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Introduction

Large Eddy Simulation (LES) is a well established methodology for the prediction of turbulent flows for applications ranging from fundamental research to industrial design [START_REF] Rogallo | Numerical simulation of turbulent flows[END_REF][START_REF] Lesieur | Large-eddy Simulations of Turbulence[END_REF][START_REF] Sagaut | Large eddy simulation for incompressible flows: an introduction[END_REF].

The working principle of LES is to resolve only the large-scale turbulent eddies and model the effect of the unresolved scales by means of a subgrid-scale (SGS) closure, thereby reducing the computational cost of simulations with respect to Direct Numerical Simulation (DNS).

One of the fundamental traits of turbulence, that must be correctly reproduced by SGS models, is the physical mechanism of energy transfer between the resolved turbulent scales and the unresolved scales. This energy transfer mechanism can be studied by analysing the non-linear interaction of the full velocity field such as that obtained from DNS or by theoretical analyses by employing an analytical energy spectrum.

Early theoretical analyses of the energy transfer mechanisms in turbulent flows were performed by Heisenberg [START_REF] Heisenberg | On the theory of statistical and isotropic turbulence[END_REF] and Kraichnan [START_REF] Kraichnan | Eddy viscosity in two and three dimensions[END_REF]. These studies involved the choice of an analytical energy spectrum and an arbitrary convolution filter to separate resolved and unresolved scales and evaluate the corresponding non linear interactions and energy transfer. The energy transfer mechanism was represented by means of an additional spectral eddy viscosity acting on the resolved modes. Kraichnan [START_REF] Kraichnan | Eddy viscosity in two and three dimensions[END_REF] employed a sharp cut-off filter in Fourier space to separate resolved and unresolved scales in theoretical turbulence characterized by an infinite inertial range (i. e. assuming infinite Reynolds number). Under these conditions, Kraichnan identified the presence of a cusp in the spectral eddy viscosity, near the cut-off, and a plateau at lower wavenumbers, which is a manifestation of the significant interaction between the unresolved scales and the large resolved scales away from the cut-off.

A-priori numerical analyses were carried out by Domaradzki et al. [START_REF] Domaradzki | An analysis of subgrid-scale interactions in numerically simulated isotropic turbulence[END_REF] based on DNS of the Taylor-Green Vortex (TGV) flow at Re = 3 000 by applying a sharp spectral filter to define the ideal LES solution. This work confirmed the presence of the cusp of the spectral eddy viscosity near the cut-off. However, differently from the studies of Kraichnan, a negligible energy transfer was observed at relatively lower wavenumbers. A similar result was observed by McComb and Young [START_REF] Mccomb | Explict-scales projections of the partitioned non-linear term in direct numerical simulation of the Navier-Stokes equation[END_REF] who analysed the spectral eddy viscosity for homogeneous isotropic turbulence at microscale Reynolds number Re λ = 190. In their work a plateau in the eddy viscosity was observed only for the coarsest resolution, indicating a negligible interaction between large resolved and unresolved scales. In contrast, Métais and Lesieur [START_REF] Métais | Spectral large-eddy simulation of isotropic and stably stratified turbulence[END_REF] identified a plateau in the spectral eddy viscosity evaluated from an LES of homogeneous isotropic turbulence at infinite Reynolds number.

Using a-priori testing, the ideal energy transfer and the effective eddy viscosity obtained by applying the LES filter to DNS data can be employed to evaluate SGS models and aid in their improvement. As an example, the Smagorinsky model [START_REF] Smagorinsky | General circulation experiments with the primitive equations: I. the basic experiment[END_REF], still widely employed due to its simplicity and robustness, has been shown in a-priori analyses to be overdissipative on the large-scale structures, confirming the observations from a-posteriori tests [START_REF] Jeanmart | Investigation of eddy-viscosity models modified using discrete filters: A simplified regularized variational multiscale model and an enhanced field model[END_REF]. Using the same approach, it has been shown that even though its dynamic variant by Germano et al. [START_REF] Germano | A dynamic subgrid-scale eddy viscosity model[END_REF] is able to provide the correct global SGS dissipation and near-wall scaling, it fails to reproduce the ideal energy transfer spectrum (also called SGS dissipation spectrum). Indeed, it introduces an insufficient amount of dissipation at high frequencies while exhibiting an overdissipative behaviour at low frequencies as shown e. g. by Hughes et al. [START_REF] Hughes | Energy transfers and spectral eddy viscosity in large-eddy simulations of homogeneous isotropic turbulence: Comparison of dynamic Smagorinsky and multiscale models over a range of discretizations[END_REF].

