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Abstract—This paper addresses the problem of efficiently
jointly representing a non-stationary multicomponent signal in
time and frequency. We introduce a novel enhancement of the
time-reassigned synchrosqueezing method designed to compute
sharpened and reversible representations of impulsive or strongly
modulated signals. After establishing theoretical relations of the
new proposed method with our previous results, we illustrate in
numerical experiments the improvement brought by our proposal
when applied on both synthetic and real-world signals. Our
experiments deal with an analysis of the Draupner wave record
for which we provide pioneered time-frequency analysis results.

I. INTRODUCTION

Time-frequency and time-scale analysis [1], [2], [3], [4] aim
at developing efficient and innovative methods to deal with
non-stationary multicomponent signals. Among the common
approaches, the Short-Time Fourier Transform (STFT) and the
Continuous Wavelet Transform (CWT) [5] are the simplest
linear transforms which have been intensively applied in
various applications such as audio [6], biomedical [7], seismic
or radar.

Unfortunately, these tools are limited by the Heisenberg-
Gabor uncertainty principle. As a consequence, the resulting
representations are blurred with a poor energy concentration
and require a trade-off between the accuracy of the time or
frequency localization. Another approach, the reassignment
method [8], [9] was introduced as a mathematically elegant
and efficient solution to improve the readability of a time-
frequency representation (TFR). The inconvenience is that
reassignment provides non-invertible TFRs which limits its
interest to analysis or modeling applications.

More recently, synchrosqueezing [10], [11] was introduced
as a variant of the reassignment technique due to its capability
to provide sharpen and reversible TFRs. This reconstruction ca-
pability make this method continuously gaining interest since
it paves the way of an infinite number of synchrosqueezing-
based applications such as noise removal [12], signal compo-
nents extraction or separation [10], [13], [14], [4].

Nowadays, efforts are made to efficiently compute the
synchrosqueezed version of several linear transforms such
as STFT, CWT or S-transform [15], [16] and to improve the
localization of strongly modulated signals using enhanced in-
stantaneous frequency estimators [17], [18], [19]. To deal with
impulses and strongly modulated signals, a new variant of the
synchrosqueezing was introduced and called time-reassigned

synchrosqueezing method [20]. However, this method cannot
efficiently deal with mixed-content signals containing both
impulsive and periodic components.

In the present paper, we propose to introduce a novel
transform called the second-order horizontal synchrosqueezing
aiming to improve the energy localization and the readabil-
ity of the time-reassigned synchrosqueezing while remaining
reversible. To this end, we use an enhanced group-delay
estimator which can be mathematically related to our previous
results [18].

This paper is organized as follows. In Section II, the proper
definitions of the considered transforms with their properties
are presented. In Section III, we introduce our new second-
order time-reassigned synchrosqueezing transform. Section IV
presents numerical experiments involving both synthetic and
real-world signals. Finally, future work directions are given in
Section V.

II. TIME-REASSIGNED SYNCHROSQUEEZING IN A
NUTSHELL

A. Definitions and properties

We define the STFT of a signal x as a function of time t and
frequency ω computed using a differentiable analysis window
h as:

Fhx (t, ω) =

∫
R
x(τ)h(t− τ)∗ e−jωτ dτ (1)

where j2 =−1 is the imaginary unit and z∗ is the complex
conjugate of z. A TFR also called spectrogram is defined as
|Fhx (t, ω)|2. Thus, the marginalization over time of Fhx (t, ω)
leads to:∫

R
Fhx (t, ω) dt =

∫∫
R2

h(t− τ)∗x(τ) e−jωτ dtdτ (2)

=

∫∫
R2

h(u)∗x(τ) e−jωτdudτ (3)

=

∫
R
h(u)∗du

∫
R
x(τ) e−jωτdτ (4)

= Fh(0)∗Fx(ω) (5)

with Fx(ω)=
∫
R x(t) e−jωt dt the Fourier transform of signal

x. Now, from Eq. (5) one can compute the Fourier Transform
of x as:

Fx(ω) =
1

Fh(0)∗

∫
R
Fhx (t, ω) dt (6)



and the following signal reconstruction formula can be de-
duced after applying the Fourier inversion formula:

x(t) =
1

2πFh(0)∗

∫∫
R2

Fhx (τ, ω) ejωtdτdω. (7)

