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Abstract6

In this work we perform a-priori analyses of the Discontinuous Galerkin (DG) Variational Mul-7

tiscale (VMS) method for Large Eddy Simulation (LES). An analytical framework is introduced8

to study the ideal energy transfer between resolved and unresolved scales. The proposed frame-9

work is consistent with the discretization employed for the DG-LES simulations. The concept10

of modal eddy viscosity is also introduced which can be employed for the a-priori analysis of11

the DG-VMS method or spectral vanishing viscosity approaches. The developed framework is12

then applied to the analysis of the energy transfer in DG-LES by employing a DNS database of13

the Taylor-Green Vortex (TGV) at Re = 5 000, 20 000 and 40 000. A-priori analyses are carried14

out for three variants of the DG-VMS approach: the small-small [1], Vreman [2], and all-all15

variants [3]. The performed analysis demonstrates that when the DG-LES resolution limit falls16

at the beginning of the dissipation range the assumption of large scales free of interaction with17

the unresolved scales is valid and the DG-VMS approach can replicate the ideal SGS dissipa-18

tion spectrum. For coarser resolutions, typical of LES at high Reynolds numbers, the DG-VMS19

approach is unable to replicate the ideal energy transfer mechanism at the large-resolved scales.20

It is shown, a-priori, that a more accurate agreement can be obtained by employing a mixed21

Smagorinsky and DG-VMS approach with a fixed value of the scale-fraction parameter.22

Keywords: High-order, discontinuous Galerkin, Variational Multiscale, a-priori analysis,23

spectral energy transfer24

1. Introduction25

Large Eddy Simulation (LES) is a well established methodology for the prediction of tur-26

bulent flows for applications ranging from fundamental research to industrial design [4, 5, 6].27

The working principle of LES is to resolve only the large-scale turbulent eddies and model the28

effect of the unresolved scales by means of a subgrid-scale (SGS) closure, thereby reducing the29

computational cost of simulations with respect to Direct Numerical Simulation (DNS).30

One of the fundamental traits of turbulence, that must be correctly reproduced by SGS mod-31

els, is the physical mechanism of energy transfer between the resolved turbulent scales and the32

unresolved scales. This energy transfer mechanism can be studied by analysing the non-linear33
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interaction of the full velocity field such as that obtained from DNS or by theoretical analyses by34

employing an analytical energy spectrum.35

Early theoretical analyses of the energy transfer mechanisms in turbulent flows were per-36

formed by Heisenberg [7] and Kraichnan [8]. These studies involved the choice of an analytical37

energy spectrum and an arbitrary convolution filter to separate resolved and unresolved scales38

and evaluate the corresponding non linear interactions and energy transfer. The energy transfer39

mechanism was represented by means of an additional spectral eddy viscosity acting on the re-40

solved modes. Kraichnan [8] employed a sharp cut-off filter in Fourier space to separate resolved41

and unresolved scales in theoretical turbulence characterized by an infinite inertial range (i. e. as-42

suming infinite Reynolds number). Under these conditions, Kraichnan identified the presence43

of a cusp in the spectral eddy viscosity, near the cut-off, and a plateau at lower wavenumbers,44

which is a manifestation of the significant interaction between the unresolved scales and the large45

resolved scales away from the cut-off.46

A-priori numerical analyses were carried out by Domaradzki et al. [9] based on DNS of the47

Taylor-Green Vortex (TGV) flow at Re = 3 000 by applying a sharp spectral filter to define the48

ideal LES solution. This work confirmed the presence of the cusp of the spectral eddy viscosity49

near the cut-off. However, differently from the studies of Kraichnan, a negligible energy transfer50

was observed at relatively lower wavenumbers. A similar result was observed by McComb and51

Young [10] who analysed the spectral eddy viscosity for homogeneous isotropic turbulence at52

microscale Reynolds number Reλ = 190. In their work a plateau in the eddy viscosity was ob-53

served only for the coarsest resolution, indicating a negligible interaction between large resolved54

and unresolved scales. In contrast, Métais and Lesieur [11] identified a plateau in the spectral55

eddy viscosity evaluated from an LES of homogeneous isotropic turbulence at infinite Reynolds56

number.57

Using a-priori testing, the ideal energy transfer and the effective eddy viscosity obtained58

by applying the LES filter to DNS data can be employed to evaluate SGS models and aid in59

their improvement. As an example, the Smagorinsky model [12], still widely employed due to60

its simplicity and robustness, has been shown in a-priori analyses to be overdissipative on the61

large-scale structures, confirming the observations from a-posteriori tests [13]. Using the same62

approach, it has been shown that even though its dynamic variant by Germano et al. [14] is able63

to provide the correct global SGS dissipation and near-wall scaling, it fails to reproduce the ideal64

energy transfer spectrum (also called SGS dissipation spectrum). Indeed, it introduces an insuf-65

ficient amount of dissipation at high frequencies while exhibiting an overdissipative behaviour at66

low frequencies as shown e. g. by Hughes et al. [15].67

A number of new SGS models have been developed with the aim of reducing these short-68

comings of traditional LES techniques. One such model is the Variational Multiscale (VMS)69

approach proposed by Hughes et al. [16]. The VMS approach advocates the strict separation of70

the resolved velocity field into a large-scale component, containing the largest coherent struc-71

tures of the flow, and a small-scale component by means of a high-pass projection filter. The72

model then relies on the spectral gap assumption such that the large resolved scales are assumed73

to be virtually free of SGS dissipation. Thus the model (e. g. the Smagorinsky model or its74

dynamic version) only acts on the small-scale resolved component of the velocity field. This75

approach therefore mimics the ideal energy transfer mechanism as described by Domaradzki76

et al. [9]. The VMS approach, originally developed in the context of stabilized finite element77

(FE) and spectral methods, has demonstrated very accurate results in the simulation of several78

turbulent flow configurations and has since been extended to finite volume (FV) and spectral79

element type methods such as the discontinuous Galerkin (DG) method. We refer to the reviews80
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of Gravemeier [17], Ahmed et al. [18] and Rasthofer and Gravemeier [19] for an overview of the81

VMS approach and several variants that have been proposed by other authors.82

The combination of the VMS approach with DG methods in particular presents several prop-83

erties which are of great interest for the improvement of the quality and efficiency of LES [20].84

The DG methods have rapidly gained popularity for scale-resolving simulations due to their ex-85

cellent scalability and their ability to achieve high-order accuracy on general meshes [21]. The86

variational framework on which these methods rely allows for the local separation of scales us-87

ing polynomial basis functions, which can be employed for multi-level methods and the VMS88

approach. In contrast to the spectral method, the DG framework allows for the efficient separa-89

tion of scales even while working on completely unstructured meshes without requiring complex90

spatial filters. Moreover, the high-order polynomial representation of the solution allows for a91

higher flexibility in the decomposition into large and small scale components, as compared to92

FV and low order FE methods. Finally, the use of discontinuous solution spaces allows for the93

straightforward local adaptation of the scale-separation operator.94

There are however still several open questions which require specific analysis in the context95

of the DG-VMS method. These are: the effect of the LES filter on the effective eddy viscosity,96

the effect of the scale-separation operator and the calibration of the coefficient involved in the97

SGS model. While these questions are still the subject of current research in the context of98

the DG-VMS approach, several studies have been already carried out in the context of standard99

LES approaches based on convolution filters. The main conclusions of these works are briefly100

outlined below.101

The effect of the LES filter. Leslie and Quarini [22] performed theoretical analyses by consider-102

ing an infinite inertial range and a Gaussian filter. Their results demonstrated that, in contrast to103

what is obtained for a sharp spectral filter, the use of a Gaussian filter leads to an spectral eddy104

viscosity characterized by a plateau from low to high wavenumbers and a sharp decay as the105

wavenumber approaches 1/∆ (∆ being the filter width). Moreover, in the case of a production-106

type spectrum, the shape of the ideal eddy viscosity strongly depends on the ratio between the107

LES cut-off frequency kc and that corresponding to the energy production phenomena. Similar108

conclusions can be drawn from the work of Cerutti et al. [23] who evaluated the eddy viscosity109

from experimental measurements corresponding to the use of a mixed filter (spectral cut-off in110

one direction and top-hat filter in the other two directions). The outcome of this study led the111

authors to conclude that the use of a mixed viscosity-hyperviscosity model can improve the accu-112

racy of LES simulations. More recently Lamballais et al. [24] have evaluated the eddy viscosity113

from the DNS of the TGV configuration at Re = 20 000 and observed the presence of the plateau114

described by Kraichnan [8] employing a spectral cut-off filter.115

It appears, therefore, that the validity of the spectral gap assumption needs to be carefully116

analysed depending on the LES filter employed in the simulation. The extension of these analyses117

to the case of the DG-VMS approach presents additional complications as the DG-projection118

filter is not a convolution filter (as explained in Sec. 2). Thus this topic deserves special attention.119

The effect of the high-pass filter. The second open question is the effect of the high-pass filter120

on the quality of the VMS model. As regards the choice of the cut-off frequency k̄ associated121

with the high-pass filter, in actual simulations, this parameter is often selected heuristically or by122

trying to match reference results. In early numerical experiments, Hughes et al. [16] and Hughes123

et al. [1] have used a high-pass spectral filter with k̄ corresponding to a scale-fraction parameter124