A number of new SGS models have been developed with the aim of reducing these shortcomings of traditional LES techniques. One such model is the Variational Multiscale (VMS) approach proposed by Hughes et al. [START_REF] Hughes | Large eddy simulation and the variational multiscale method[END_REF]. The VMS approach advocates the strict separation of the resolved velocity field into a large-scale component, containing the largest coherent structures of the flow, and a small-scale component by means of a high-pass projection filter. The model then relies on the spectral gap assumption such that the large resolved scales are assumed to be virtually free of SGS dissipation. Thus the model (e. g. the Smagorinsky model or its dynamic version) only acts on the small-scale resolved component of the velocity field. This approach therefore mimics the ideal energy transfer mechanism as described by Domaradzki et al. [START_REF] Domaradzki | An analysis of subgrid-scale interactions in numerically simulated isotropic turbulence[END_REF]. The VMS approach, originally developed in the context of stabilized finite element (FE) and spectral methods, has demonstrated very accurate results in the simulation of several turbulent flow configurations and has since been extended to finite volume (FV) and spectral element type methods such as the discontinuous Galerkin (DG) method. We refer to the reviews of Gravemeier [START_REF] Gravemeier | The variational multiscale method for laminar and turbulent flow[END_REF], Ahmed et al. [START_REF] Ahmed | A review of Variational Multiscale Methods for the simulation of turbulent incompressible flows[END_REF] and Rasthofer and Gravemeier [START_REF] Rasthofer | Recent developments in Variational Multiscale Methods for Large-Eddy Simulation of turbulent flow[END_REF] for an overview of the VMS approach and several variants that have been proposed by other authors.

The combination of the VMS approach with DG methods in particular presents several properties which are of great interest for the improvement of the quality and efficiency of LES [START_REF] Collis | Monitoring unresolved scales in multiscale turbulence modeling[END_REF].

The DG methods have rapidly gained popularity for scale-resolving simulations due to their excellent scalability and their ability to achieve high-order accuracy on general meshes [START_REF] Cockburn | Runge-Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems[END_REF]. The variational framework on which these methods rely allows for the local separation of scales using polynomial basis functions, which can be employed for multi-level methods and the VMS approach. In contrast to the spectral method, the DG framework allows for the efficient separation of scales even while working on completely unstructured meshes without requiring complex spatial filters. Moreover, the high-order polynomial representation of the solution allows for a higher flexibility in the decomposition into large and small scale components, as compared to FV and low order FE methods. Finally, the use of discontinuous solution spaces allows for the straightforward local adaptation of the scale-separation operator.

There are however still several open questions which require specific analysis in the context of the DG-VMS method. These are: the effect of the LES filter on the effective eddy viscosity, the effect of the scale-separation operator and the calibration of the coefficient involved in the SGS model. While these questions are still the subject of current research in the context of the DG-VMS approach, several studies have been already carried out in the context of standard LES approaches based on convolution filters. The main conclusions of these works are briefly outlined below.

