH324
C20

ura3::\ imm434/ura3::x imm434, ras1A::hisG/ras1A::hph-URA3-hph
ura3:\ imm434/ura3:: X imm434, aox1a:::hisG/aox1b:::hisG
ura3::\ imm434/ura3:: X imm434, tps1A::hisG/tps1A::hisG

Feng et al. (1999)
Huh and Kang (2001)
Zaragoza et al. (1998)




Analytical Sciences, Beaconsfield, United Kingdom) and quantified using
QuantArray software, version 2.0. Data analysis and normalization were
performed using GeneSpring (Silicon Genetics, Redwood City, CA), and
statistical analyses were performed using Significance Analysis of Microar-
rays (SAM) (Tusher et al., 2001) with a false discovery rate of <10%. Expres-
sion ratios were calculated relative to control cells exposed to 0% glucose.
Data from at least three independent biological replicates were used for
analysis.

C. albicans gene annotations were obtained from CandidaDB (http://
genolistpasteur.fr/CandidaDB; d’Enfert ef al., 2005) and the Candida Genome
Database (http://candidagenome.org; Braun et al., 2005). Functional catego-
ries for C. albicans genes were assigned using gene ontology resources at the
Saccharomyces Genome Database (SGD; www.yeastgenome.org/GOcontents.
shtml). The complete data set is available in the Supplementary Data and in
ArrayExpress (www.ebi.ac.uk/microarray/; experiment accession E-MEXP-
1151).

Northern Analysis

Northern blotting was performed to validate the transcript profiling data.
RNA was isolated from C. albicans THE1 cells, fractionated on 1.5% agarose/
formaldehyde gels and subjected to Northern blotting as described previously
(Brown et al., 2001). Gene-specific probes were polymerase chain reaction
(PCR)-amplified from genomic DNA (the primers are specified in Supple-
mental Data) and radiolabeled using the Ready-to-go dCTP labeling kit (GE
Healthcare, Chalfont St. Giles, Buckinghamshire, United Kingdom). Signals
were quantified by phosphorimaging relative to TEF3 mRNA levels, as de-
scribed previously (Brown et al., 2001).

Western Blotting

Protein extracts were prepared from C. albicans cells examined at an ODg of
0.4 and subjected to Western blotting, as described previously (Smith ef al.,
2004). Hog1 activation was detected using a phospho-specific phospho-p38
mitogen-activated protein (MAP) kinase (Thr180/Tyr182) antibody (New
England Biolabs, Hitchin, Hertfordshire, United Kingdom), followed by an
horseradish peroxidase (HRP)-labeled anti-rabbit immunoglobulin (Ig)G sec-
ondary antibody (Bethyl Laboratories, Montgomery, TX) by using ECL Plus
Western blotting reagents (GE Healthcare). Membranes were then stripped
and reprobed with an anti-Hogl (y-215) antibody (sc-9079, Santa Cruz Bio-
technology, Santa Cruz, CA) followed by HRP-linked anti-rabbit IgG anti-
body (catalog no. 7074; New England Biolabs) to control for loading.

Stress Phenotypes

For all stress assays, C. albicans strains were first grown overnight at 30°C in
YPLactate to mid-log phase (ODgg, = 0.5). Cells were then subcultured into
fresh YPLactate and regrown to mid-log phase (ODy,, = 0.5). For oxidative
stress, cultures were then split: one half receiving 1% glucose and control cells
receiving 0% glucose. Cells were grown for a further 60 min and then exposed
to 0, 0.4, 5, 10, 25, or 50 mM H,0O, for 60 min. Cell viability was assayed
(colony-forming units [CFUs]) relative to unstressed controls. Data represent
means from three independent experiments.

For osmotic stress, YPLactate cultures were split, some cells being exposed
to 1% glucose and control cells being exposed to 0% glucose. Cells were
grown for a further 60 min, and then exposed for 60 min to 0.5 or 1 M NaCl,
0.6 M KCl, or 0.6 or 1.2 M sorbitol. Cell viability was then assayed (CFUs).
Data are means from three independent experiments.

Methods for miconazole treatment were adapted from Abbott and Odds
(1989). Mid-log C. albicans cells grown on YPLactate were harvested by
centrifugation, washed twice in distilled H,O (d H,O), and resuspended in
dH,O. Four milliliters of suspension (~8 X 10° cells/ml) were added to 4 ml
of 0.2 M citrate buffer, pH 6.2. The cells were treated for 10 min with either 10
ug/ml miconazole (final concentration; Sigma Chemical. Poole, Dorset,
United Kingdom) or the carrier dimethyl sulfoxide (DMSO). Then either
lactate or glucose were added to a final concentration of 1%, or 0% for control
cells, and the cells incubated for a further 10 min at 30°C, whereupon viable
cell numbers were determined as CFUs. The data represent means from three
independent experiments.

Trehalose and Reactive Oxygen Species (ROS)

Intracellular ROS levels were quantified using published procedures (Chat-
topadhyay et al., 2006; Cash et al., 2007), with modifications. Cells were grown
to mid-exponential phase on YPLactate as described above for transcript
profiling. Glucose was then added to a final concentration of a 1%, and an
equivalent amount of water was added to control cultures. Fifty microliters of
dichlorodihydrofluorescein diacetate (catalog no. D6883; Sigma Chemical) in
DMSO (2 mg/ml) was then added to the 50-ml cultures, which were incu-
bated for a further 15 min at 30°C. Cells were then harvested, washed twice
with a cold water, and sheared with glass beads in 0.1 M Tris-HCI, pH 7.5.
Cell extracts were centrifuged at 13,000 X g, supernatants diluted 10-fold in
water, and fluorescence was measured at 485 and 520 nm. Fluorescence
measurements were normalized to the protein concentration as measured by
the Bradford assay (Bradford, 1976).