β = k̄/kc equal to 0.59 and 0.5, respectively, when employing the VMS approach with constant125
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model coefficient. In later works Hughes et al. [15] employed a scale-fraction parameter β = 0.5126

for the VMS approach based on the dynamic Germano procedure for the determination of the127

model constant. Holmen et al. [25] carried out a sensitivity analysis for the LES of the turbulent128

channel flow. The authors showed that the use of the dynamic procedure reduces the sensitivity129

of the VMS-LES to the scale-fraction parameter and optimal results were obtained for β ≈ 0.5.130

In contrast, for the static variants optimal results were obtained for β ≈ 0.7 and the quality of the131

solution quickly deteriorated for other values. Ramakrishnan and Collis [26] have shown that the132

optimal scale-fraction parameter might depend on the flow considered and resolution available.133

It was observed that the optimal high-pass filter length can be related to the characteristic length134

of coherent structures of the flow. However they remarked that the small-scale space should135

contain at least 50% − 60% of all modes to provide high quality first and second-order statistics.136

The effect of the type of the high-pass filter in VMS was also analysed by Sagaut and Lev-137

asseur [27] and Meyers and Sagaut [28]. It was observed that the sharp-cut off filter (orthogonal138

in Fourier space) can provide an overdissipative behaviour at high frequencies leading to a bot-139

tleneck effect and the generation of a middle-wavenumber pile-up. Moreover, a discrete jump140

might appear in the energy spectrum near the high-pass filter cut-off (as observed by Meyers and141

Sagaut [28]). The use of a non-orthogonal high-pass filter (e. g. Gaussian filter) led to improved142

results by rendering all scales sensitive to the subgrid closure. Similar results were reported143

by Meyers and Sagaut [28] who further noted a reduced dependency on β when employing a144

Gaussian filter.145

Calibration of the SGS model constant. As regards the value of the constant involved in the VMS146

model, a calibration has been derived by Hughes et al. [16] using the procedure due to Lilly [29].147

The procedure assumes an infinite Reynolds number (infinite inertial range) and the calibration148

was obtained considering an isotropic sharp spectral filter for both the LES and high-pass filters.149

The most comprehensive work on the calibration of the model constant for the VMS approach is150

however the study by Meyers and Sagaut [30]. One of the most important results of this research151

is that the optimal model coefficient strongly depends on the choice of LES and high-pass filter.152

Moreover, the authors have provided an analytical framework for the evaluation of the optimal153

model coefficient in the case of convolution filters. As already mentioned, the DG-projection154

filter is not a convolution filter and therefore special care is required to extend the conclusions of155

these works.156

The studies cited above clearly outline that the performance of the VMS approach is strongly157

influenced by a number of parameters primarily associated with the LES and high-pass filters.158

Therefore the systematic and robust application of the DG-VMS approach can be improved by159

analysing these questions in the context of the DG-projection filter as both the LES filter and160

scale-separation operator. We analyse for this purpose the effect of the DG-LES filter on the161

ideal energy transfer and the validity of the assumption of absence of SGS dissipation acting on162

the largest resolved scales. The accuracy of the DG-VMS approach and the associated high-pass163

filter in replicating the ideal energy transfer will then be considered with the objective of identi-164

fying guidelines for the selection of the scale-fraction parameter.165

This work is therefore organized as follows. In Section 2 the DG-filter and the ideal DG-166

LES solution are discussed. Their definition is then employed in Sections 3 and 4 to extend167

the energy transfer analysis framework to the context of DG-LES. The presented framework is168

then applied in Section 5 to a DNS database of the TGV configuration at Re = 5 000, 20 000 and169

40 000. Obtained results are then compared in Section 6 to the energy transfer and eddy viscosity170

provided by the DG-VMS approach. Finally conclusions are presented in Section 7.171
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2. The ideal DG-LES solution172

A-priori testing can provide valuable information about the accuracy of LES modeling ap-173

proaches. The central question with this type of analysis is the definition of an appropriate ideal174

LES solution, which in the general case is not straightforward. It is, however, essential to answer175

this question, as the way in which this ideal solution is defined has a direct impact on the way176

the ideal SGS quantities are computed.177

The classical approach consists in defining the ideal LES solution as the spatially filtered178

DNS solution. For this purpose convolution filters are conventionally employed such that for any179

function f we define the filtered function f (x) ..=
∫

Ω
G(x− ξ) f (ξ)dξ with G(x− ξ) being the filter180

kernel. The convolution filter can be applied to the Navier-Stokes (NS) equations such that the181

ideal LES solution satisfies the filtered NS equations in their strong form. One of the advantages182

of this approach is that the application of the convolution filter can be expressed in the Fourier183

space as f̂ (k) = Ĝ(k) f̂ (k) where (̂·) denotes the Fourier transform and it is easy to demonstrate184

that the convolution filter commutes with spatial derivatives. This approach however entirely185

ignores the details of the discretization employed and the fact that the LES solution so defined186

might not be an admissible solution of the considered discrete problem. Thus this approach187

presents serious limitations when extending the results of a-priori and theoretical analyses to FV188

and FE type methods.189

A second approach has been proposed by Pope [31], in which the LES solution is conceived190

as the projection of the DNS solution onto a set of local basis functions. It has been shown by191

Vreman [32] that an arbitrary orthogonal projection operator can be reformulated as a kernel filter192

such that for any function f we can indicate its projection as fh(x) ..= Ph[ f ] =
∫

Ω
Kp(x, ξ) f (ξ)dξ.193

The use of a non uniform filter kernel Kp(x, ξ) implies that in general the projection operation194

and differentiation do not commute. For this reason the closure problem needs to be redefined195

employing the semidiscrete weak form of the equations as described by Pope [31] and in the196

context of the VMS approach (e.g. [33]).197

This methodology provides a definition of the ideal resolved field which is consistent with198

the employed numerical discretization. Following this approach Beck et al. [34] have defined the199

ideal DG-LES solution as the L2-projection of the DNS solution on the discretization space and200

identified the ideal subgrid stress to develop a Deep Neural Network turbulence model. Similarly201

van der Bos and Geurts [35] have defined the ideal DG-LES solution by means of a face-based202

projection to perform a systematic analysis of computational errors of DG-FEM for LES.203

The use of a projection type filter however can introduce significant aliasing errors at wavenum-204

bers close to the grid cut-off, producing unphysical reference data. This is a direct consequence205

of the approximation properties of polynomial basis functions (see [36]).206

In this work we propose to employ an alternative approach in which the ideal DG-LES so-207

lution is defined as the result of the application of two successive filtering operations. A first208

convolution filter is applied to the DNS data which filters out frequencies beyond the LES grid209

cut-off. Next, a L2-projection of this filtered field is performed on the hp-discretization space210

(referred to in the following as DG-projection). This procedure reduces considerably the aliasing211

errors introduced by Pope’s approach, while allowing the inclusion in the analysis of the effect212

of the hp-discretization associated with the adopted numerical method.213

The following section provides a formal framework for the definition of the ideal DG-LES214

solution as described above and the expression of the corresponding ideal SGS energy transfer.215

5



3. The DG-LES framework and the ideal energy transfer216

The N-S equations for an incompressible flow read217

∂u
∂t

+ ∇ · Fc(u, q) + ∇ · Fv(u,∇u) = 0 , ∀x ∈ Ω, t ≥ 0 , (1)
218

∇ · u = 0 , (2)

where u is the velocity field, q is the pressure, and Fc and Fv are the convective and viscous219

fluxes, defined respectively as220

Fc(u, q) = u ⊗ u + qI , (3)

Fv(u,∇u) = ν(∇u + (∇u)T ) . (4)

We define Ωh to be a shape regular partition of Ω into N non-overlapping, non-empty ele-221

ments of characteristic size h and we further define the broken Sobolev space S p
h

..= {φ ∈ L2(Ωh) :222

φ|K ∈ P
p(K),∀K ∈ Ωh} to be the space of piecewise polynomials of partial degree at most p.223

Then we indicate as fh ..= PS p
h
[ f ] the projection of any function f on the hp-discretization defined224

by the space S p
h .225

Following the approach described in the previous section, we define the ideal DG-LES so-226

lution as uh
..= PS p

h
[u], which is the result of the successive application to the velocity field u227

of a convolution filter and the DG-projection filter defined by the space S p
h . The convolution228

filter employed in this work is a sharp spectral anisotropic filter with expression in spectral space229

G(k) = H(kDG − ‖k‖∞) where kDG = π(p + 1)/h and H is the Heaviside function.230

Applying the convolution and DG-projection filter to Eq. (1), we derive the evolution equa-231

tions for the ideal DG-LES solution232

∂

∂t

∫
Ωh

uhφ dx +
∑

K

[∫
∂K
F c(u, q) · n+φ+ dσ −

∫
K
F c(u, q) · ∇φ dx

+

∫
∂K
F v(u,∇u) · n+φ+ dσ −

∫
K
F v(u,∇u) · ∇φ dx

]
= 0 , ∀φ ∈ S p

h ,

(5)

where we have used the commutation property of the convolution filter with spatial derivatives233

and the definition of the L2-projection, which implies,
∫

Ωh
(u − uh)φ = 0,∀φ ∈ S p

h .234

The DG-LES equations can now be defined by rewriting Eq. (5) as235

∂

∂t

∫
Ωh

uhφ dx +

Lc(uh, qh, φ)︷                                                                            ︸︸                                                                            ︷∑
K