The effect of the LES filter. Leslie and Quarini [START_REF] Leslie | The application of turbulence theory to the formulation of subgrid modelling procedures[END_REF] performed theoretical analyses by considering an infinite inertial range and a Gaussian filter. Their results demonstrated that, in contrast to what is obtained for a sharp spectral filter, the use of a Gaussian filter leads to an spectral eddy viscosity characterized by a plateau from low to high wavenumbers and a sharp decay as the wavenumber approaches 1/∆ (∆ being the filter width). Moreover, in the case of a productiontype spectrum, the shape of the ideal eddy viscosity strongly depends on the ratio between the LES cut-off frequency k c and that corresponding to the energy production phenomena. Similar conclusions can be drawn from the work of Cerutti et al. [START_REF] Cerutti | Spectral and hyper eddy viscosity in high-Reynolds-number turbulence[END_REF] who evaluated the eddy viscosity from experimental measurements corresponding to the use of a mixed filter (spectral cut-off in one direction and top-hat filter in the other two directions). The outcome of this study led the authors to conclude that the use of a mixed viscosity-hyperviscosity model can improve the accuracy of LES simulations. More recently Lamballais et al. [START_REF] Lamballais | Implicit/Explicit Spectral Viscosity and Large-Scale SGS Effects[END_REF] have evaluated the eddy viscosity from the DNS of the TGV configuration at Re = 20 000 and observed the presence of the plateau described by Kraichnan [START_REF] Kraichnan | Eddy viscosity in two and three dimensions[END_REF] employing a spectral cut-off filter.

It appears, therefore, that the validity of the spectral gap assumption needs to be carefully analysed depending on the LES filter employed in the simulation. The extension of these analyses to the case of the DG-VMS approach presents additional complications as the DG-projection filter is not a convolution filter (as explained in Sec. 2). Thus this topic deserves special attention.

The effect of the high-pass filter. The second open question is the effect of the high-pass filter on the quality of the VMS model. As regards the choice of the cut-off frequency k associated with the high-pass filter, in actual simulations, this parameter is often selected heuristically or by trying to match reference results. In early numerical experiments, Hughes et al. [START_REF] Hughes | Large eddy simulation and the variational multiscale method[END_REF] and Hughes et al. [START_REF] Hughes | The multiscale formulation of large eddy simulation: Decay of homogeneous isotropic turbulence[END_REF] have used a high-pass spectral filter with k corresponding to a scale-fraction parameter β = k/k c equal to 0.59 and 0.5, respectively, when employing the VMS approach with constant model coefficient. In later works Hughes et al. [START_REF] Hughes | Energy transfers and spectral eddy viscosity in large-eddy simulations of homogeneous isotropic turbulence: Comparison of dynamic Smagorinsky and multiscale models over a range of discretizations[END_REF] employed a scale-fraction parameter β = 0.5 for the VMS approach based on the dynamic Germano procedure for the determination of the model constant. Holmen et al. [START_REF] Holmen | Sensitivity of the scale partition for variational multiscale large-eddy simulation of channel flow[END_REF] carried out a sensitivity analysis for the LES of the turbulent channel flow. The authors showed that the use of the dynamic procedure reduces the sensitivity of the VMS-LES to the scale-fraction parameter and optimal results were obtained for β ≈ 0.5.

In contrast, for the static variants optimal results were obtained for β ≈ 0.7 and the quality of the solution quickly deteriorated for other values. Ramakrishnan and Collis [START_REF] Ramakrishnan | Partition selection in multiscale turbulence modeling[END_REF] have shown that the optimal scale-fraction parameter might depend on the flow considered and resolution available.

It was observed that the optimal high-pass filter length can be related to the characteristic length of coherent structures of the flow. However they remarked that the small-scale space should contain at least 50% -60% of all modes to provide high quality first and second-order statistics.

The effect of the type of the high-pass filter in VMS was also analysed by Sagaut and Levasseur [START_REF] Sagaut | Sensitivity of spectral variational multiscale methods for large-eddy simulation of isotropic turbulence[END_REF] and Meyers and Sagaut [START_REF] Meyers | Evaluation of smagorinsky variants in large-eddy simulations of wall-resolved plane channel flows[END_REF]. It was observed that the sharp-cut off filter (orthogonal in Fourier space) can provide an overdissipative behaviour at high frequencies leading to a bottleneck effect and the generation of a middle-wavenumber pile-up. Moreover, a discrete jump might appear in the energy spectrum near the high-pass filter cut-off (as observed by Meyers and Sagaut [START_REF] Meyers | Evaluation of smagorinsky variants in large-eddy simulations of wall-resolved plane channel flows[END_REF]). The use of a non-orthogonal high-pass filter (e. g. Gaussian filter) led to improved results by rendering all scales sensitive to the subgrid closure. Similar results were reported by Meyers and Sagaut [START_REF] Meyers | Evaluation of smagorinsky variants in large-eddy simulations of wall-resolved plane channel flows[END_REF] who further noted a reduced dependency on β when employing a Gaussian filter.