Glucose and Stress Resistance in C. albicans

Intracellular trehalose levels were assayed using methods described by
Neves et al. (1994). Cells were grown to mid-exponential phase on YPLactate
as described above. Then cells were exposed to 1% glucose for 1 h, harvested,
and washed with ice-cold water. Trehalose was extracted from 50 mg of cells
by boiling for 1 h in 1 ml of 0.25 M Na,COj;. Then, 200 ul of extract was
neutralized with 100 ul of 0.5 M citric acid, and 150 ul of this neutralized
extract was incubated for 2 h with 0.1 U of trehalase (catalog no. T8778; Sigma
Chemical) in 1 mM EDTA in total volume of 200 ul. The glucose released by
trehalose hydrolysis was then assayed with a commercial kit (catalog no.
GAHK20; Sigma Chemical).

RESULTS

C. albicans Is Exquisitely Sensitive to Glucose

Previously, we examined the responses of S. cerevisiae to low
(0.01%), medium (0.1%), and high (1%) levels of glucose (Yin
et al., 2003). These genome-wide analyses revealed that S.
cerevisiae is exquisitely sensitive to glucose, modulating met-
abolic gene expression even in response to low glucose
concentrations. Glycolytic genes were up-regulated, and
gluconeogenic and tricarboxylic acid (TCA) cycle genes
were down-regulated even when only 0.01% glucose was
added to the growth medium. Ribosome biogenesis, in con-
trast, was activated only in response to medium or high
levels of glucose.

The first objective in our current study was to test the
working hypothesis that C. albicans and S. cerevisiae respond
differently to glucose. Therefore, to examine glucose re-
sponses in C. albicans we used an analogous experimental
approach to our previous study in S. cerevisiae. In brief, RNA
was prepared from C. albicans cells 30 min after the addition
of 0, 0.01, 0.1, or 1% glucose to cultures growing exponen-
tially on lactate. We chose this time point to replicate the
conditions used successfully in our genome-wide analysis of
glucose responses in S. cerevisine (Yin et al., 2003). The C.
albicans RNA was subjected to microarray analysis, measur-
ing the effects of the zero, low, medium, and high glucose
concentrations relative to the control containing zero glu-
cose. Transcripts were analyzed further if they displayed a
statistically significant and reproducible change of =1.5-fold
in three independent replicate experiments as well as pass-
ing the statistical filter imposed by SAM, with a false dis-
covery rate of <10% (Tusher et al., 2001). In total, 347 C.
albicans genes were up-regulated, and 344 genes were down-
regulated in response to at least one of the glucose concen-
trations examined (~5% of the genome) (Supplemental
Data). Of these genes, 170 genes were up-regulated and 180
genes were down-regulated by 0.01% glucose, indicating
that approximately half of glucose-regulated genes are re-
sponsive to low glucose. These transcript profiling data were
validated by northern analyses of selected C. albicans tran-
scripts. For example, this confirmed that the transcript levels
for HXT62 (putative hexose transporter) and QDR1 (homo-
logue of a plasma membrane transporter required for mul-
tidrug resistance in S. cerevisiae) increased in response to
0.01, 0.1, and 1% glucose, whereas the control IPF3584 tran-
script (unknown function) was unresponsive to glucose, and
the PCK1 transcript (gluconeogenesis) was repressed by all
three glucose concentrations (data not shown). Therefore, like
S. cerevisiae, the C. albicans transcriptome is exquisitely sensitive
to glucose, responding to concentrations as low as 0.01%.

C. albicans and S. cerevisiae Display Significant
Differences in Their Transcriptomic Responses to Glucose
To compare the glucose responses of C. albicans and S.
cerevisiae more directly, we selected genes that have ortho-
logues in both yeasts (Supplemental Data; Enjalbert et al.,
2006). We then examined the behavior of orthologues in-
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A
C. albicans gene Glucose Concentration (%) |S.cerevisiae gene Glucose Concentration (%)
Function | Systematic Common 0 0.01 0.1 Systematic Common 0 0.01 0.1
Hxt3 CA1067 HXT62 13 YDR345C HXT3 1.0
Hxt6 CA1070 HXT61 (%2 YDR343C HXT6 1.0 :
Glk1 CA0263 GLK1 -1.2 YCLO40W GLK1 1.0 1.6 1.0 -1.8
Hxk2 CA0127 HXK2 -141 YGL253W HXK2 1.0 -141 14 14
Pgi1 CA3559 PGI1 1.0 YBR196C PGI1 1.0 -14 11 7
Pfk1 CA1834 PFK1 -1.2 YGR240C PFK1 1.0 -1.9 -1.1 15
Pfk2 CA3112 PFK2 -1.0 YMR205C PFK2 1.0 1.2 241 27
Fba1 CA5180 FBA1 -1.2 YKL060C FBA1 1.0 2.0 37 46
Tpi1 CA5950 TPI1 1:1 YDRO050C TPI1 1.0 1.8 23 37
Tdh3 CA5892 GAP1 1.1 YGR192C TDH3 1.0 -1.1 14 1.9
Pgk1 CA1691 PGK1 1.0 YCRO12W PGK1 1.0 2.0 29 35
Gpm1 CA4671 GPM1 1.1 YKL152C GPM1 1.0 1.5 1.8 21
Eno1 CA3874 ENO1 1.6 YGR254W ENO1 1.0 1.8 2.7 42
Pyk1 CA3483 CDC19 =141 YALO38W  CDC19 1.0 23 3.6
Mean Glycolysis 0.0 Glycolysis 1.0 1.7 3.2 3.1
B d Glycolysis 4 TCA Cycle
5 0
c 4 2
2
s Figure 1. Impact of glucose upon the expression of genes involved in
3 2 2 central carbon metabolism in C. albicans and S. cerevisiae. Cells were
& 0 0 D\D\G\D grown to mid-exponential phase in YPLactate, exposed to no (0%), low
T 5 - (0.01%), medium (0.1%), or high (1%) glucose for 30 min, and then
B glgtl:oneTgtengswl 2 subjected to transcript profiling. For C. albicans THE1 cells, -fold ex-
£ 0 yoxylate Lycle 4 pression for these four conditions was measured relative to a 0%
§ 3 glucose control. Data for S. cerevisiae are taken from Yin et al. (2003)
6 . o who normalized these data to the 0% glucose condition. Color coding
4 8 Fatty acid p-oxidation| i scaled from the largest fold increases (purple), through no change
4[Ribosennl proteins (yellow) to the largest fold decreases (cyan) observed in each complete
" : data set (color heat scale in Supplemental Data). (A) Regulation of
glycolytic transcripts. (B) Average responses for transcripts encoding
-10 0 " glycolytic, TCA cycle, gluconeogenic and glyoxylate cycle, fatty acid
0 0.0 0.1 1 0 0.m 0.1 1 B-oxidation, and ribosomal proteins: closed squares, C. albicans; open
Glucose (%) Glucose (%) squares, S. cerevisiae.