B. Reassignment

To improve the readability of a TFR, reassignment moves
the signal energy according to: (t, ω) 7→ (t̂x(t,ω), ω̂x(t,ω)),
where t̂x(t, ω) is a group-delay estimator and ω̂x(t, ω) is an
instantaneous frequency estimator [9]. Both time-frequency
reassignment operators t̂ and ω̂ can be computed as follows
in the STFT case [21], [16]:

t̂x(t,ω) = Re
(
t̃x(t,ω)

)
,with t̃x(t,ω) =t− F T hx (t,ω)

Fhx (t,ω)
(8)

ω̂x(t,ω) = Im (ω̃x(t,ω)) ,with ω̃x(t,ω)=jω +
FDhx (t,ω)

Fhx (t,ω)
(9)

where T h(t)= th(t) and Dh(t)= dh
dt (t) are modified versions

of the analysis window h.
Finally, a reassigned spectrogram can be computed as

RFhx(t, ω) =∫∫
R2

|Fhx (τ,Ω)|2δ
(
t− t̂x(τ,Ω)

)
δ (ω − ω̂x(τ,Ω)) dτdΩ.

(10)
The resulting reassigned spectrogram RFx(t, ω) is a sharp-

ened but non-reversible TFR due to the loss of the phase
information.

C. Time-reassigned synchrosqueezed STFT

To overcome the problem of non reversibility, syn-
chrosqueezing proposes to move the signal transform instead
of its energy, to preserve the phase information of the original
transform.

Hence, time-reassigned synchrosqueezed STFT can be de-
fined as [20]:

Shx (t, ω) =

∫
R
Fhx (τ, ω)δ

(
t− t̂x(τ, ω)

)
dτ (11)

where t̂x(t, ω) corresponds to the time reassignment operator
which is classically computed using Eq. (8).

The marginalization over time of the resulting transform
leads to:∫

R
Shx (t, ω)dt =

∫∫
R2

Fhx (τ, ω)δ
(
t− t̂x(τ, ω)

)
dtdτ (12)

=

∫
R
Fhx (τ, ω)dτ = Fh(0)∗Fx(ω). (13)

Hence, an exact signal reconstruction from its syn-
chrosqueezed STFT can be deduced from Eq. (13) as:

x(t) =
1

2πFh(0)∗

∫∫
R2

Shx (τ, ω) ejωt dτdω. (14)

III. SECOND-ORDER HORIZONTAL SYNCHROSQUEEZING

A. Enhanced group-delay estimation

Let’s consider a linear chirp signal model expressed as [18]:

x(t) = eλx(t)+jφx(t) (15)

with λx(t) = lx + µxt+ νx
t2

2
(16)

and φx(t) = ϕx + ωxt+ αx
t2

2
(17)

where λx(t) and φx(t) respectively stand for the log-amplitude
and phase and with qx = νx+jαx and px = µx+jωx. For such
a signal, it can be shown [18] that px = ω̃x(t,ω) − qx t̃x(t,ω),
and therefore:

ωx = Im(ω̃x(t,ω)−qx t̃x(t,ω)) = ω̂x(t,ω)− Im(qx t̃x(t,ω)) (18)

The proposed second-order horizontal synchrosqueezing con-
sists in moving Fhx (t,ω) from the point (t,ω) to the point (t(2)x ,ω)

located on the instantaneous frequency curve, i.e. such that
φ̇(t

(2)
x )= dφx

dt (t
(2)
x ) = ωx + αxt

(2)
x = ω. This leads to:

t(2)
x =

ω − ωx
αx

= t̂x(t,ω) +
ω − ω̂x(t,ω)

αx
+
νx
αx

Im(t̃x(t,ω)) (19)

which can be estimated by:

t̂(2)
x (t,ω)=

{
ω−ω̂x(t,ω)+Im(q̂x(t,ω) t̃x(t,ω))

α̂x(t,ω) if α̂x(t,ω) 6=0

t̂x(t, ω) otherwise
(20)

where q̂x(t,ω) = ν̂x(t,ω) + jα̂x(t,ω) is an unbiased estimator
of qx. This expression can be compared to the second-order
group delay estimator introduced by Oberlin et al. [17]

t̂(2b)x (t,ω) =

{
t̂x(t, ω) + ω−ω̂x(t,ω)

α̂x(t,ω) if α̂x(t,ω) 6=0

t̂x(t, ω) otherwise
. (21)

It can be shown using Eq.(19) that this estimator is biased
when νx= d2λx

dt2 (t) 6= 0.
Finally, a new second-order horizontal synchrosqueezing

transform can thus be obtained using Eq.(11) by replacing
the group-delay estimator t̂(t, ω) by our enhanced estimator
given by Eq.(20).