[∫
∂K

hc(u+
h , q

+
h ,u

−
h , q

−
h ,n

+)φ+ dσ −
∫

K
Fc(uh, qh) · ∇φ dx

]
+

∑
K

[∫
∂K

hv(u+
h ,u

−
h ,n

+)φ+ dσ −
∫

K
Fv(uh,∇uh) · ∇φ dx

]
︸                                                                     ︷︷                                                                     ︸

νLv(uh, φ)

+R(u,uh, φ) = 0 , ∀φ ∈ S p
h ,

(6)
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where hc and hv are the convective and diffusive numerical fluxes and f + and f − indicate the236

trace of any function f on the element’s boundary ∂K.237

In Eq. (6), R(u,uh, φ) is the subgrid-scale residual representing the effect of the unresolved238

scales u−uh on the resolved field, which can be obtained by comparing Eq. (5) and Eq. (6). Note239

that, as the DG-projection filter does not commute with spatial derivation nor the convolution240

filter, in general both the pressure and viscous terms contribute to the subgrid-scale residual. In241

this work, however, we assume that the SGS term is dominated by convective effects thus the242

contribution of the viscous and pressure terms is neglected. This leads to the following form for243

the subgrid residual,244

R(u,uh, φ) ≈
∑

K

[∫
K

(
Fc(uh) − F c(u)

)
· ∇φ dx

−

∫
∂K

(
hc(u+

h ,u
−
h ,n

+) − F c(u) · n+
)
φ+ dσ

]
.

(7)

Indicating as {ψ1
K . . . ψ

Np

K } ∈ P
p(K) an orthonormal basis for Pp(K) with ψi

K(x) = 0,∀x ∈245

K′,K′ , K, the solution uh is expressed as a linear combination of the basis functions such246

that247

uh(x, t) =
∑

K

Np∑
i=1

ũ
i,K
h (t)ψi

K(x) , ∀x ∈ Ωh , (8)

where the modal coefficients ũ
i,K
h obey the following equation derived from Eq. (6)248

∂ũ
i,K
h

∂t
+Lc(uh, qh, ψ

i
K) + νLv(uh, ψ

i
K) + R(u,uh, ψ

i
K) = 0 , ∀K ∈ Ωh,∀i = 1 . . .Np . (9)

These equations can be combined to rewrite the semidiscrete DG-LES equations (6) as249

∂uh

∂t
+ Lc(uh, qh) + νLv(uh) + R(u,uh) = 0 , (10)

where

Lc
..=

∑
K

∑
i

Lc(uh, qh, ψ
i
K)ψi

K , (11)

Lv
..=

∑
K

∑
i

Lv(uh, ψ
i
K)ψi

K , (12)

R ..=
∑

K

∑
i

R(u,uh, ψ
i
K)ψi

K . (13)

This leads to the following equation for the evolution of the energy associated to each wavenum-250

ber k of the resolved scales as251

∂E(k)
∂t

+ ûh(k) · L̂c(k) + νûh(k) · L̂v(k) + ûh(k) · R̂(k) = 0 . (14)

The ideal energy transfer from the resolved modes of wavenumber k to all unresolved scales can252

therefore be obtained from the subgrid residual as253

Tsgs(k) =
∑
‖k‖=k

ûh(k) · R̂(k) . (15)
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Positive values of Tsgs correspond to kinetic energy being transferred from resolved to unre-254

solved scales, whereas negative values correspond to energy being transferred from unresolved255

to resolved scales, commonly indicated as backscatter.256

Note that the use of the DG-projection filter introduces discontinuities in the filtered velocity257

field that need to be taken into account. It also requires the definition of the numerical flux hc258

that appears in the surface integral in Eq. (7). The subgrid stress thus depends in general on259

both, the definition of the filter and the choice of this numerical flux. While this choice might260

appear arbitrary, it reflects the notion that the subgrid term which needs to be modelled must take261

into account the choice of the numerical discretization and the numerical dissipation thereby262

introduced.263

In the a-priori analyses presented in the following, we are interested in investigating the ideal264

SGS dissipation in absence of dissipation introduced by the discretization of the convective flux.265

For this purpose we consider a central flux hc(u+
h ,u

−
h ,n+) = 1

2 (Fc(u+
h ) + Fc(u−h )) · n+.266

3.1. The modal energy transfer and eddy viscosity267

The analysis presented up to this point represents an extension of the classical energy transfer268

spectral/Fourier analysis. In the context of the DG method useful information can be extracted269

by performing this analysis in the modal/polynomial space. For this purpose, let us consider now270

Ω to be a cubic domain with Ωh being a uniform Cartesian grid. We further consider a basis271

for S p
h which is formed by the tensor product of normalized Legendre polynomials of maximum272

degree p. We indicate as ψm
K the generic element of this basis such that m = (mx,my,mz) and273

ψm
K = lmx

( x−xK,c

h/2

)
lmy

( y−yK,c

h/2

)
lmz

( z−zK,c

h/2

)
(16)

where xK,c, yK,c and zK,c are the coordinates of the barycenter of K and li is the i-th Legendre274

polynomial normalized such that
∥∥∥ψm

K

∥∥∥
L2(Ωh) = 1.275

We then define Wm
h = span

{
ψm

K ,∀K ∈ Ωh,m − 1
2 < ‖m‖ ≤ m + 1

2

}
, we call m the mode-number276

and define PWm
h

[uh] as the component of the DG-LES solution uh of mode-number m and the277

modal energy spectrum as278

Ẽ(m) =
1
2

∫
Ωh

PWm
h

[uh] · PWm
h

[uh]dx . (17)

As
∫

Ωh
(PWm

h
[uh] − uh)φdx = 0, ∀φ ∈ Wm

h and Wm
h ⊂ S p

h , from Eq. (5) we can write279

∫
Ωh

∂

∂t
PWm

h
[uh]φdx +Lc(uh, φ) + νLv(uh, φ) + R(u,uh, φ) = 0 , ∀φ ∈ Wm

h , (18)

and it can be immediately obtained that280

∂Ẽ(m)
∂t

+Lc(uh,PWm
h

[uh]) + νLv(uh,PWm
h

[uh]) + R(u,uh,PWm
h

[uh]) = 0 . (19)

Thus the modal energy transfer from the resolved scales of mode-number m to the unresolved281

scales can be evaluated as282

T̃sgs(m) ..= R(u,uh,PWm
h

[uh]) . (20)
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It is can be easily shown that Eq. (20) can be rewritten as283

T̃sgs(m) =
∑

K∈Ωh

∑
m− 1

2<‖m‖≤m+ 1
2

ũh
m,K
· R(u,uh, ψ

m
K ) , (21)

with ũh
m,K

=
∫

Ωh
uhψ

m
K dx, which closely resembles Eq. (15) obtained in Fourier space. We thus284

introduce the concept of a modal eddy viscosity, defined as285

ν̃e(m) ..=
R(u,uh,PWm

h
[uh])

Lv(uh,PWm
h

[uh])
, (22)

which can be interpreted as an additional eddy viscosity which acts on the resolved modes simi-286

larly to the spectral eddy viscosity defined by Kraichnan [8].287

We point out that neither the modal energy transfer nor the modal eddy viscosity necessarily288

have a physical meaning. This methodology is however useful as it can be directly compared289

to the VMS approach and LES models based on a spectral vanishing viscosity such as that pro-290

posed by Karamanos and Karniadakis [37]. In the context of DG methods, these approaches are291

based on modifying the modal energy transfer or eddy viscosity provided by an SGS model as a292

function of m. A similar energy transfer analysis has already been employed by Oberai et al. [38]293

to perform a-priori analyses of the VMS approach based on a FE method.294

In the following, the modal eddy viscosity is presented normalized by the laminar viscosity295

ν̃†e(m) ..=
ν̃e(m)
ν

. (23)

We point out that Eq. (22) depends on the discretization of the viscous terms. Therefore it296

provides the modal eddy viscosity which must be provided by the SGS model employing a cho-297

sen discretization. This approach highlights the relevance of taking into account the dissipation298

properties of the numerical scheme used for the discretization of the model term. In Sec. 5 and 6299

results will be presented which are based on the BR1 scheme [39] and the BR2 scheme [40].300

4. The DG-LES modelling and the DG-VMS approach301

Starting from Eq. (6), the effect of the subgrid scales can be approximated by a model term302

that depends only on the resolved field303

R(u,uh, φ) ≈ Lm(uh, φ) . (24)

One common approach to formulate SGS models for DG methods is to discretize LES models304

derived in the continuous framework, such as those relying on an eddy-viscosity approach like305

the Smagorinsky model.306

For the Smagorinsky model, a SGS flux is introduced in the filtered NS equations which takes307

the form308

Fm = 2νs(∇u)S (∇u) with νs(∇u) = (Cs∆)2‖S (∇u)‖ , (25)

where S = 1
2

(
∇u + ∇uT

)
is the strain rate tensor, with norm ‖S ‖ =

√
2S i jS i j. The Smagorinsky309

constant Cs has values between 0.1 and 0.2, and ∆ is the filter width which in the DG framework310

can be defined as ∆ = h/(p + 1).311
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By applying the same numerical treatment used for the viscous fluxes, the DG-LES model312

term can be written as,313

Lm(uh, φ) =
∑

K

[∫
∂K

hm(u+
h ,u

−
h ,n

+)φ+dσ −
∫

K
Fm(uh)∇φdx

]
, ∀φ ∈ S p

h , (26)

where hm is the model numerical flux.314

Following the approach presented above (see Sec. 3.1), the modelled spectral energy transfer315

can therefore be evaluated as316

Tm(k) =
∑
‖k‖=k

ûh(k) · L̂m(k) with Lm
..=

∑
K

∑
m
Lm(uh, ψ

m
K )ψm

K , (27)

and the modelled modal energy transfer and eddy viscosity take the form317

T̃m(m) ..= Lm(uh,PWm
h

[uh]) , and ν̃†m(m) ..=
Lm(uh,PWm

h
[uh])