volved in central carbon metabolism, listing the responses of
individual genes to each condition (Supplemental Data) and
then calculating the mean response of a particular pathway
to each glucose concentration (Figure 1A). The behavior of
specific metabolic pathways is presented in Figure 1B. In C.
albicans, glycolytic genes were up-regulated, and gluconeo-
genic, glyoxylate cycle, TCA cycle and fatty acid p-oxidation
genes were down-regulated after exposure to low, medium
or high concentrations of glucose. Therefore, the expression
of central metabolic pathways in C. albicans was regulated
even in response to low glucose (0.01%).

Although carbon metabolism genes behaved similarly in
C. albicans and S. cerevisiae, ribosomal protein genes re-
sponded differently in these species. In S. cerevisiae, ribo-
somal protein gene expression is up-regulated after glucose
addition (Mager and Planta, 1991), and this was confirmed
by the transcript profiling study of Yin ef al. (2003). How-
ever, no significant increase in ribosomal protein gene ex-
pression was observed in C. albicans under equivalent con-
ditions (Figure 1B). Almost certainly, differences in the
growth of these species on YPLactate account for this con-
trasting behavior. S. cerevisine grew relatively slowly on
YPLactate, the doubling time halving after addition of glu-
cose to a concentration of 1%. As expected, ribosomal pro-
tein gene expression accelerated with growth in this yeast
(Yin et al., 2003). In contrast, C. albicans THE1 cells grew
equally well on YP medium containing lactate or glucose
(T4 = ~110 min). Therefore, there was no increase in ribo-
somal protein gene expression in this pathogen under these
conditions (Figure 1B). It is possible that these differences in

the growth of C. albicans and S. cerevisiae on YPLactate might
account for some other differences that we observed in their
transcriptional responses to glucose.

We then examined the glucose responses of C. albicans and
S. cerevisiae more broadly by categorising glucose-regulated
genes on the basis of their gene ontology (Saccharomyces
Genome Database; http://db.yeastgenome.org/cgi-bin/SGD/
GO/goTermFinder) and asking which functional categories
were significantly up- or down-regulated by glucose (Figure
2). The functional categories glycolysis, fermentation, and hex-
ose transport were up-regulated in C. albicans and S. cerevisiae.
Also, gluconeogenesis, tricarboxylic acid cycle, aerobic metab-
olism, and fatty acid metabolism were down-regulated in both
species. In contrast, the functional categories ribosome biogen-
esis and protein synthesis behaved differently in C. albicans and
S. cerevisize, displaying no significant regulation or being
down-regulated in the pathogen, but up-regulated in the be-
nign yeast (Figure 2). Not surprisingly, the behavior of
these functional categories reflected the behavior of the
individual genes in these categories (Figure 1).

The analysis of functional categories revealed some other
interesting differences between C. albicans and S. cerevisiae
(Figure 2). In response to glucose, energy reserve metabo-
lism was significantly up-regulated in C. albicans at all three
glucose concentrations but was only elevated at 0.1% glu-
cose in S. cerevisiae. Further analysis of this functional cate-
gory revealed that trehalose metabolism genes were up-
regulated in C. albicans (e.g., TPS1, TPS2, and TPS3), unlike
in S. cerevisiae (Figure 3). Trehalose is a well-known stress
protectant (Wiemken, 1990). Therefore, this observation was



C. albicans S. cerevisiae
up % [Glucose] % [Glucose]
Functional category 0.01 0.1 1 0.01 0.1 1
glycolysis = || [ = 0 |
fermentation || [ [ || o [
hexose transport [} [} =
energy reserve metabolism
cell-cell adhesion
cell wall organization and biogenesis
protein biosynthesis || | |
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response to osmotic stress
response to oxidative stress | | (=] O

response to drug =

Glucose and Stress Resistance in C. albicans

C. albicans S. cerevisiae
DOWN % [Glucose] % [Glucose]
Functional category 0.01 0.1 1 0.01 0.1 1
gluconeogenesis 1=

aerobic respiration
tricarboxylic acid cycle
fatty acid biosynthesis
amino acid catabolism
amino acid biosynthesis
protein import
ribosome biogenesis and assembly
response to pheromone
drug transport
response to drug

Figure 2. Effect of glucose upon the regulation of various functional categories in C. albicans and S. cerevisiae. Regulated genes of known
function were assigned to functional categories according to information from the Saccharomyces and Candida Genome Databases. Transcript
profiling data for S. cerevisiae are taken from Yin et al. (2003). (A) Functional categories that showed statistically significant enrichment in
up-regulated (red) or down-regulated genes (green) are shown: light orange or green, p value <10~2 midorange or green, p value <1073;

and dark red or green, p value <10

consistent with the up-regulation of response to oxidative
stress and response to drug in C. albicans but not in S.
cerevisiae (Figure 2). To look at this in more detail, we exam-
ined behavior of individual genes in these functional cate-
gories.

