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Abstract

Continuous-time dynamical systems play a crucial role in the study or the de-
sign of systems in various domains. Checking the satisfaction of properties on
these systems is important in particular in robotics or control-command systems.
Constraint satisfaction problems is a well-suited framework for this purpose and
recent papers extend this framework to deal with differential constraints. This ar-
ticle proposes an improvement of constraint differential satisfaction framework by
providing a new solving algorithm based on interval Boolean functions.

1 Introduction
Continuous-time dynamical systems play a crucial role in the study or the design
of systems in various domains. In particular, prediction of behaviors of systems
or satisfaction of properties can be obtained using numerical simulation methods
applied to these mathematical models.

Recently, an extension of constraint satisfaction problem (CSP) has been pro-
posed in [2] to deal with dynamical systems which can be used to check tempo-
ral properties. This framework named Set-based Constraint Satisfaction Differ-
ential Problems (SCSDP) has as main feature the use of set-based constraints in
order to have specification robustness against bounded uncertainties and also to
have model robustness against model approximation. In consequence, this frame-
work increases reliability of the computed solutions with respect to the real system.
These two concepts are explained in the following paragraphs.

Properties of systems, or a specification, are usually given with margins in
order to ensure safety or to increase robustness. For example, for autonomous
vehicle reaching a particular point x in a map is given up to a given precision δ

as sensors produce approximate information on the environment. In consequence,
system properties are usually defined over sets of admissible behaviors, i.e., a vehi-
cle is considered to have reached x if its position p is such that x−δ 6 p 6 x+δ .
Nonetheless, the combination of inequalities in classical CSP framework can be
used to model such properties but may also lead to equality relation as in x >
0∧ x 6 0. Usually, such equality constraints require relaxation techniques in CSP
solver, i.e., x ∈ [−ε,ε]. This relaxation should not be taken place inside solving
algorithm, which usually applies the same relaxation for all equality constraints,
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but instead specification should be written in order to emphasize the margins that
is important for the properties.

A system model M is usually only an approximation of the true system S,
especially for continuous-time systems defined by ordinary differential equations
(ODEs), where some unknown data have to be considered. For example, the po-
sition of a mobile robot is usually known up to a given precision depending on
sensors. In the framework of bounded uncertainties, such data are represented by
bounded sets and so the model M will be associated with a set of possible trajec-
tories. Hence, properties on M should consider sets of values instead of a single
value.

The main contribution of this article is to defined a new solving algorithm for
SCSDP based on interval Boolean function. This improvement in regards to the
solving algorithm presented in [2] allows for a simplification of the construction
of complex constraints which may involve disjunctive logical operator.

2 Set-based Constraint Satisfaction Differential
Problems
In [2], a general class of differential equations are considered which can represent
ODEs, Differential Algebraic Equations (DAEs) of index 1, and a mix of these
equations with additional constraints, e.g., to model energy preservation. More
precisely, differential systems are of the form

ẏ(t) = F(t,y(t),x(t),p),
0 = G(t,y(t),x(t))
0 = H(y(t),x(t))

. (1)

Non-linear functions F : R×Rn×Rm×Rp → Rn, G : R×Rn×Rm → Rm, H :
Rn×Rm→ R, t ∈ [0, tend], y(0) ∈ Y0 and p ∈P are considered. More precisely,
Initial Value Problems (IVP) for parametrized differential equations are consid-
ered over a finite time horizon [0, tend]. Note that a bounded set of initial values
and a bounded set of parameters are considered in this framework. This necessi-
tates dealing with set of trajectories solution of Equation (1). We assume classical
hypothesis on F, Q, and H to ensure the existence and uniqueness of the solution
of Equation (1).

We denote by Y (T ,Y0,P) the solution set

Y (T ,Y0,P) = {y(t;y0,p) | t ∈T ,y0 ∈ Y0,p ∈P} . (2)

Intuitively, Y (T ,Y0,P) gathers all the points reached by the solution y(t;y0,p)
of Equation (1) starting from all scalar initial values y0 and all scalar parameters
p. The proposed framework aims at checking if Y (T ,Y0,P) fulfills some spec-
ification defined in terms of set-based constraints.

To avoid problematic issue due to equality constraints set-based constraints are
considered. More precisely, inclusion and intersection operators are considered.
More precisely, constraints of the form

g(A )⊆B and g(A )∩B = /0,
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where A and B are real compact sets and g : Rn → Rm is a non-linear function.
The lifting of g to sets is defined as usual by g(X ) = {g(x) : x ∈X }.

Note that these constraints can be seen as Boolean functions but while, from a
mathematical formulation, the truth value always exist, it may not be the case when
they can be computed. The contribution of this article is to give a formulation of
theses constraints in terms of interval test function considering interval Boolean
values, see Section 3.

The handling of differential constraints here follows the approach given in [3]
in the exception of the solution operator of Equation (1), which is here repre-
sented as a set of solution Y (T ,Y0,P) in order to unify the objects manipulated
into constraints which are also sets. Set-based Constraints Satisfaction Differential
Problems (SCSDP) based on a set-membership constraints and embedding differ-
ential constraints can now be defined.

Definition 1 (SCSDP) A SCSDP is a NCSP made of

• a finite set S of differential systems Si as defined in Equation (1).