νLv(uh,PWm
h

[uh])
. (28)

The VMS approach is based on the separation of the resolved scales into large and small318

resolved scales by means of a projection filter. To this end, we separate the solution space into319

a large-scale space VL ..=
⋃

m≤pL
Wm

h and a small-scale space VS ..= S p
h \ VL, where pL is the320

so-called scale-separation parameter and we indicate as β = (pL + 1)/(p + 1) the scale-fraction321

parameter.1322

The original formulation of the VMS approach proposed by Hughes et al. [16] relies on two323

assumptions: the absence of energy transfer between the large resolved and the unresolved scales324

and the fact that the SGS model should be evaluated from the small-resolved scales.325

This leads to a model term which takes the form326 (
∇ · Fm(uh)

)
s-s = PV s

[
∇ ·

(
2νs(PV s [∇uh])S (PV s [∇uh])

)]
. (29)

This approach is commonly referred to as the small-small approach, as both the eddy viscosity327

and the strain rate tensor in the model term are computed directly from the small resolved scales.328

The outer filter operation restricts the action of the LES model only to the small-scale solu-329

tion corresponding to mode-numbers higher than the scale-separation parameter. It corresponds330

therefore to the assumption T̃sgs(m) ≈ 0 and ν̃sgs ≈ 0 for m ≤ pL.331

We point out once more that the L2-projection and differentiation do not commute, thus332

the order of the operations is important in the definition of the model term. In particular, we333

remark that while the effect of the model is applied to the small-scale solution, the model flux is334

computed from the filtered gradient2 which does not correspond to the gradient of the small-scale335

solution. This distinction disappears in the original formulation employing a convolution filter.336

Other variants of the VMS model have been proposed in the literature. They include the337

large-small [16] and the all-small [25] approaches which correspond to evaluating the eddy vis-338

cosity from either the low-pass filtered gradients or all the resolved scales.339

Vreman [2] has proposed to discard the outer filter in Eq. (29) leading to340

1Other choices can be employed for the definition of the large-scale space. Further discussion on this topic is presented
in Appendix B.

2When employing the BR1 and BR2 schemes this requires the use of the filtered lifted derivatives (see e.g. [41]).
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(
∇ · Fm(uh)

)
Vrem = ∇ ·

(
2νs(PV s [∇uh])S (PV s [∇uh])

)
. (30)

This approach has led to qualitatively similar results to the small-small approach [2]. However it341

is not consistent with the original formulation by Hughes et al. [16] and is more closely related to342

the high-pass filtered Smagorinsky model [42]. This formulation has nonetheless the advantage343

of reducing the number of filtering operations required for the evaluation of the model. A large344

reduction of its computational cost can therefore be obtained for some formulations of the DG345

method (e.g. nodal DG).346

Chapelier et al. [3] have proposed an all-all approach consisting in retaining only the outer347

filtering operation348 (
∇ · Fm(uh)

)
a-a = PV s

[
∇ ·

(
2νs(∇uh)S (∇uh)

)]
. (31)

This approach is specifically tailored for the DG-modal formulation employing orthonormal349

hierarchical bases. In this case the outer filtering operation can be implicitly applied by removing350

the model term from the equation of the modal coefficients associated with the large-scale space351

basis functions. Thus the all-all approach presents the same computational cost as the standard352

Smagorinsky model for this class of methods.353

In Sec. 6 the three variants of the DG-VMS approach here described are compared by analysing354

their accuracy in replicating the ideal energy transfer mechanism.355

5. Ideal energy transfer from DNS data356

The methodology laid out in the Sec. 3 is applied to three DNS data sets of the TGV con-357

figuration at Re = 5 000, 20 000 and 40 000. The reference DNS have been performed using the358

sixth-order incompressible flow solver Incompact3D [24]. The considered computations have359

been obtained on a regular Cartesian mesh of respectively 12803, 34563 and 54003 nodes in a360

triperiodic domain of [−π, π]3 using symmetries to divide by 8 the number of degrees of free-361

dom (dofs) actually computed. A snapshot of each of these data sets at t = 14 (non-dimensional362

time units) is selected for analysis. At this time the flow is fully developed in a state close to363

isotropic and homogeneous conditions with values of the Reynolds number based on the Taylor364

microscale Reλ = 136, 286 and 400 for Re = 5 000, 20 000 and 40 000 respectively.365

In Fig. 1 we report the energy spectrum of the snapshot corresponding to Re = 5 000. On the366

same figure we report the energy spectra of the ideal DG-LES solution for p = 7 and respectively367

723, 1443 and 2883 dofs, computed as described in Appendix A.368

When analysing DG-LES simulation results it is assumed that the resolution limit is defined369

by the cut-off frequency kDG =
π(p+1)

h =
(p+1)nel

2 (marked by black dashed lines in Fig. 1) where370

nel is the number of elements in one direction. By analysing Fig. 1, however, it can be observed371

that the DG-LES spectrum is almost undistinguishable from that corresponding to the DNS up to372

a frequency k̃DG =
(p+1)nel

3 and decays rapidly for higher frequencies. Moreover, the energy spec-373

trum is “polluted” by the presence of discontinuities for frequencies close to kDG. Additionally374

the discontinuities generate a tail on the energy spectrum that decays as k−2. It is argued therefore375

that k̃DG is more relevant in identifying the resolving capabilities of the DG discretization. We376

will see in Sec. 5.2 that these observations are valid for other values of the polynomial degree p.377

The values of k̃DG for the three discretizations considered are therefore also reported in Fig. 1.378

These frequencies fall respectively within the inertial range (E ∝ k−5/3), at the end of the inertial379

range and in the dissipation range.380
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Figure 1: TGV at Re = 5 000: Energy spectra from the DNS computation (black) and the ideal DG-LES solution (blue)
for various discretizations: p = 7 and 723, 1443 and 2883 dofs. Dashed lines indicate the corresponding value of kDG

(black) and k̃DG (blue).
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Figure 2: TGV at Re = 5 000: Ideal SGS dissipation spectrum for three discretizations with p = 7. The values k̃DG and
k̃DG/2 are marked by dash-dotted lines.
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Figure 3: Energy spectra and relevant values of k̃DG for the TGV at Re = 20 000 (left), 40 000 (right).

In Fig. 2 we report the ideal SGS dissipation spectra, as defined in Eq. (15), computed for the381

three considered resolutions. In each plot, we observe that the dissipation spectrum presents a382

peak at k̃DG and rapidly decays for higher frequencies. This behaviour is remarkably different as383

compared to the case of sharp spectral filters for which a cusp appears at the cut-off frequency.384

This observation further confirms the relevance of k̃DG in identifying the resolving capabilities of385

the employed discretization.386

As regards the lower frequencies, we observe that for the coarsest employed discretization387

the interaction between the largest-resolved scales and the unresolved scales is non-negligible.388

As the value of k̃DG is moved toward the dissipation range, we observe from the middle and right389

panel of Fig. 2 a clearly different behaviour. In this case the ideal energy transfer is negligible up390

to a frequency corresponding to k̃DG/2 = kDG/3 and the dissipation spectrum rapidly increases up391

to k̃DG corresponding to a hyperviscous-type behaviour. A sharper peak of the SGS dissipation392

spectrum is observed as the resolution is increased. Additionally for the finest resolution consid-393

ered kDG = 144 the ideal energy transfer is negative for frequencies below kDG/3 corresponding394

to backscatter. While similar results are seldom presented in the literature we mention that both395

Domaradzki [9] and Métais and Lesieur [11] reported negative values of the eddy viscosity in the396

smallest wavenumber range employing an isotropic sharp spectral filter with cut-off frequency397

in the dissipation range. Moreover Métais and Lesieur [11] have shown that with this type of398

LES filter a negative value of the plateau of the eddy viscosity is obtained assuming an energy399

spectrum E(k) ∝ k−m with m ≥ 5.400

In order to analyse the generality of these observations we consider now the TGV configu-401

ration at higher Reynolds numbers, namely Re = 20 000 and 40 000. The corresponding energy402

spectra are reported in Fig. 3 as well as the values of k̃DG corresponding to three discretizations403

considered. These discretizations correspond to p = 7 and a number of dofs equal to 1443, 2883
404

and 5763 for the lower Reynolds number and 2883, 5763 and 11523 for the higher Reynolds405

number configuration. For both configurations the coarsest discretizations correspond to k̃DG in406

the inertial range, whereas the finer discretizations correspond respectively to k̃DG at the end of407

the inertial range and k̃DG in the dissipation range.408

For both configurations and all resolutions considered we observe in Figs. 4 and 5 again a409

peak of the dissipation spectrum at k̃DG and a rapid decay towards kDG, confirming the results410

obtained for the configuration at Re = 5 000. In this case, however, for the two lower resolutions,411

with k̃DG located in the inertial range, we observe a mixed viscous-hyperviscous behaviour. The412

viscous type behaviour, corresponding to an ideal SGS dissipation spectrum which scales as k
1
3 ,413

is dominant for the low and intermediate wavenumbers up to approximately kDG/3 whereas the414
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Figure 4: TGV at Re = 20 000: Ideal SGS dissipation spectrum for three discretizations with p = 7. The values k̃DG and
k̃DG/2 are marked by dash-dotted lines.
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Figure 5: TGV at Re = 40 000: Ideal SGS dissipation spectrum for three discretizations with p = 7. The values k̃DG and
k̃DG/2 are marked by dash-dotted lines.