With respect to response to drug, three C. albicans genes
belonging to the ATP binding cassette superfamily of trans-
porters (e.g., CDR1, CDR2, and SNQ?2) and a member of the
major facilitator family (QDR1) were up-regulated in re-
sponse to all of the glucose concentrations tested. All of
these genes are involved in responses to antifungal drugs or
mutagens (Servos et al., 1993; Decottignies et al., 1995; San-
glard et al., 1995, 1997; Nunes et al., 2001). TACI, the tran-
scriptional activator of CDR1 and CDR?2 in C. albicans (Coste
et al., 2004), was not significantly up-regulated in response to
glucose. With the exception of PDR5 (the S. cerevisiae homo-
logue of CDRI), which was slightly up-regulated in re-
sponse to 0.1 and 1% glucose, the expression of the corre-
sponding S. cerevisine genes was unchanged in response to
glucose (Yin et al., 2003).

Three C. albicans genes important for the response to
oxidative stress were induced by glucose. TRX1 and TTR1
encode thio- and glutaredoxins involved in oxidative stress
protection. The up-regulation of CAP1 by glucose (Figure 3)
was particularly noteworthy because this gene encodes a
transcriptional activator required for resistance to oxidative
stress as well as multidrug resistance (Alarco & Raymond,
1999). YAP1 (the S. cerevisine homologue of C. albicans CAP1)
was down-regulated twofold by glucose (Figure 3). The
contrasting behavior of these key transcription factors pro-
vided a mechanistic explanation for the up-regulation of

4 rYap10O Cap1 il
Trehalose AA
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Figure 3. Effect of glucose upon mRNAs encoding YAP1, CAP1 or
trehalose synthetic enzymes. Closed squares, CAPT mRNA; open
squares, YAPT mRNA; triangles, average responses of TPS1-3 tran-
scripts; closed symbols, C. albicans; open symbols, S. cerevisiae.

oxidative stress functions by glucose in C. albicans but not in
S. cerevisiae.

Response to osmotic stress was not represented in our GO
output because insufficient genes from this functional cate-
gory were regulated by glucose. This was partly because this
functional category contains a relatively large proportion of
signaling functions that are regulated at post-transcriptional,
rather than transcriptional levels. Therefore, upon further
examination we realized that genes critical for the osmotic
stress response in C. albicans were up-regulated by glucose.
These included the ENA22, which encodes a sodium cation
transporter, and the GPD1 and GPD2, which encode glycerol-
3-phosphate dehydrogenase isoenzymes required for synthesis
of the osmolyte, glycerol (Supplemental Data).

The above-mentioned observations provided the first clue
that C. albicans might differ significantly from S. cerevisiae
with regard to the impact of glucose upon stress responses.
Stress responses are down-regulated by glucose in S. cerevi-
siae (Gorner ef al., 1998; Garreau et al., 2000). In contrast, our
transcript profiling data suggested that in C. albicans some
stress responses might be up-regulated by glucose. We
tested this by examining the impact of glucose upon the
resistance of C. albicans to various stresses.

Glucose Increases the Resistance of C. albicans to an
Azole Antifungal

Our microarray experiments revealed a rapid increase in the
levels of key transcripts involved in antifungal drug resis-
tance in cells exposed to glucose. Therefore, we wanted to
test whether glucose causes a corresponding increase in the
resistance of C. albicans to azole antifungals. We selected
miconazole because, unlike most azole antifungals, this drug
exerts cidal effects upon C. albicans (Abbott and Odds, 1989).
This allowed us to test whether exposure to glucose protects
C. albicans from miconazole-induced killing. Cells were
grown under equivalent conditions to the transcript profil-
ing experiments (exponential phase in YPLactate), treated
with glucose for an hour, and then exposed to 10 ug/ml
miconazole for an hour, and cell viability was assayed (Fig-
ure 4). Compared with control cells that were treated with
water or fresh lactate, cells exposed to glucose displayed
highly significant protection against miconazole-induced
killing. Therefore, as well as inducing the expression of
genes involved in drug resistance, glucose increases the
resistance of C. albicans to miconazole.

Glucose Increases the Osmotic Stress Resistance of

C. albicans

Our microarray analyses revealed that some osmotic stress
genes are induced by glucose in C. albicans. Therefore, to test
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Figure 4. Exposure to glucose increases the resistance of C. albicans
to an azole antifungal agent. C. albicans THE1 cells were grown to
mid-exponential phase in YPLactate, exposed to 1% glucose or
lactate for 1 h and then subjected to 10 ug/ml miconazole, and their
cell viability was assayed. Means and SDs from triplicate experi-
ments are shown: *p < 0.05 and **p < 0.01 (Student’s f test).

whether glucose affects osmotic stress tolerance, C. albicans
was grown on lactate, exposed to glucose, and then treated
with various concentrations of sorbitol, NaCl or KCl. The
viability of these cells was compared with control cells that
were not exposed to glucose (Figure 5). Glucose did not
affect the resistance of C. albicans to sorbitol. However, re-
sistance to both NaCl and KCI was increased after glucose
exposure. Therefore, glucose seems to affect cationic stress
resistance, rather than osmotic stress resistance, in this
pathogenic yeast.