• a finite set of variables V including the parameters of the differential systems
Si, i.e., (y0,p), a time variable t and some other algebraic variables q;

• a domain D made of the domain of parameters p : Dp, of initial values
y0 : Dy0 , of the time horizon t : Dt , and the domains of algebraic variables
Dq;

• a set of constraints C which may be defined by inclusion or disjunction con-
straints over variables of V and special variables Yi(Dt ,Dy0 ,Dp) repre-
senting the set of the solution of Si in S .

3 Interval Inclusion Test for SCSDP
Presented in [4], inclusion tests can be used to prove that all points in a box verify
a property. These tests exploit the notion of interval Boolean values. The Boolean
set is defined such that B = {false,true} = {0,1}. An interval Boolean is a
subset of B, i.e., an element of the interval Boolean set IB= { /0, [0,0], [1,1], [0,1]}.
The particular values /0 and [0,1], standing for the set {0,1}, mean, respectively,
impossible and undetermined.

The operations on Booleans are extended to interval Booleans. If [a]∈ IB and
[b] ∈ IB, the operations are defined such that:

• [a]∧ [b] = {a∧b | a ∈ [a],b ∈ [b]};
• [a]∨ [b] = {a∨b | a ∈ [a],b ∈ [b]};
• ¬[a] = {¬a | a ∈ [a]}.

The behavior of undetermined interval of interval Boolean values is as follow:
0∧ [0,1] = 0, 1∧ [0,1] = [0,1], 0∨ [0,1] = [0,1], 1∨ [0,1] = 1.

A test function t maps Rn to B. The interval extension of t is the inclusion test
[t] mapping IRn to IB, such that for any [x] ∈ IRn:

• ([t]([x]) = 1)⇒ (∀x ∈ [x], t(x) = 1)

• ([t]([x]) = 0)⇒ (∀x ∈ [x], t(x) = 0)
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Example 1 Consider the simple test t : R→{0,1} such that

t : x 7→ x < 2

such that t(x) = 0 if x≥ 2 and t(x) = 1 otherwise. The associated inclusion test is
[t] : IR→ IB such that

[t] : [x] 7→ [x]< 2
[t]([x]) = 0 if x≥ 2, [t]([x]) = 1 if x< 2, and [t]([x]) = [0,1] otherwise. For example,
[t]([1,3]) = [0,1].

Inclusion tests for sets can also be defined. Let A be a subset of Rn, an inclusion
test [tA ] for A is an inclusion test for the test tA (x) ⇐⇒ (x ∈ A ), i.e., [tA ]
satisfies:

• [tA ]([x]) = 1⇒ (∀x ∈ [x], tA (x) = 1) ⇐⇒ ([x]⊂A );
• [tA ]([x]) = 0⇒ (∀x ∈ [x], tA (x) = 0) ⇐⇒ ([x]∩A = /0);
• [tA ]([x]) = [0,1] (nothing can be determined) about the inclusion of [x] in

A .

Contribution: We propose to transpose the approach based on interval Booleans
for the inclusion test to the SCSDP. Operations 2 on sets used to define SCSDP
have been transposed to intervals in a previous paper [2], with evaluation still in
Boolean set B. In order to obtain a unified formalism, with easier soundness un-
derstanding and larger expressivity, we propose here to use interval Booleans.

Operations we consider in our SCSDP formalism is as follow:

• [t]g,A ,B = 1⇒ (∀x ∈A ,g(x) ∈B) ⇐⇒ g(A )⊂B;
• [t]g,A ,B = 0⇒ (∀x ∈A ,g(x) /∈B) ⇐⇒ g(A )∩B = /0;
• [t]g,A ,B = [0,1] nothing can be determined.

Example 2 The following Boolean formula φ can be defined

φ ≡
(
[t]g,A ,B ∨ [t]f,A ,C

)
∧ [t]h,C ,B

Remark in SCSDP, the set A can be the set Y (T ,Y0,P) to define dynamical
constraints. In that case, A is parametrized by t. Hence, quantification over time
can be considered, e.g., to check that the set of trajectories is inclued in a particu-
luar safety set B for all time or that the solution reaches a particular set at a given
time.

Solving a problem as given in Example 2 means determining sets A , B,
and C such that the formula φ is satisfied. With interval methods, it is common
to enclose a set by an inner and an outer paving [4] with a branching algorithm.
The algorithm presented in Algorithm 1 is able to solve a SCSDP assuming that
Formula is an interval Boolean function.

4 Conclusion
An extension of the Set-based Constraints Satisfaction Differential Problems is
proposed in this paper. The main idea is to equip the formalism with a full interval-
based approach by considering interval of Boolean values. It provides a clearer
soundness and a larger expressivity. Moreover, a basic branching algorithm can be
used to solve a SCSDP, even if disjunctive logic operations appear in constraints.
We are currently implementing the presented contribution in DynIbex [1]. As fu-
ture work, experimentation will be performed.
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Algorithm 1 Branching algorithm for SCSDP
Require: Stack = X , Stackin, Stackout , Formula

while Stack 6= /0 do
Pop [x] in Stack
Solve differential equation with [x]
if Formula([x]) = [1,1] then

Push [x] in Stackin
else if Formula([x]) = [0,0] then

Push [x] in Stackout
else if width([x])> ε then

[x] = [x1]∪ [x2]
Push [x1] and [x2] in Stack

end if
end while
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