hyperviscous behaviour is dominant for higher frequencies up to k̃DG.415

However, as resolution is increased, the contribution of wavenumbers below kDG/3 to the total416

SGS dissipation is progressively reduced and most of the SGS dissipation acts on the frequencies417

[kDG/3, kDG]. Eventually, as the resolution is further increased and k̃DG moves into the dissipation418

range, the interaction between the large-resolved scales and unresolved scales becomes negligi-419

ble. This can be observed in the right panels of Figs. 4 and 5. In this case, the energy transfer420

is dominated by the SGS dissipation acting on frequencies [kDG/3, kDG]. For frequencies below421

kDG/3 the energy transfer is predominantly negative corresponding to backscatter.422

The results obtained therefore indicate that the large-resolved scales are free of interaction423

with the unresolved ones only when the DG-LES limit of resolution falls at the end of the in-424

ertial range and within the dissipation range. When a coarser resolution is employed, a mixed425

viscous-hyperviscous type behaviour can be observed and the SGS dissipation acting on the426

large-resolved scales is not negligible.427

The mixed type behaviour is not observed in Fig. 2 as the TGV at Re = 5 000 presents a very428

short inertial range.429

5.1. Ideal modal energy transfer and eddy viscosity430

We now analyse the modal energy transfer as defined by Eq. (20) for the same configurations431

described in the previous section. Obtained results are reported in Fig. 6. We observe a remark-432
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Figure 6: Modal energy transfer for the ideal SGS stress for the TGV at Re = 5 000 (left), 20 000 (center), and 40 000
(right) for various discretizations with p = 7.
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Figure 7: TGV at Re = 20 000: Modal energy transfer for the ideal SGS stress for several discretizations with p = 7.

ably consistent behaviour across all resolutions and Reynolds numbers considered. A first region433

can be identified which is characterized by a nearly constant modal energy transfer for mode-434

numbers m from 0 to 5. The modal energy transfer then increases rapidly presenting a peak at435

m = p and then decreases smoothly for higher mode-numbers. We remark that these two differ-436

ent behaviours are separated by the same mode-number corresponding to (m + 1)/(p + 1) = 0.75437

for all the discretizations and Reynolds numbers considered.438

As we would expect from the previous analysis in Fourier space, the energy transferred to439

modes corresponding to low mode-numbers is not in general negligible. As the discretization440

is refined this value progressively decreases and the energy transfer mechanism is dominated by441

the SGS dissipation acting on modes (m + 1)/(p + 1) > 0.75.442

To further verify that this result is not specific to the chosen resolutions, we report in Fig. 7443

the modal energy transfer obtained at Re = 20 000 for 9 discretizations with p = 7 and a number444

of dofs between 1443 and 5763. This figure clearly illustrates the consistency of the described445

behaviour. We further observe that for relatively coarse discretizations as the resolution is in-446

creased, the main effect is to reduce the modal energy transfer at low mode-numbers. Only when447

the resolution limit is in the dissipation range (kDG > 168) we observe a significant reduction of448

the peak value as the discretization is further refined.449

The ideal modal eddy viscosity, as defined in Eq. (22) using the BR1 scheme for the viscous450

discretization, is reported in Fig. 8 for the three Reynolds numbers and discretizations.451

Similarly to what has been observed for the modal energy transfer, the modal eddy viscosity452
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Figure 8: Ideal modal eddy viscosity for the ideal subgrid stress for the TGV at Re = 5 000 (left), 20 000 (center), 40 000
(right) for various discretizations with p = 7.
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Figure 9: TGV at Re = 20 000: Ideal modal eddy viscosity for the ideal SGS stress using the BR1 and BR2 schemes.

presents a plateau at mode-numbers m ≤ 5 and increases for higher mode-numbers. In con-453

trast to the modal dissipation spectrum, however, the modal eddy viscosity presents in general454

a “parabolic” shape (in place of a spike) with a smoother increase and decay for relatively high455

mode-numbers.456

We remark that the values reported in Fig. 8 correspond to the ideal modal eddy viscosity that457

should be provided by the SGS model employing the BR1 discretization. In Fig. 9 we compare458

this value with the modal eddy viscosity corresponding to the BR2 scheme with ηbr2 = 2.459

As expected the additional dissipation provided by the BR2 scheme leads to a reduction460

of the modal eddy viscosity required at the higher mode-numbers. This result agrees with the461

observation that the optimal LES model must be aware of the discretization employed due to462

their interaction in actual simulations.463

To conclude this analysis we observe that all the obtained results indicate that the interac-464

tion between large-resolved scales and unresolved ones, when employing the DG-LES filter, is465

negligible only for finite Reynolds numbers when the turbulent scales are resolved up to the end466

of the inertial range. Based on these findings, it could be argued that models based on this as-467

sumption present a limited applicability as they would rely on high resolution being available468

and thus provide a limited computational gain as compared to (underresolved) DNS. We want469

to remark however that the resolution requirements in an actual simulation vary in space and470

time and thus this assumption might be locally valid. This is the case for transitional or spatially471

inhomogeneous flows.472
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Figure 10: TGV at Re = 20 000: Ideal modal energy transfer for the ideal SGS stress at various times for p = 7 and 2883

dofs.

As an example, we illustrate in Fig. 10 the modal energy transfer for the TGV at Re = 20 000473

at various times for a discretization corresponding the intermediate resolution considered (p = 7,474

nel = 36 and 2883 dofs). It can be observed that the SGS dissipation rapidly increases during475

the transition phase (left panel of Fig. 10) and the energy transfer from large scales remains476

non negligible during the first part of the decay phase (central panel). However for t > 14 the477

resolution is sufficient such that the energy transfer from modes m ≤ 5 is clearly negligible478

(right panel). Thus the ideal LES model should be able to adapt to each of these conditions by479

reducing the SGS model dissipation applied to large scales during the initial transition phase and480

late dissipation phase.481

5.2. Sensitivity to the polynomial degree482

In this section we investigate the generality of the obtained results by analysing discretiza-483

tions corresponding to various values of the polynomial degree p. All the results here reported484

have been obtained from a snapshot at t = 14 of the TGV at Re = 20 000. The comparisons are485

carried out by fixing the total number of dofs to the same values employed in Sec. 5, that is 1443,486

2883 and 5763 dofs. Four values of the polynomial degree are at first considered: p = 5, 7, 8,487

and 11.488

Fig. 11 presents the energy spectra of the DNS data set and the ideal DG-LES solutions for489

all considered discretizations. We observe that for a fixed number of dofs the energy spectra are490

almost identical up to kDG and as mentioned in the previous section (see Fig. 1) identical to the491

DNS spectrum up to k̃DG. The most notable differences appear in the tail of the spectra related to492

the discontinuities of the DG-LES solutions. Thus we can reasonably conclude that increasing493

the polynomial degree for a fixed number of dofs has a limited effect on the resolving capabilities494

of the DG-LES method.3495

This conclusion is also confirmed by analysing Fig. 12 which reports the SGS dissipation496

spectrum. Indeed the same behaviour can be observed for all polynomial degrees confirming the497

generality of the conclusions drawn in the previous section.498

In Figs. 13 and 14 we report the modal energy transfer and eddy viscosity. The modal energy499

transfer levels cannot be directly compared, as a different number of modes is retained for each500

3This observation only concerns the accuracy of the considered solution space in representing the DNS solution. It
does not take into account the dissipation properties of the numerical fluxes as done e.g. by Moura et al. [43].
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Figure 11: TGV at Re = 20 000: Energy spectra of the DNS data and the ideal DG-LES solution for various discretiza-
tions for 1443, 2883 and 5763 dofs. Close-up view at frequencies between k̃DG and kDG.