This observation was consistent with our finding that a
small set of osmotic stress genes was induced by glucose
in our microarray experiments. This set included ENA22,
a homologue of the S. cerevisine ENA2 gene that encodes a
sodium transporter that contributes to salt tolerance
(Rodriguez-Navarro et al., 1994).

Glucose Increases the Resistance of C. albicans to
Oxidative Stress

We then tested whether the effects of glucose upon the expres-
sion of oxidative stress genes have an impact upon the resis-
tance of C. albicans to this type of environmental insult. Again,
C. albicans cells were grown to exponential phase in YPLactate,
exposed with glucose for an hour, and then the cells treated
with to various doses of hydrogen peroxide for an hour. The
viability of these cells was compared with equivalent cells that
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Figure 5. Glucose increases the resistance of C. albicans to cationic
stress. C. albicans THE1 cells were grown to mid-exponential phase
in YPLactate, exposed to 1% glucose or lactate for 1 h, and then
subjected to an NaCl, KCl, or sorbitol stress, and their cell viability
was assayed. Means and SDs from triplicate experiments are shown:
*p < 0.05 and **p < 0.01 (Student’s ¢ test).

100

80 |

60

a0t

Viability (% cfu's)

20

0
C source Lac Glu Lac Glu Lac Glu Lac Glu Lac Glu

H,0, (mM) 0.4 5 10 25 50

Figure 6. Glucose increases the resistance of C. albicans to acute
doses of hydrogen peroxide. C. albicans THE1 cells were grown to
mid-exponential phase in YPLactate, exposed to 1% glucose or
lactate for 1 h, and then subjected to different concentrations of
H,0,, and their cell viability was assayed. Means and SDs from
triplicate experiments are shown: *p < 0.05 and **p < 0.01 (Stu-
dent’s t test).

were not exposed to glucose (Figure 6). Glucose significantly
increased the resistance of C. albicans to high doses of oxidative
stress (>10 mM hydrogen peroxide).

The above-mentioned experiments were performed using
the same C. albicans strain that was used for the transcript
profiling experiments (THE1, Table 1). Therefore, to test
whether glucose-enhanced stress resistance is a general trait
in C. albicans, we examined the impact of glucose upon the
peroxide resistance of eight clinical isolates representing the
four major epidemiological clades of C. albicans (MacCallum
et al., 2009). Whether originally isolated from bloodstream or
the oropharynx (Table 1), all of these strains displayed sig-
nificant glucose-enhanced peroxide resistance (Figure 7), in-
dicating that the positive impact of glucose upon stress
resistance is a general trait in this pathogen.

Roles of Capl, Hogl, and Ras1 in Glucose-Enhanced
Peroxide Stress Resistance

The bZIP transcription factor Cap1 activates oxidative stress
genes via YRE elements in their promoters and is required
for oxidative stress resistance in C. albicans (Alarco and
Raymond, 1999; Nicholls et al., 2004). Also, CAP1 transcript
levels are elevated in glucose-treated C. albicans cells (Figure
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Figure 7. Glucose-enhanced resistance to peroxide stress is a gen-
eral trait in C. albicans. Strains from the four major epidemiological
clades, whether isolated from the blood or oropharynx (Table 1),
display enhanced resistance to oxidative stress (50 mM H,O, for 1 h)
after exposure to 1% glucose for 1 h: glucose-treated cells, closed
bars; control cells grown on lactate, open bars. Means and SDs from
triplicate experiments are shown: *p < 0.05 and **p < 0.01 (Stu-
dent’s t test).
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Figure 8. Role of regulators in glucose-enhanced resistance to
peroxide stress. Isogenic strains (Table 1) were grown to mid-
exponential phase in YPLactate, treated with 1% glucose or lactate
for 1 h, exposed to 25 mM H,O, for 1 h, and then cell viability was
assayed. Means and SDs from triplicate experiments are shown:
*p < 0.05 and **p < 0.01 (Student’s t test).

3), suggesting that Capl contributes to glucose-enhanced
oxidative stress resistance (Figure 6). Therefore, we tested
whether Capl is required for this phenomenon. Congenic C.
albicans wild type (CAI4 and RM1000) and cap1 strains were
pretreated with glucose and then exposed to a high dose of
peroxide (25 mM). The inactivation of Cap1 did not affect the
ability of glucose to increase peroxide resistance (Figure 8).
Therefore, although Capl might contribute to this effect, it is
not required for glucose-enhanced peroxide resistance.

The Hogl SAPK also contributes to oxidative stress resis-
tance in C. albicans (Alonso-Monge et al., 2003; Smith et al.,
2004). Therefore, we tested whether Hogl is required for glu-
cose-enhanced peroxide resistance. The peroxide resistance of
congenic wild-type and hogl strains was compared, revealing
that Hogl is not essential glucose-enhanced peroxide resis-
tance, although hog1 cells displayed reduced resistance to this
oxidative stress. These conclusions were confirmed by the cap1
hog1 double mutant. Although this mutant was more sensitive
to oxidative stress, it still retained the glucose-enhanced per-
oxide resistance phenotype (Figure 8), confirming that neither
Hog1 nor Capl is essential for this effect.