Calibration of the SGS model constant. As regards the value of the constant involved in the VMS model, a calibration has been derived by Hughes et al. [START_REF] Hughes | Large eddy simulation and the variational multiscale method[END_REF] using the procedure due to Lilly [START_REF] Lilly | The representation of small-scale turbulence in numerical simulation experiments[END_REF].

The procedure assumes an infinite Reynolds number (infinite inertial range) and the calibration was obtained considering an isotropic sharp spectral filter for both the LES and high-pass filters.

The most comprehensive work on the calibration of the model constant for the VMS approach is however the study by Meyers and Sagaut [START_REF] Meyers | On the model coefficients for the standard and the variational multi-scale Smagorinsky model[END_REF]. One of the most important results of this research is that the optimal model coefficient strongly depends on the choice of LES and high-pass filter.

Moreover, the authors have provided an analytical framework for the evaluation of the optimal model coefficient in the case of convolution filters. As already mentioned, the DG-projection filter is not a convolution filter and therefore special care is required to extend the conclusions of these works.

The studies cited above clearly outline that the performance of the VMS approach is strongly influenced by a number of parameters primarily associated with the LES and high-pass filters.

Therefore the systematic and robust application of the DG-VMS approach can be improved by analysing these questions in the context of the DG-projection filter as both the LES filter and scale-separation operator. We analyse for this purpose the effect of the DG-LES filter on the ideal energy transfer and the validity of the assumption of absence of SGS dissipation acting on the largest resolved scales. The accuracy of the DG-VMS approach and the associated high-pass filter in replicating the ideal energy transfer will then be considered with the objective of identifying guidelines for the selection of the scale-fraction parameter. This work is therefore organized as follows. In Section 2 the DG-filter and the ideal DG-LES solution are discussed. Their definition is then employed in Sections 3 and 4 to extend the energy transfer analysis framework to the context of DG-LES. The presented framework is then applied in Section 5 to a DNS database of the TGV configuration at Re = 5 000, 20 000 and 40 000. Obtained results are then compared in Section 6 to the energy transfer and eddy viscosity provided by the DG-VMS approach. Finally conclusions are presented in Section 7.

The ideal DG-LES solution

A-priori testing can provide valuable information about the accuracy of LES modeling approaches. The central question with this type of analysis is the definition of an appropriate ideal LES solution, which in the general case is not straightforward. It is, however, essential to answer this question, as the way in which this ideal solution is defined has a direct impact on the way the ideal SGS quantities are computed.

The classical approach consists in defining the ideal LES solution as the spatially filtered DNS solution. For this purpose convolution filters are conventionally employed such that for any function f we define the filtered function f (x) . . = Ω G(x -ξ) f (ξ)dξ with G(x -ξ) being the filter kernel. The convolution filter can be applied to the Navier-Stokes (NS) equations such that the ideal LES solution satisfies the filtered NS equations in their strong form. One of the advantages of this approach is that the application of the convolution filter can be expressed in the Fourier space as f (k) = G(k) f (k) where (•) denotes the Fourier transform and it is easy to demonstrate that the convolution filter commutes with spatial derivatives. This approach however entirely ignores the details of the discretization employed and the fact that the LES solution so defined might not be an admissible solution of the considered discrete problem. Thus this approach presents serious limitations when extending the results of a-priori and theoretical analyses to FV and FE type methods.

A second approach has been proposed by Pope [START_REF] Pope | Large-eddy simulation using projection onto local basis functions[END_REF], in which the LES solution is conceived as the projection of the DNS solution onto a set of local basis functions. It has been shown by Vreman [32] that an arbitrary orthogonal projection operator can be reformulated as a kernel filter such that for any function f we can indicate its projection as

f h (x) . . = P h [ f ] = Ω K p (x, ξ) f (ξ)dξ.
The use of a non uniform filter kernel K p (x, ξ) implies that in general the projection operation and differentiation do not commute. For this reason the closure problem needs to be redefined employing the semidiscrete weak form of the equations as described by Pope [START_REF] Pope | Large-eddy simulation using projection onto local basis functions[END_REF] and in the context of the VMS approach (e.g. [START_REF] Collis | The DG/VMS method for unified turbulence simulation[END_REF]).