Re=20 000

10−2 10−1 100

0.0

2.0

4.0

6.0

8.0

·10−5

k/kDG

T
sg
s

kDG = 72

10−2 10−1 100

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
·10−5

k/kDG

kDG = 144

10−2 10−1 100

0.0

0.2

0.4

0.6

0.8

1.0
·10−5

k/kDG

kDG = 288

p = 5
p = 7
p = 8
p = 11

Figure 12: TGV at Re = 20 000: Ideal SGS dissipation spectrum for various discretizations for 1443, 2883 and 5763 dofs.
Dashed lines mark values of k̃DG and k̃DG/2.
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Figure 13: TGV at Re = 20 000: Ideal modal energy transfer for various discretizations for 1443, 2883 and 5763 dofs.
Dashed lines indicate mode-numbers m + 1 = 0.75(p + 1) and m = p.
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Figure 14: TGV at Re = 20 000: Ideal modal eddy viscosity for various discretizations for 1443, 2883 and 5763 dofs.
Dashed lines indicate mode-numbers m + 1 = 0.75(p + 1) and m = p.

polynomial degree, however we can observe that the same trend seen for p = 7 (see Sec. 5.1) is501

obtained for the other discretizations. In particular, we remark the presence of nearly constant502

value for mode-numbers up to approximately m + 1 = 0.75(p + 1) and a peak at m = p for the503

modal energy transfer. The generality of our conclusions is further illustrated by Fig. 14 which504

demonstrates the close agreement of the modal eddy viscosity for all discretizations and confirms505

the relevance of the mode-number m+1 = 0.75(p+1) in separating the two different behaviours.506

We consider now relatively lower polynomial degree representations: p = 2, 3, 4 and 5. The507

energy spectra for all discretizations are not reported here as they lead to the same conclusions508

drawn from Fig. 11. More marked differences can be observed in Figs. 15 and 16 reporting509

the ideal SGS dissipation spectrum and modal eddy viscosity. Overall a similar behaviour can510

be recognized for different values of p in Fig. 15. As observed for relatively higher values of511

p, as the resolution is increased the SGS dissipation concentrates on the scales characterized512

by higher wavenumbers, and eventually the SGS dissipation acting on wavenumbers lower than513

kDG/3 becomes negligible. In constrast with the results obtained for higher polynomial degrees,514

the presence, location and value of the peak of the SGS dissipation spectrum appear to be depen-515

dent on the polynomial degree for p ≤ 4.516

Similarly, in Fig. 16 we observe relatively marked differences in the modal eddy viscosity517

for different values of p. As the resolution is increased the SGS dissipation acts on the highest518
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Figure 15: TGV at Re = 20 000: Ideal SGS dissipation spectrum for various discretizations for 1443, 2883 and 5763 dofs.
Dashed lines mark values of k̃DG and k̃DG/2.
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Figure 16: TGV at Re = 20 000: Ideal modal eddy viscosity for various discretizations for 1443, 2883 and 5763 dofs.
Dashed lines indicate mode-numbers m + 1 = 0.75(p + 1) and m = p.

modenumbers. However compared to Fig. 14, no real plateau can be identified for the modal519

eddy viscosity at low modenumbers. For the highest resolution (right panel of Fig. 16) relatively520

higher values of the modal eddy viscosity are obtained for m + 1 ≥ 0.75(p + 1), similarly to what521

observed for p ≥ 5, however, markedly negative values are obtained for the modal viscosity at522

low modenumbers.523

5.3. Effect of the DG-LES filter524

As discussed in Sec. 2, all the results presented have been obtained by defining the ideal525

DG-LES solution as the L2-projection on the discretization space of the DNS solution filtered526

with a sharp spectral filter removing frequencies ‖k‖∞ ≥ kDG. Other possible definitions can be527

considered. Among them, the L2-projection of the DNS solution on the DG discretization space528

is an interesting candidate.529

The effect of these two different definitions on the results obtained is therefore investigated.530

For this purpose we employ the snapshot at t = 14 of the TGV at Re = 20 000. In order to531

simplify the notation we will refer to the L2-projection of the DNS solution on the DG space as532

simply the DG-projection in contrast to the employed definition of ideal DG-LES solution.533

In Fig. 17 we report the energy spectra corresponding to the ideal DG-LES and the DG-projection534

for three resolutions. We observe that for all resolutions the energy spectra are indistinguishable535

for frequencies up to k̃DG. Moreover we notice remarkably higher values of the tail of the energy536
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Figure 17: TGV at Re = 20 000: Energy spectra of the DNS data, the ideal DG-LES solution, and DG-projection for
three resolutions with p = 7. Close-up view for frequencies between k̃DG and kDG.
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Figure 18: TGV at Re = 20 000: Ideal SGS dissipation spectrum of the ideal DG-LES solution and the DG-projection
for three discretizations with p = 7. Dashed lines mark values of k̃DG and k̃DG/2.

spectra for the DG-projection which is especially evident in the coarsest resolution (left panel of537

Fig. 17). This indicates, as one would expect, that the L2-projection of the DNS field presents538

stronger discontinuities than the L2-projection of the filtered field. Nonetheless, k̃DG appears to539

be a relevant frequency identifying the resolution properties of DG using both definitions.540

In Fig. 18 and 19 we present the spectral and modal energy transfer for the same resolutions.541

These figures illustrate a fair agreement between results obtained with the two definitions. The542

most remarkable differences appear in Fig. 18 for the relatively low frequencies. Indeed the543

DG-projection leads to a more erratic behaviour of the spectral energy transfer which could be544

explained by the presence of aliasing errors as described in Sec. 2.545

Slightly more significant differences can be observed in Fig. 20 which reports the modal546

eddy viscosity employing the BR1 scheme. In this figure we can identify lower values of the547

modal eddy viscosity at relatively high mode-numbers. These can be explained by the presence548

of stronger discontinuities and higher values of the lifting coefficients used for the BR1 scheme549

and therefore, higher values of the diffusive term in the denominator of Eq. (22) at high mode-550

numbers.551

Overall the results obtained demonstrate that, with the exception of small differences, the552

definition of the reference DG-LES solution as the L2-projection of the DNS field leads to the553

same conclusions drawn by employing the current definition of the ideal DG-LES solution.554
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Figure 19: TGV at Re = 20 000: Ideal modal energy transfer of the ideal DG-LES solution and the DG-projection for
three discretizations with p = 7. Dashed lines indicate mode-numbers m + 1 = 0.75(p + 1) and m = p.
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6. A-priori analysis of the DG-VMS approach555

In this section, we perform an a-priori analysis of the DG-VMS model based on the three556

variants described in Sec. 4. For this purpose, we evaluate the DG-VMS model from the ideal557

DG-LES solution corresponding to Re = 20 000 and t = 14 for p = 7 and nel = 72. As described558

in the previous section, for this Reynolds number and discretization considered the resolution559

limit, k̃DG = 192, falls within the dissipation range. Under these conditions the interaction be-560

tween large-resolved and unresolved scales is negligible (see Fig. 4) and we expect the DG-VMS561

approach to recover the ideal SGS dissipation.562

The three variants of the DG-VMS model are therefore evaluated from this solution for dif-563

ferent values of the scale fraction parameter β. For all three variants we do not consider the564

calibration of the model coefficients, as described e.g. by Meyers et al. [44], as a function of β.565

One reason for not employing such calibration is that it is derived for convolution filters. As we566

have observed in Sec. 2, this is not the case for the DG-projection and additional care is required567

to derive a consistent calibration procedure. Additionally it has been shown by Meyers et al. [44]568

that the model constant is dependent on the ratio ∆/η, where η is the Kolmogorov scale, when569

∆/η 6 100. This is the case when the DG-LES resolution falls at the beginning of the dissipation570

range as considered here. Thus we also make no attempt at providing a general calibration of the571

model coefficient from the employed DNS/LES data as the results would be dependent on this572

parameter in the range of validity of the DG-VMS approach. In order to facilitate the analysis,573

all the results are presented with the model constant selected such that the modelled dissipation574

spectrum presents the same maximum value as that of the ideal SGS dissipation spectrum. The575

employed values of the model coefficient are reported in Table 1.576

BR1 BR2 ηbr2 = 2

β = 0.25 β = 0.5 β = 0.75 β = 0.25 β = 0.5 β = 0.75

all-all 0.093 0.103 0.122 0.094 0.096 0.098
Vreman 0.099 0.120 0.181 0.099 0.117 0.162
small-small 0.102 0.122 0.156 0.103 0.112 0.139

Smagorinsky 0.090 0.090

Table 1: TGV at Re = 20 000, p = 7, kDG = 288: Model coefficients selected for the Smagorinsky and DG-VMS model
using the BR1 and BR2 schemes.

In Fig. 21 we report the ideal and model SGS dissipation spectrum corresponding to the577

Smagorinsky model and the three variants of the DG-VMS approach using the BR1 discretization578

scheme.579

It is obvious from this figure that, as already shown by other authors, the Smagorinsky model580

provides excessive dissipation at low wavenumbers. This effect is drastically reduced by em-581

ploying all the considered variants of the DG-VMS approach. As expected, increasing the value582

of β restricts the action of the SGS model on progressively finer scales and, for a fixed model583

constant, reduces the total SGS dissipation.584

In particular for β = 0.75 the SGS model acts only on the range of scales [kDG/3, kDG]. For585

lower values of β however the distribution of the modelled SGS dissipation does not correspond586

to the ideal SGS dissipation for any of the considered discretizations. This effect is particu-587
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Figure 21: TGV at Re = 20 000, p = 7, kDG = 288: Ideal SGS energy transfer (black solid), SGS model dissipation
spectrum provided by the Smagorinsky model (dashed) and three variants of the DG-VMS approach for: β = 0.25
(green), β = 0.5 (blue), and β = 0.75 (red) using the BR1 scheme.

larly marked for β < 0.5 and has also been observed by employing the DG-LES solution at the588

intermediate resolution kDG = 144 (not reported here).589

We further remark that the SGS dissipation spectrum decays smoothly for low wavenumbers590

for all variants of the DG-VMS approach. This is expected as the high-pass projection filter is591

not sharp in Fourier space. As Sagaut and Levasseur [27] have shown that a smooth decay of the592

SGS dissipation spectrum leads to improved results in a-posteriori tests, this result demonstrates593

an advantage of using a modal decomposition as opposed to an orthogonal spectral filter.594