In S. cerevisiae, the Ras-cAMP signaling pathway is acti-
vated by glucose, leading to the down-regulation of oxida-
tive stress resistance, through down-regulation of the tran-
scription factors Yapl, Msn2, and Msn4 (Gounalaki and
Thireos, 1994; Stanhill et al., 1999). The functions of Msn2/4
homologues have diverged in C. albicans and are not involved
in oxidative stress responses in this pathogen (Nicholls et al.,
2004; Ramsdale et al., 2008). Also, the C. albicans homologue of
S. cerevisiae Yap1 was not required for glucose-enhanced per-
oxide resistance (Figure 8). Nevertheless, Ras-cAMP signaling
has been reported to affect the expression of stress genes and
influence stress sensitivity in C. albicans (Harcus et al., 2004;
Bahn et al., 2007; Wilson et al., 2007). Therefore, it was conceiv-
able that Ras-cAMP signaling might mediate the effects of
glucose on peroxide resistance in C. albicans. Hence, we tested
whether this effect was dependent upon Rasl (Figure 8). Rasl
cells were more sensitive to this oxidative stress. However,
glucose still increased the resistance of these ras1 cells to per-
oxide, indicating that this effect was not dependent upon Ras-
cAMP signaling.

Roles of Reactive Oxygen Species and Trehalose in
Glucose-enhanced Peroxide Stress Resistance

The alternative oxidases encoded by AOXla and AOXI1b

contribute to a cyanide-resistant respiratory pathway in C.
albicans (Huh and Kang, 2001). It has been suggested that

Glucose and Stress Resistance in C. albicans
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Figure 9. Relationship between glucose-enhanced stress resis-
tance, trehalose, and ROS levels. (A) Impact of glucose upon intra-
cellular ROS levels (fluorescence units per mg protein) in lactate
grown C. albicans RM1000 cells, open bars, no glucose; closed bars,
1% glucose for 1 h. Data from three independent experiments are
shown. Means and SDs from triplicate assays are shown. (B) Exog-
enous trehalose (1%) does not confer enhanced resistance to perox-
ide stress (50 mM H,0,). Also, Tpsl inactivation (tps1, Table 1) does
not block glucose-enhanced peroxide stress resistance. Means and
SDs from triplicate experiments are shown: *p < 0.05 and **p < 0.01
(Student’s ¢ test).

this pathway helps to protect C. albicans against endoge-
nous reactive oxygen species generated by mitochondrial
respiratory activity (Huh and Kang, 2001). Therefore, we
reasoned that the addition of glucose might cause a respira-
tory burst that could lead to the production of reactive
oxygen species via the alternative oxidases Aoxla and
Aox1b. According to this model, this would trigger an oxi-
dative stress response that would protect against subsequent
expose to high levels of peroxide. We tested this model by
examining the impact of glucose exposure upon the intra-
cellular accumulation of reactive oxygen species. In three
independent experiments C. albicans RM1000 cells exposed
to 1% glucose displayed approximately twofold lower levels
of intracellular reactive oxygen species compared with con-
trol cells (Figure 9A). Furthermore, the inactivation of Aoxla
and Aox1b did not block glucose-enhanced peroxide resis-
tance (Figure 8). These data suggest that glucose-enhanced
peroxide resistance is not mediated via the generation of
reactive oxygen species through a respiratory burst after
glucose exposure.

It is well known that trehalose acts as a stress protectant in
S. cerevisine (Wiemken, 1990). Furthermore, trehalose is
thought to act as a stress protectant in C. albicans (Alvarez-
Peral et al., 2002; Van Dijck et al., 2002; Argtielles, 2006) and
has been shown to protect against severe oxidative stress
(Alvarez-Peral et al., 2002). Also, glucose exposure led to
increased levels of trehalose biosynthetic mRNAs in C. albi-
cans (TPS1-3; Figure 3). Therefore, we wondered whether
trehalose metabolism might contribute to glucose-enhanced
peroxide resistance. We measured intracellular trehalose
levels in exponential lactate-grown C. albicans cells that were
exposed to 0 or 1% glucose for 1 h. No significant difference
in trehalose levels was observed in three independent ex-
periments. RM1000 cells exposed to 1% glucose contained
0.034 = 0.006 nmol trehalose/mg cells, whereas control cells
exposed to 0% glucose had 0.032 * 0.006 nmol trehalose/mg
cells. Similar data were obtained for a second C. albicans
strain (THE1; data not shown). Therefore, despite the in-
crease in TPS mRNA levels, no significant increase in treha-
lose levels was observed in C. albicans after 1 h of glucose
exposure.

We then tested whether the addition of exogenous trehalose
protects lactate-grown C. albicans against peroxide stress. No
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Figure 10. Role of regulators in glucose-enhanced resistance to
cationic stress. C. albicans strains (Table 1) were grown in YPLactate,
treated with glucose or lactate for 1 h, exposed to 1M NaCl for 1 h,
and then cell viability was assayed. Means and SDs from triplicate
experiments are shown: *p < 0.05 and **p < 0.01 (Student’s ¢ test).

significant protection was observed (Figure 9B). Finally, we
tested whether the inactivation of Tpsl, which is required for
trehalose accumulation (Zaragoza et al., 1998), causes the loss of
the glucose-enhanced peroxide resistance phenotype. This was
not the case (Figure 9B). We conclude that, although trehalose
acts as a peroxide stress protectant in C. albicans (Alvarez-Peral
et al., 2002), glucose-enhanced peroxide resistance is not medi-
ated through trehalose accumulation.

Hog1 Is Required for Glucose-enhanced Osmotic Stress
Resistance

Exposure to glucose increases the resistance of C. albicans to
osmotic stress (Figure 5). In S. cerevisine and C. albicans,
adaptation to osmotic stress occurs through the evolution-
arily conserved Hogl SAPK pathway (Brewster et al., 1993;
San Jose et al., 1996; Smith et al., 2004). Therefore, we tested
whether glucose stimulates osmotic stress resistance via this
signaling pathway. A C. albicans hog1 single mutant and hog1
capl double mutant did not display the glucose-enhanced
osmotic stress resistance that was observed for the isogenic
parental strain RM1000 (Figure 10). In contrast, as expected,
an isogenic capl mutant retained this glucose-enhanced os-
motic stress resistant phenotype. Therefore, Hogl is re-
quired for glucose-enhanced osmotic stress resistance.