B. Theoretical considerations and computation issue

In [18], [22] we introduced two families of unbiased es-
timators called (tn) and (ωn) involving n-order derivatives
(n≥ 2) respect to time (resp. to frequency) which enable to
compute Eqs. (20) and (21):

q̂(tn)
x (t, ω) =

FD
nh

x Fhx − FD
n−1h

x FDhx
F T hx FDn−1h

x − F T Dn−1h
x Fhx

(22)

q̂(ωn)
x (t, ω) =

(F T
n−1Dh

x + (n−1)F T
n−2h

x )Fhx − F T
n−1h

x FDhx
F T n−1h
x F T hx − F T nh

x Fhx
(23)

with Dnh(t) = dnh
dtn (t) and T nh(t) = tnh(t). Our preliminary

investigations [22] showed a slight improvement using the
(ω2) estimator in terms of accuracy in comparison to higher-
order and (tn) estimators.
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(a) spectrogram
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(b) synchrosqueezing
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(c) second-order vertical synchrosqueezing
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(d) reassigned spectrogram
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(e) time-reassigned synchrosqueezing
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(f) second-order horizontal synchrosqueezing

Fig. 1. Comparisons of the resulting TFRs of a synthetic multicomponent signal. The TFRs obtained using the synchrosqueezing methods (b),(c), (e) and (f)
correpond to their squared modulus.

Our implementations use the discrete-time reformulations
of our previously described expressions combined with
the rectangle approximation method. Thus Fhx [k,m] ≈
Fhx ( k

Fs
, 2πmFs

M ), where Fs denotes the sampling frequency,
k ∈ Z is the time sample index and m ∈ M is the discrete
frequency bin. The number of frequency bins M is chosen as
an even number such as M = [−M/2 + 1;M/2]. It results
that our method has the same computational complexity of the
previously introduced second-order vertical synchrosqueezing.

The proposed method is valid for any differentiable analysis
window. In our implementation1, the STFT uses a Gaussian
window and is also called Gabor transform. The window
function is expressed as h(t) = 1√

2πT
e−

t2

2T2 where T is the
time-spread of the window which can be related to L = TFs.

IV. NUMERICAL RESULTS

A. Analysis of a synthetic signal

In this experiment, we consider a synthetic 500-sample-long
multicomponent real-valued signal made of two impulses, one
sinusoid, one chirp and one sinusoidally modulated sinusoid.
Fig. 1 compares the following TFRs: spectrogram, reassigned
spectrogram, classical (frequency-reassigned) synchrosqueez-
ing, second-order vertical synchrosqueezing, time-reassigned

1matlab code freely available at: http://www.fourer.fr

synchrosqueezing and second-order time-reassigned horizontal
synchrosqueezing. Our computations use M = 600, L = 8
and a Signal-to-Noise Ratio (SNR) equal to 25 dB obtained
by the addition of a Gaussian white noise. The local mod-
ulation estimator q̂(ω2)

x is used for computing both second-
order synchrosqueezing methods. The TFRs provided by the
previously proposed methods are computed using the matlab
implementions provided by the ASTRES toolbox [16].

The results clearly illustrate the improvement of the new
second-order time-reassigned synchrosqueezing over the time-
reassigned synchrosqueezing for representing the whole signal.
When compared with frequency-reassigned synchrosqueezing
methods, our new method has the advantage to perfectly lo-
calize the two impulses while providing a sharpened represen-
tation of the chirp and of the sinusoidally modulated sinusoid.
Unfortunately, as for the time-reassigned synchrosqueezing,
our method cannot localize the non-modulated sinusoid (such
signal is rare in the real world). To assess the signal recon-
struction capability, we compare in Table I the Reconstruc-
tion Quality Factor (RQF) of each TFR computed using [15]:
RQF = 10 log10