Among the three variants, the all-all approach presents the smoothest behaviour at low wavenum-595

bers and the small-small approach presents the sharpest behaviour. Moreover we identify the596

presence of bumps in the SGS dissipation spectrum of the small-small variant, clearly visible for597

β = 0.25 in Fig. 21. These results indicate an advantage of the Vreman variant with respect to598

the small-small approach. Indeed we recall that the eddy viscosity and the strain rate are evalu-599

ated in the same way for the two variants and the obtained results show that removing the outer600

projection operation leads to a smoother SGS dissipation spectrum for a lower computational601

cost.602

Comparing the all-all and the Vreman approaches is not as straightforward. Indeed we ob-603

serve that the all-all variant presents a marginally better agreement with the ideal SGS dissipation604

spectrum and we recall that the it presents a much lower computational cost for modal DG meth-605

ods. However, in contrast to the all-all variant, for the Vreman approach the SGS model is606

computed from the filtered gradients. For this reason the SGS stress is aligned with the small-607

scale gradients and tends to zero when the flow is well resolved and the solution is represented608

entirely by the large-scale component. An analysis of the alignment between the ideal SGS stress609

and the modelled one could therefore be employed in order to draw more definitive conclusions.610

Further analysing Fig. 21 we observe that, despite presenting a smooth decrease of the dissi-611

pation spectrum towards the low wavenumbers, all VMS approaches present a negligible amount612

of SGS dissipation acting on the large resolved scales. This confirms that the DG-VMS approach613

is not able to replicate the viscous-type behaviour observed at low wavenumbers when the res-614

olution limit falls within the inertial range. Additionally we observe that the modelled energy615

transfer presents a small region with negative values for the all-all approach with β = 0.25. A616

similar result has been observed also for the small-small variant for other resolutions when low617

values of β are considered (not shown here). This effect has not been observed for the Vreman618

variant and is thus possibly caused by the outer high-pass L2-projection filter. These regions of619
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Figure 22: TGV at Re = 20 000, p = 7, kDG = 288: Ideal SGS energy transfer (black solid), SGS model dissipation
spectrum provided by the Smagorinsky model (dashed) and three variants of the DG-VMS approach for: β = 0.25
(green), β = 0.5 (blue), and β = 0.75 (red) using the BR2 scheme (ηbr2 = 2).

negative energy transfer can therefore be considered as numerical artefact of the high-pass filter620

used in the DG-VMS approach and should not be interpreted as modelling backscatter.621

Finally we note that for all VMS approaches with β = 0.75 the peak of the SGS dissipation622

spectrum is located at a relatively lower frequency compared to the ideal SGS dissipation spec-623

trum. This effect is partially explained by the use of the BR1 scheme in Fig. 21. Indeed, it is624

well known that the BR1 scheme presents very low and less than exact dissipation at frequencies625

close to kDG [45]. A possible remedy is therefore to employ a different discretization for the SGS626

model term, e.g. the BR2 method.627

In Fig. 22 we compare the ideal SGS dissipation spectrum and modelled energy transfer628

obtained with the BR2 scheme for ηbr2 = 2. As expected the presence of the penalty term in the629

BR2 scheme leads to a shift and increase of the model dissipation toward higher wavenumbers.630

However we remark that the optimal value of ηbr2 has been observed to depend on the employed631

discretization. Additionally for sufficiently high values of ηbr2 the dissipation provided by the632

SGS model might be overwhelmed by that introduced by the penalty term. A similar effect could633

be provided by the upwind dissipation associated to the discretization of the convective flux.634

The conclusions drawn above are confirmed by analysing the modal energy transfer and eddy635

viscosity corresponding to the configuration considered in this section and the two discretization636

schemes BR1 and BR2. These are presented from Figs. 23 to 26.637

It is clear from these figures that for the all-all approach a value of β = 0.75 must be employed638

in order to mimic the negligible ideal energy transfer at low mode-numbers. Additionally we639

observe that when employing the BR2 scheme with ηbr2 = 2 a remarkably good agreement640

is obtained with both the modal energy transfer and eddy viscosity, confirming the conclusion641

drawn from the spectral energy transfer analysis.642

Considering now the Vreman and small-small approaches we observe that the outer filter643

operation does not appear necessary to limit the effect of the modelled dissipation on the highest-644

order modes. However we observe that while for the small-small variant T̃m = 0 for (m + 1)/(p +645

1) = β, in the case of the Vreman approach it is positive and becomes negative for lower values646

of m. The combination of this positive and negative contribution leads to the smooth distribution647

of the modelled dissipation spectrum in Fig. 21 and 22.648

In order to assess the generality of our remarks, we have repeated the presented analysis for649

different values of the polynomial degree p. Similar conclusions have been obtained with regards650
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Figure 23: TGV at Re = 20 000, p = 7, kDG = 288 : Ideal modal energy transfer (black solid) and modelled modal energy
transfer provided by the Smagorinsky model (dashed) and three variants of the DG-VMS approach for: β = 0.25 (green),
β = 0.5 (blue), and β = 0.75 (red) using the BR1 scheme.

10−1 100
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(m + 1)/(p + 1)

ν̃
† m

all-all

10−1 100
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(m + 1)/(p + 1)

Vreman

10−1 100
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(m + 1)/(p + 1)

ν̃
† m

small-small

Figure 24: TGV at Re = 20 000, p = 7, kDG = 288 : Ideal modal eddy viscosity (black solid) and modelled modal
eddy viscosity provided by the Smagorinsky model (dashed) and three variants of the DG-VMS approach for: β = 0.25
(green), β = 0.5 (blue), and β = 0.75 (red) using the BR1 scheme.
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Figure 25: TGV at Re = 20 000, p = 7, kDG = 288 : Ideal modal energy transfer (black solid) and modelled modal energy
transfer provided by the Smagorinsky model (dashed) and three variants of the DG-VMS approach for: β = 0.25 (green),
β = 0.5 (blue), and β = 0.75 (red) using the BR2 scheme (ηbr2 = 2).

26



10−1 100
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(m + 1)/(p + 1)

ν̃
† m

all-all

10−1 100
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(m + 1)/(p + 1)

Vreman

10−1 100
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(m + 1)/(p + 1)

small-small

Figure 26: TGV at Re = 20 000, p = 7, kDG = 288 : Ideal modal eddy viscosity (black solid) and modelled modal
eddy viscosity provided by the Smagorinsky model (dashed) and three variants of the DG-VMS approach for: β = 0.25
(green), β = 0.5 (blue), and β = 0.75 (red) using the BR2 scheme (ηbr2 = 2).
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Figure 27: TGV Re = 20 000: ideal SGS dissipation spectrum and model dissipation spectrum using the all-all DG-VMS
approach with CS = 0.1 using the BR2 scheme for kDG = 288 and p = 3 (left), p = 8 (center) and p = 11(right).

to the comparison of the three variants and the effect of variations of β on the model dissipation651

spectrum (not reported here). However, the optimal value of β appears to be dependent on p when652

p ≤ 4. This result is expected from the a-priori analysis carried out in Sec. 5.2. To illustrate this,653

we report in Fig. 27 the ideal SGS dissipation spectrum and the model energy transfer for p = 3,654

8 and 11 using the DG-VMS all-all approach and the BR2 scheme (ηbr2 = 2).655

We can observe that for p = 8 and 11 the value β ≈ 0.75 leads to the modelled dissipation656

acting on the scales of wavenumbers in the range [kDG/3, kDG] similarly to the ideal SGS dissi-657

pation spectrum. For p = 3, however, we observe that the ideal SGS dissipation spectrum does658

not present a peak at k̃DG and the model dissipation presents a peak at a higher frequency. In this659

case the ideal SGS dissipation is in between that provided by the DG-VMS model for β = 0.5660

and β = 0.75. This result indicates that for p ≤ 4 the DG-VMS approach might not be able to661

replicate the distribution of the ideal SGS dissipation.662

The analysis presented up to this point has focused on the ability of the DG-VMS approach663

to replicate the ideal energy transfer mechanism when the resolution limit falls within the dissi-664

pation range and the SGS dissipation acting on large-resolved scales is negligible.665

We have observed in Sec. 5 that when the resolution limit falls within the inertial range a666

viscous-type behaviour can be observed and is dominant at frequencies below kDG/3. It appears667

from these analyses that the DG-VMS approach is not able to replicate this mechanism.668
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Figure 28: TGV Re = 20 000, p = 7, kDG = 144: Ideal SGS dissipation spectrum and modelled dissipation spectrum for
mixed Smagorinsky+DG-VMS models.