This methodology provides a definition of the ideal resolved field which is consistent with the employed numerical discretization. Following this approach Beck et al. [START_REF] Beck | Neural networks for data-based turbulence models[END_REF] have defined the ideal DG-LES solution as the L 2 -projection of the DNS solution on the discretization space and identified the ideal subgrid stress to develop a Deep Neural Network turbulence model. Similarly van der Bos and Geurts [START_REF] Van Der Bos | Computational error-analysis of a discontinuous galerkin discretization applied to large-eddy simulation of homogeneous turbulence[END_REF] have defined the ideal DG-LES solution by means of a face-based projection to perform a systematic analysis of computational errors of DG-FEM for LES.

The use of a projection type filter however can introduce significant aliasing errors at wavenumbers close to the grid cut-off, producing unphysical reference data. This is a direct consequence of the approximation properties of polynomial basis functions (see [START_REF] Gottlieb | Numerical analysis of spectral methods: theory and applications[END_REF]).

In this work we propose to employ an alternative approach in which the ideal DG-LES solution is defined as the result of the application of two successive filtering operations. A first convolution filter is applied to the DNS data which filters out frequencies beyond the LES grid cut-off. Next, a L 2 -projection of this filtered field is performed on the hp-discretization space (referred to in the following as DG-projection). This procedure reduces considerably the aliasing errors introduced by Pope's approach, while allowing the inclusion in the analysis of the effect of the hp-discretization associated with the adopted numerical method.

The following section provides a formal framework for the definition of the ideal DG-LES solution as described above and the expression of the corresponding ideal SGS energy transfer.

The DG-LES framework and the ideal energy transfer

The N-S equations for an incompressible flow read

∂u ∂t + ∇ • F c (u, q) + ∇ • F v (u, ∇u) = 0 , ∀x ∈ Ω, t ≥ 0 , (1) 
∇ • u = 0 , ( 2 
)
where u is the velocity field, q is the pressure, and F c and F v are the convective and viscous fluxes, defined respectively as

F c (u, q) = u ⊗ u + qI , (3) 
F v (u, ∇u) = ν(∇u + (∇u) T ) . (4) 
We define Ω h to be a shape regular partition of Ω into N non-overlapping, non-empty elements of characteristic size h and we further define the broken Sobolev space S p h . . = {φ ∈ L 2 (Ω h ) :

φ| K ∈ P p (K), ∀K ∈ Ω h } to be the space of piecewise polynomials of partial degree at most p.

Then we indicate as f h . . = P S p h [ f ] the projection of any function f on the hp-discretization defined by the space S p h .

Following the approach described in the previous section, we define the ideal DG-LES solution as u h . . = P S p h [u], which is the result of the successive application to the velocity field u of a convolution filter and the DG-projection filter defined by the space S p h . The convolution filter employed in this work is a sharp spectral anisotropic filter with expression in spectral space

G(k) = H(k DG -k ∞ )
where k DG = π(p + 1)/h and H is the Heaviside function.

Applying the convolution and DG-projection filter to Eq. (1), we derive the evolution equations for the ideal DG-LES solution

∂ ∂t Ω h u h φ dx + K ∂K F c (u, q) • n + φ + dσ - K F c (u, q) • ∇φ dx + ∂K F v (u, ∇u) • n + φ + dσ - K F v (u, ∇u) • ∇φ dx = 0 , ∀φ ∈ S p h , (5) 
where we have used the commutation property of the convolution filter with spatial derivatives and the definition of the L 2 -projection, which implies, Ω h (uu h )φ = 0, ∀φ ∈ S p h .