If Hog1 mediates the effects of glucose upon osmotic stress
resistance, then one would expect this MAP kinase to be-
come activated after glucose exposure. Therefore, we exam-
ined the phosphorylation status of Hogl in glucose-treated
C. albicans cells by Western blotting with a phospho-specific
anti-Hog1 antibody (Figure 11). As a control, we reprobed
these blots for total Hogl. We also confirmed that increased
Hogl phosphorylation occurred in response to osmotic
stress in wild-type cells and that the bands corresponding to
both total and phosphorylated Hogl were absent in a hogl

strain  wild type hog1 wild type
Glu (%) - - - - 0 001 01 10
NaCl (M) - 1 - 1 - - - .
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Figure 11. Hogl is phosphorylated in response to glucose. West-
ern blot of phosphorylated Hog1 detected with an antibody specific
for the phosphorylated version of Hogl (top) reprobed for total
Hogl as an internal loading to control (bottom). C. albicans cells
were untreated, exposed to glucose, or treated with NaCl as a
positive control: wild type, THE-1; Ahog1 (see Table 1).

mutant (Figure 11). Significantly, increased Hog1 phosphor-
ylation was observed in glucose-treated cells, indicating that
Hogl is activated in response to glucose. These observations
are consistent with the idea that the Hogl pathway is acti-
vated in response to glucose, thereby protecting C. albicans
cells against subsequent exposure to an osmotic stress.

DISCUSSION

C. albicans and S. cerevisiae inhabit contrasting niches; there-
fore, these pathogenic and relatively benign yeasts are likely
to experience different patterns of glucose exposure in the
wild. Hence, we predicted that these yeast might have evolved
different responses to glucose. We tested this prediction by
examining the global responses of C. albicans to low (0.01%),
medium (0.1%), and high concentrations of glucose (1%) and
comparing these responses to those of S. cerevisiae under equiv-
alent conditions (Yin et al., 2003). Several notable conclusions
may be drawn from our observations.

First, we conclude that, like S. cerevisiae, C. albicans is
exquisitely sensitive to low concentrations of glucose in the
environment. Dramatic changes in the C. albicans transcrip-
tome were observed within 30 min of cells being exposed to
0.01% glucose. This concentration is significantly lower than
the levels that are homeostatically maintained in human
blood (3-5 mM; equivalent to ~0.06—-0.1% glucose) (Figures
1 and 2). Therefore, C. albicans is able to detect and respond
to the levels of glucose present in the blood during dissem-
inated hematological infections. Not surprisingly, diabetic
patients have an increased risk of systemic Candida infec-
tions (Odds, 1988), and dietary glucose enhances C. albicans
colonization and invasion (Vargas et al., 1993).

Second, we found that C. albicans cells modulate the ex-
pression of metabolic genes even when they are exposed
only to 0.01% glucose. Like S. cerevisiae (Yin et al., 2003), C.
albicans down-regulates genes involved in gluconeogenesis,
the TCA and glyoxylate cycles, and alternative pathways of
carbon assimilation, whereas glycolytic and fermentation
genes are up-regulated (Figure 1). Therefore, C. albicans reg-
ulates the metabolic genes involved in carbon assimilation
even in response to low glucose signals.

These observations seem to contradict earlier reports that
C. albicans is a glucose-insensitive Crabtree-negative yeast.
This definition was based on the observation that C. albicans
continues to respire in the presence of glucose (Aoki and
Ito-Kuwa, 1982; Niimi et al., 1988). However, it is clear that
C. albicans is glucose-sensitive because even low levels of
glucose trigger major changes in the transcriptome (Figures
1 and 2; Supplemental Data). Our conclusion is supported
by analyses of specific glucose-regulated genes (Leuker et al.,
1997; Munro et al., 2001; Barelle et al., 2006; Ramirez and
Lorenz, 2007) and by a microarray study of carbon starva-
tion in C. albicans (Lorenz et al., 2004). Furthermore, C. albi-
cans morphogenesis can be stimulated by glucose concen-
trations of between 0.025 and 0.25% (Hudson et al., 2004;
Maidan et al., 2005). Although these morphogenetic changes
are not relevant to our current study (because our cultures
were grown at 30 not 37°C), these other studies reinforce the
view that C. albicans is a glucose-sensitive yeast.

Third, C. albicans and S. cerevisine display fundamental
differences with regard to the impact of glucose upon their
stress responses. Glucose down-regulates stress responses in
S. cerevisige. In this yeast, glucose activates Ras-cAMP sig-
naling, leading to protein kinase A-mediated phosphoryla-
tion of the transcription factors Msn2 and Msn4, thereby
inhibiting their nuclear accumulation and preventing the
activation of stress genes that carry the cognate general
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Figure 12. Model comparing the effects of glucose upon stress re-
sponses in C. albicans and S. cerevisiae. In S. cerevisiae, glucose represses
stress responses by down-regulating the general stress response
through Msn2 and Msn4, down-regulating the oxidative stress re-
sponse through Yap1, and by repressing the expression of some stress
genes (see text). In C. albicans, Capl and Hogl may contribute to
glucose-enhanced oxidative stress resistance (see text). Hogl is
phosphorylated in response to glucose and is required for glucose-
enhanced cationic stress resistance. The Msn2/4-like proteins Msn4
and Mnl1 do not contribute to oxidative or osmotic stress resistance
in C. albicans (Nicholls et al., 2004). In the C. albicans panel, solid
arrows infer that a factor is required for an effect, whereas dotted
arrows infer that a factor contributes to, but is not essential for that
effect. Gray text infers no obvious role.