( ∑
n |x[n]|2∑

n |x[n]−x̂[n]|2

)
. Thus, our results show

again the advantage of the time-reassigned synchrosqueezing
methods which obtain significantly higher RQF (if M is chosen
at least equal to the signal length) due to its theoretically exact
reconstruction formula.
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(b) synchrosqueezing
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(c) second-order vertical synchrosqueezing
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(d) spectrogram
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(e) time-reassigned synchrosqueezing
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(f) second-order horizontal synchrosqueezing

Fig. 2. Waveform (a) and TFRs of the Draupner wave signal. spectrogram (d), synchrosqueezing (b), second-order vertical synchrosqueezing (c), time-reassigned
synchrosqueezing (e) and second-order horizontal synchrosqueezing (f).

TABLE I
SIGNAL RECONSTRUCTION QUALITY OBTAINED FOR THE REVERSIBLE

TFRS PRESENTED IN FIG. 1.

Method RQF (dB)
STFT 269.27
classical synchrosqueezing 35.89
second-order vertical synchrosqueezing 23.80
time-reassigned synchrosqueezing 116.67
second-order time-reassigned synchrosqueezing 116.67

B. Draupner wave signal analysis

Now we consider a record of a possible freak wave event
measured on the Draupner Platform in 1995 [23]. The signal
displayed in Fig. 2(a) corresponds to the sea surface elevation
deduced from the measures provided by a wave sensors
consisting of a down-looking laser. The sampling frequency
of this signal is Fs = 2.13 Hz and its duration is 20 minutes.

1) Time-frequency representation: Fig. 2 compares the
resulting TFRs provided by the STFT and its different syn-
chrosqueezed versions (i.e. all the combination of the first-
and second-order of the frequency-reassigned and time-
reassigned). For our numerical results, we empirically choose
M = 2660 and L = 25 which provide sufficiently readable
results. In order to focus to the impulsive part of the signal,
we have limited the analysis between 0.2 Hz and 1 Hz. As

expected, the second-order time-reassigned synchrosqueezing
provides the best representation to localize the 4 impulses
visible in the signal. Interestingly, our results reveal the main
impulse located at t1 ≈ 4.39 min (also visible in Fig. 2(a))
but also 3 supplementary impulses respectively located at
t2 ≈ 7.72 min, t3 ≈ 13.36 min and t4 ≈ 19.47 min. These
impulses were almost invisible in the waveform representation
of the signal but have been revealed by our proposed time-
frequency analysis methods.

2) Impulses detection and disentangling: Now we propose
to use the synchrosqueezing signal reconstruction capability
for recovering the 4 impulse signals. To this end, we compute
a saliency function defined as the root mean square of the
marginal over frequency band Ω = [0.4; 1] Hz of the signal
energy contained in its synchrosqueezing transform:

G(t) =

(∫
Ω

|Shx (t, ω)|2dω
) 1

2

. (24)

A binary masked version of the transform Shx (t, ω) can thus
be computed using G(t) as:

Ŝ(t, ω) =

{
Shx (t, ω) if G(t) > Γ

0 otherwise
. (25)

where Γ is a defined threshold. Finally the components are
extracted by applying the reconstruction formula given by



Eq.(14) on Ŝ(t, ω). Our numerical computation presented in
Fig. 3 uses Γ = 3.37 which corresponds to 5 times the mean
value of G(t). It allows us to recover the impulses locations
through a peak picking and to reconstruct the corresponding
waveform signal initially merged in the whole signal.
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Fig. 3. Saliency function G(t) deduced from second-order horizontal syn-
chrosqueezed STFT (a) and reconstructed signal after applying mask on time-
reassigned synchrosqueezed STFT.

V. CONCLUSION AND FUTURE WORK

A new extension of the time-reassigned synchrosqueez-
ing called second-order horizontal synchrosqueezing was in-
troduced for the STFT. Our experiments show a signifi-
cant improvement to compute invertible and sharpened time-
frequency representations of impulsive signals which cannot
be addressed by vertical synchrosqueezing. Moreover, we have
shown the efficiency of this technique when applied on both
synthetic and real-word signals. In fact, our method helped
to discover new signal components in the Draupner wave
signal which could probably help to better understand the phe-
nomenon of freak waves. Future work consist in theoretically
strengthening this method, and developing new applications.
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