The DG-LES equations can now be defined by rewriting Eq. ( 5) as

∂ ∂t Ω h u h φ dx + L c (u h , q h , φ) K ∂K h c (u + h , q + h , u - h , q - h , n + )φ + dσ - K F c (u h , q h ) • ∇φ dx + K ∂K h v (u + h , u - h , n + )φ + dσ - K F v (u h , ∇u h ) • ∇φ dx νL v (u h , φ) +R(u, u h , φ) = 0 , ∀φ ∈ S p h , (6) 
where h c and h v are the convective and diffusive numerical fluxes and f + and f -indicate the trace of any function f on the element's boundary ∂K.

In Eq. ( 6), R(u, u h , φ) is the subgrid-scale residual representing the effect of the unresolved scales uu h on the resolved field, which can be obtained by comparing Eq. ( 5) and Eq. ( 6). Note that, as the DG-projection filter does not commute with spatial derivation nor the convolution filter, in general both the pressure and viscous terms contribute to the subgrid-scale residual. In this work, however, we assume that the SGS term is dominated by convective effects thus the contribution of the viscous and pressure terms is neglected. This leads to the following form for the subgrid residual,

R(u, u h , φ) ≈ K K F c (u h ) -F c (u) • ∇φ dx - ∂K h c (u + h , u - h , n + ) -F c (u) • n + φ + dσ . (7) 
Indicating as {ψ 1 K . . . ψ N p K } ∈ P p (K) an orthonormal basis for P p (K) with ψ i K (x) = 0, ∀x ∈ K , K K, the solution u h is expressed as a linear combination of the basis functions such that

u h (x, t) = K N p i=1 u i,K h (t)ψ i K (x) , ∀x ∈ Ω h , (8) 
where the modal coefficients u i,K h obey the following equation derived from Eq. ( 6)

∂ u i,K h ∂t + L c (u h , q h , ψ i K ) + νL v (u h , ψ i K ) + R(u, u h , ψ i K ) = 0 , ∀K ∈ Ω h , ∀i = 1 . . . N p . (9) 
These equations can be combined to rewrite the semidiscrete DG-LES equations (6) as

∂u h ∂t + L c (u h , q h ) + νL v (u h ) + R(u, u h ) = 0 , (10) 
where

L c . . = K i L c (u h , q h , ψ i K )ψ i K , (11) 
L v . . = K i L v (u h , ψ i K )ψ i K , (12) 
R . . = K i R(u, u h , ψ i K )ψ i K . ( 13 
)
This leads to the following equation for the evolution of the energy associated to each wavenumber k of the resolved scales as

∂E(k) ∂t + u h (k) • L c (k) + ν u h (k) • L v (k) + u h (k) • R(k) = 0 . ( 14 
)
The ideal energy transfer from the resolved modes of wavenumber k to all unresolved scales can therefore be obtained from the subgrid residual as

T sgs (k) = k =k u h (k) • R(k) . ( 15 
)
Positive values of T sgs correspond to kinetic energy being transferred from resolved to unresolved scales, whereas negative values correspond to energy being transferred from unresolved to resolved scales, commonly indicated as backscatter.

Note that the use of the DG-projection filter introduces discontinuities in the filtered velocity field that need to be taken into account. It also requires the definition of the numerical flux h c that appears in the surface integral in Eq. ( 7). The subgrid stress thus depends in general on both, the definition of the filter and the choice of this numerical flux. While this choice might appear arbitrary, it reflects the notion that the subgrid term which needs to be modelled must take into account the choice of the numerical discretization and the numerical dissipation thereby introduced.

In the a-priori analyses presented in the following, we are interested in investigating the ideal SGS dissipation in absence of dissipation introduced by the discretization of the convective flux.

For this purpose we consider a central flux

h c (u + h , u - h , n + ) = 1 2 (F c (u + h ) + F c (u - h )) • n + .