Modifying or adapting β does not lead to a better representation of the SGS dissipation669

spectrum. However as we have observed in Fig. 21 this parameter allows to control the set670

of scales on which the SGS dissipation acts and the total amount of SGS dissipation. Thus671

the DG-VMS approach can nonetheless lead to improved results with respect to the standard672

or dynamic Smagorinsky model which might introduce in some cases excessive dissipation on673

the large resolved scales. This also explains the promising results observed for the local VMS674

approach proposed by Ramakrishnan and Collis [26] and for the dynamic partition selection al-675

gorithm for the DG-VMS approach by Naddei et al. [46].676

The a-priori tests performed in this work indicate thus that the main limitation of the DG-VMS677

approach is its inability to mimic the energy transfer mechanism at low wavenumbers encoun-678

tered at high Reynolds and typical LES resolutions. This corresponds to a viscous-type be-679

haviour which can be modelled by an eddy-viscosity model such as the Smagorinsky model.680

The ideal SGS dissipation spectrum could be therefore approximated by employing a mixed681

Smagorinsky+DG-VMS model where the Smagorinsky model acts on all scales and the VMS ap-682

proach with β = 0.75 replicates the hyperviscous behaviour dominant on frequencies k > kDG/3.683

The two model coefficients however should be dynamically adapted (e.g. using Germano’s pro-684

cedure) as the relative contribution to the total SGS dissipation will depend on the resolution.685

As an example, in Fig. 28 we consider the ideal SGS dissipation spectrum for a snapshot at686

t = 14 of the TGV at Re = 20 000, p = 7 and 2883 dofs. The ideal SGS dissipation spectrum is687

compared to the three variants of the mixed model with constant coefficients, for the Smagorin-688

sky contribution Cs,smag = 0.057 and Cs,a−a = 0.063 for the all-all variant, Cs,vrem = 0.095689

for the Vreman variant and Cs,s−s = 0.087 for the small-small variant. This figure illustrates690

that a dynamic mixed model even with global model coefficients has the potential to a very691

accurate agreement with the ideal SGS-dissipation. Similar approaches have already been pro-692

posed, e. g. the Smagorinsky and residual-based-VMS approach by Wang and Oberai [47], or693

the enhanced field model by Jeanmart and Winckelmans [13]. However this is the first work that694

demonstrates the potential of such methodology by a-priori analyses which include details of the695

numerical discretization and the effect of the DG-projection filter in the VMS approach.696
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7. Conclusions697

In this work we have proposed a framework for the a-priori analysis of DG-LES methods698

based on DNS databases. It is an extension of the classical framework for the analysis of the699

energy transfer between resolved and unresolved scales of Kraichnan [8] and Domaradzki et700

al. [9]. The proposed framework is consistent with the employed discretization and as such,701

allows the evaluation of the ideal SGS dissipation spectrum that needs to be modelled including702

the effect of discontinuities inherently present in the DG method and the particular choice of the703

numerical flux.704

We have further introduced the concept of a modal energy transfer and eddy viscosity. These705

quantities can be employed to analyse a-priori LES models that rely on modifying the amount706

of SGS dissipation acting on different modes of the solution such as the DG-VMS model and the707

spectral vanishing viscosity approach.708

The developed framework has been applied to a DNS database of the TGV at Re = 5 000,709

20 000 and 40 000 [24]. It has been shown that the ideal SGS dissipation spectrum presents in710

general a mixed viscous-hyperviscous behaviour. The viscous behaviour is dominant for fre-711

quencies below k̃DG/2 = kDG/3 = nel(p + 1)/6 whereas the hyperviscous behaviour is dominant712

at higher frequencies with a peak at k̃DG. Only when the DG resolution limit falls at the begin-713

ning of the dissipation range the energy transfer between large-resolved and unresolved scales714

is negligible. This corresponds to a negligible energy transfer to DG modes of mode-number715

m + 1 ≤ 0.75(p + 1). Under these conditions, the DG-VMS approach can provide an accurate716

approximation of the SGS dissipation spectrum.717

A-priori analyses of three variants of the DG-VMS approach have been carried out. We718

have considered the small-small [1], Vreman [2], and all-all variants [3]. We have observed that719

the Vreman approach provides an improved agreement with the SGS dissipation spectrum as720

compared to the small-small variant at lower computational cost. A similar improvement has721

been obtained for the all-all approach. It presents a lower computational cost while behaving722

similarly to the Vreman variant although the model viscosity does not vanish when the solution723

is completely represented by the large-resolved scales.724

It has been also shown in this study that, when the ideal SGS dissipation acting on the725

large-resolved scales is negligible, the best results for the DG-VMS approach are obtained for726

a scale-fraction parameter of β = 0.75. All results have been shown to only mildly depend on727

the polynomial degree for p ≥ 5 and more marked differences are observed for lower values of728

p which lead to different optimal values of β. We therefore suggest to employ a value of p ≥ 5729

as it leads to a more consistent behaviour of the ideal energy transfer mechanism and a good730

agreement of the DG-VMS approach with the ideal quantities.731

Finally, we have shown that the DG-VMS approach is not able to reproduce the viscous-type732

behaviour observed at relatively low wavenumbers when the resolution limit falls within the733

inertial range. Under these conditions, a mixed model based on the Smagorinsky model and the734

DG-VMS approach with β = 0.75 can provide an improved agreement over a wide range of735

resolutions provided that the model coefficients are dynamically adapted.736
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Appendix A. Energy and dissipation spectra computation745

For the computation of the energy and dissipation spectra we need to evaluate the Fourier746

transform of the velocity field, SGS residual, and SGS model term. For this purpose we employ747

the Fast Fourier Transform (FFT) algorithm as implemented in the FFTW-3.3.8 library [48].748

The FFT algorithm requires the solution to be known on an uniform Cartesian grid. The749

variable of which we want to compute the FFT is therefore sampled on a post-processing grid750

formed by the union of n3
el uniform Cartesian grids centered on each cell and composed of q3

s751

sampling points. The post-processing grid on the domain [−π, π]3 is thus composed of the Carte-752

sian product of the coordinates ( j − 1
2 ) 2π

qsnel
for j = 1, . . . ,NFFT = qsnel. The value of qs must be753

sufficiently large to evaluate accurately the Fourier coefficients corresponding to the frequencies754

of interest (that is at least up to kDG).755

Indeed, the presence of discontinuities in the DG-LES field leads to a reduction in the order756

of convergence of the FFT algorithm. We remark that the FFT algorithm relies on the trapezoidal757

integration rule which presents an order of accuracyO(NFFT
−1) in the presence of discontinuities,758

as opposed to the exponential convergence obtained for smooth functions. In this case the use of759

nel(p + 1) points per direction, as is usually found in the literature of DG-LES, is not sufficient760

for the evaluation of the energy and dissipation spectra. For this reason, we employ at least761

3nel(p + 1) points per direction and verify that increasing this value does not modify the energy762

and dissipation spectra at frequencies below kDG.763

In order to illustrate the need for a sufficiently high number of points for the evaluation of the764

FFT, we report in Fig. A.29 the energy spectra of the DG-LES solution of the TGV configuration765

at Re = 20 000 and t = 14 using p = 5 and 7 and a total of 288 degrees of freedom for various766

values of qs. It can be observed that the FFT is inaccurate for low values of qs even at wavenum-767

bers below kDG. Slight differences can be observed for frequencies below k̃DG and in some cases768

marked differences can appear at frequencies close to kDG. This is visible from the bump in the769

energy spectrum at kDG for qs = p + 1 on the right panel of Fig. A.29 corresponding to p = 7.770

Nonetheless, the spectrum converges as qs is increased and a value of qs ≈ 3nel(p + 1) ap-771

pears sufficient to obtain the Fourier transform for frequencies up to kDG. Further increasing the772

value of qs leads to the slow convergence of the tail of the spectrum associated with the DG-LES773

discontinuities.774

We note that alternative techniques can be employed to evaluate the Fourier transform avoid-775

ing the use of a large number of post-processing points. Such methodologies include the Non776

Uniform Fast Fourier Transform (NUFFT) [49, 50] and the Conformal Fourier Transform (CFT)777

[51].778

Appendix B. Choice of the large-scale space779

In Sec. 3 we have defined the space Wm
h = span

{
ψm

K ,∀K ∈ Ωh, m − 1
2 < ‖m‖ ≤ m + 1

2

}
. With780

this choice the assumption of T̃sgs(m) = 0 for m ≤ pL corresponds to the VMS approach defining781

the large-scale space as VL ..=
⋃

m≤pL
Wm

h as described in Sec. 4. Other definitions are possible,782
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Figure A.29: TGV at Re = 20 000, t = 14, kDG = 144: Energy spectrum for p = 5 (left) and p = 7 (right) for various
values of qs.

in particular the most common choice is to define VL ..= S pL
h which corresponds to assuming that783

T̃ c(m) = 0 for m ≤ pL where784

T̃ c(m) ..= R(u,uh,PWm,c
h

[uh]) , (B.1)

with Wm,c
h = span

{
ψm

K ,∀K ∈ Ωh, ‖m‖∞ = m
}
. It is immediate to show that Wm,c

h ≡ S m
h \ S m−1

h for785

m > 0 and that W0,c
h ≡ S 0

h.786

The definition employed throughout this work Eq. (20) corresponds to analysing the modal787

energy transfer by grouping together modes over spherical shells characterized by m − 1
2 <788

‖m‖ ≤ m + 1
2 , whereas Eq. (B.1) corresponds to grouping modes over cubic shells characterized789

by ‖m‖∞ = m.790

We argue that Eq. (20) allows for a more consistent description of the modal energy transfer791

mechanism. To justify this choice we report in Figs. B.30 and B.31 the contour plots of the modal792

eddy viscosity ν̃†(m) for p = 7 and p = 11 defined as793

ν̃†(m) ..=

∑
K∈Ωh

ũh
m,K
· R(u,uh, ψ

m
K )

∑
K∈Ωh

νũh
m,K
· L(uh, ψ

m
K )

. (B.2)

We observe that the isolevel curves for ν̃†(m) are better approximated by spheres (circles in794

the plot) rather than by cubes centred in (0, 0, 0). Therefore we assume that improved results can795

be obtained for LES models by modifying the modal eddy viscosity as a function of ‖m‖ rather796

than ‖m‖∞.797
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