stress response element in their promoters (Garreau et al.,
2000; Gorner et al., 2002). Ras-cAMP signaling also regulates
YAP1 (Gounalaki and Thireos, 1994; Stanhill et al., 1999),
which encodes an activator protein-1-like transcription fac-
tor that contributes to the global transcriptional response to
oxidative stress and is essential for resistance to such
stresses (Stephen et al., 1995; Cohen et al., 2002). Glucose also
represses the expression of some stress genes such as ENAI
(Alepuz et al., 1997). Enal is a P-type ATPase Na™ pump, the
inactivation of which increases the sensitivity of S. cerevisiae
cells to cationic stresses (Haro et al., 1991). Therefore in S.
cerevisiae, stress responses are down-regulated by glucose
via several signaling mechanisms (Figure 12). In contrast we
found that some C. albicans stress genes are up-regulated by
glucose (Figures 2 and 3) and that these transcriptomic
changes are reflected in an increased resistance to osmotic
stress, oxidative stress, and an azole antifungal drug (Fig-
ures 4-6).

How does glucose mediate these changes to stress sensi-
tivity in C. albicans? Rasl is not essential for these effects
(Figure 8), reinforcing the view that glucose signaling in this
pathogen differs significantly from its distant benign rela-
tive, S. cerevisiae. Furthermore, the effects of glucose upon
stress resistance are not mediated by an alternative oxidase-
mediated respiratory burst (Figures 8 and 9A). Nor is glu-
cose-enhanced stress resistance mediated by trehalose me-
tabolism (Figures 9B). Instead, Capl and Hogl probably
mediate the impact of glucose upon oxidative stress and
drug resistance. The expression of CAP1, which is required
for oxidative stress and drug resistance (Alarco and Ray-
mond, 1999), was up-regulated by glucose (Figure 3). Hog1,
which also contributes to oxidative stress resistance (Alonso-
Monge et al., 2003; Smith et al., 2004), was activated by
glucose (Figure 11). We favor the idea that Capl and Hogl
fulfil partially redundant roles in mediating glucose-en-
hanced oxidative stress resistance (Figure 12), because this
would explain why neither Capl nor Hogl is essential for
this effect (Figure 8).

The impact of glucose upon osmotic stress resistance
seems to be mediated through Hogl. Glucose stimulates the
phosphorylation and activation of C. albicans Hogl (Figure
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11). Furthermore, the inactivation of Hogl blocks glucose-
enhanced osmotic stress resistance (Figure 10). Previously,
we showed that in C. albicans, the ENA21 GPD2, TPS2, and
TPS3 genes are up-regulated in response to osmotic stress
and that Hog1 is required for their activation (Enjalbert ef al.,
2006). Therefore, it is already known that Hogl mediates the
up-regulation of genes encoding cation transporters and
enzymes involved in glycerol and trehalose biosynthesis in
response to an osmotic stress. We now suggest that cation
transporters and glycerol and trehalose biosynthetic en-
zymes are up-regulated in response to glucose through
Hogl, thereby protecting C. albicans from subsequent expo-
sure to cationic stress.

It is well known that Capl and Hogl are required for
osmotic and oxidative stress resistance (San Jose ef al., 1996;
Alarco and Raymond, 1999; Alonso-Monge et al., 2003; Smith
et al., 2004). However, we noted that capl and hog1 cells did
not display decreased resistance to the osmotic and oxida-
tive stresses examined in this study compared with their
isogenic controls (Figures 8 and 10). Differences in the stress
resistance assays may account for this apparent contradic-
tion. Previous studies assayed resistance by monitoring
growth on plates over days in the presence of stress. In
contrast, to investigate the immediate effects of glucose, we
assayed cell viability after 1 h of exposure to each stress. We
suggest that although Capl and Hogl are required for the
adaptive responses that allow C. albicans cells to recover and
grow in the presence of osmotic and oxidative stresses, these
regulators may not be essential for the immediate responses
of C. albicans to these stresses.

Our findings indicate that C. albicans has evolved molec-
ular mechanisms that link glucose responses to oxidative
and osmotic stress resistance. We suggest that this might be
of relevance to the infection process. For example, when
invasive C. albicans cells enter the bloodstream they will
become prone to attack by blood-borne phagocytes. These
phagocytes generate an oxidative burst that is a primary line
of defense against Candida infections (Sasada and Johnston,
1980; Murphy, 1991; Vasquez-Torres and Balish, 1997). Neu-
trophil killing also depends upon the influx of cations into
the phagocytic vacuole (Reeves et al., 2002). However, upon
entry into the bloodstream, C. albicans cells will also become
exposed to glucose. Our data indicate that this glucose ex-
posure will increase the resistance of these C. albicans cells to
oxidative and cationic stresses and hence may protect them
against immediate attack from phagocytic leukocytes. This
is entirely consistent with the interesting recent hypothesis
that “microorganisms may have evolved to anticipate envi-
ronmental stimuli by adapting to their temporal order of
appearance” (Mitchell et al., 2009).

Our findings also help to account for the high degree of
metabolic heterogeneity of C. albicans populations growing
in infected tissue (Barelle et al., 2006). The majority of C.
albicans cells infecting the mouse kidney express glycolytic
genes, suggesting that they assimilate carbon primarily via
glycolysis. However, a significant proportion of these cells
exhibit gluconeogenic growth (Barelle et al., 2006). Our data
suggest that the differential exposure of C. albicans cells to
glucose within these complex microenvironments probably
contributes to this metabolic heterogeneity.
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