The modal energy transfer and eddy viscosity

The analysis presented up to this point represents an extension of the classical energy transfer spectral/Fourier analysis. In the context of the DG method useful information can be extracted by performing this analysis in the modal/polynomial space. For this purpose, let us consider now Ω to be a cubic domain with Ω h being a uniform Cartesian grid. We further consider a basis for S p h which is formed by the tensor product of normalized Legendre polynomials of maximum degree p. We indicate as ψ m K the generic element of this basis such that m = (m x , m y , m z ) and

ψ m K = l m x x-x K,c h/2 l m y y-y K,c h/2 l m z z-z K,c h/2 (16) 
where x K,c , y K,c and z K,c are the coordinates of the barycenter of K and l i is the i-th Legendre polynomial normalized such that

ψ m K L 2 (Ω h ) = 1.
We then define 

W m h = span ψ m K , ∀K ∈ Ω h , m -1 2 < m ≤ m + 1 2 ,
Ẽ(m) = 1 2 Ω h P W m h [u h ] • P W m h [u h ]dx . (17) 
As

Ω h (P W m h [u h ] -u h )φdx = 0, ∀φ ∈ W m h and W m h ⊂ S p
h , from Eq. ( 5) we can write

Ω h ∂ ∂t P W m h [u h ]φdx + L c (u h , φ) + νL v (u h , φ) + R(u, u h , φ) = 0 , ∀φ ∈ W m h , (18) 
and it can be immediately obtained that

∂ Ẽ(m) ∂t + L c (u h , P W m h [u h ]) + νL v (u h , P W m h [u h ]) + R(u, u h , P W m h [u h ]) = 0 . ( 19 
)
Thus the modal energy transfer from the resolved scales of mode-number m to the unresolved scales can be evaluated as

T sgs (m) . . = R(u, u h , P W m h [u h ]) . (20) 
It is can be easily shown that Eq. ( 20) can be rewritten as

T sgs (m) = K∈Ω h m-1 2 < m ≤m+ 1 2 u h m,K • R(u, u h , ψ m K ) , (21) 
with u h m,K

= Ω h u h ψ m K dx, which closely resembles Eq. ( 15) obtained in Fourier space. We thus introduce the concept of a modal eddy viscosity, defined as

νe (m) . . = R(u, u h , P W m h [u h ]) L v (u h , P W m h [u h ]) , (22) 
which can be interpreted as an additional eddy viscosity which acts on the resolved modes similarly to the spectral eddy viscosity defined by Kraichnan [START_REF] Kraichnan | Eddy viscosity in two and three dimensions[END_REF].

We point out that neither the modal energy transfer nor the modal eddy viscosity necessarily have a physical meaning. This methodology is however useful as it can be directly compared to the VMS approach and LES models based on a spectral vanishing viscosity such as that proposed by Karamanos and Karniadakis [START_REF] Karamanos | A spectral vanishing viscosity method for large-eddy simulations[END_REF]. In the context of DG methods, these approaches are based on modifying the modal energy transfer or eddy viscosity provided by an SGS model as a function of m. A similar energy transfer analysis has already been employed by Oberai et al. [START_REF] Oberai | Transfer of Energy in the variational multiscale formulation of LES[END_REF] to perform a-priori analyses of the VMS approach based on a FE method.

In the following, the modal eddy viscosity is presented normalized by the laminar viscosity

ν † e (m) . . = νe (m) ν . (23) 
We point out that Eq. ( 22) depends on the discretization of the viscous terms. Therefore it provides the modal eddy viscosity which must be provided by the SGS model employing a chosen discretization. This approach highlights the relevance of taking into account the dissipation properties of the numerical scheme used for the discretization of the model term. In Sec. 5 and 6

results will be presented which are based on the BR1 scheme [START_REF] Bassi | A high-order accurate discontinuous finite element method for the numerical solution of the compressible navier-stokes equations[END_REF] and the BR2 scheme [START_REF] Bassi | Discontinuous Galerkin solution of the Reynolds-averaged Navier-Stokes and k-ω turbulence model equations[END_REF].

The DG-LES modelling and the DG-VMS approach

Starting from Eq. ( 6), the effect of the subgrid scales can be approximated by a model term that depends only on the resolved field

R(u, u h , φ) ≈ L m (u h , φ) . (24) 
One common approach to formulate SGS models for DG methods is to discretize LES models derived in the continuous framework, such as those relying on an eddy-viscosity approach like the Smagorinsky model.

For the Smagorinsky model, a SGS flux is introduced in the filtered NS equations which takes the form

F m = 2ν s (∇u)S (∇u) with ν s (∇u) = (C s ∆) 2 S (∇u) , (25) 
where S = 1 2 ∇u + ∇u T is the strain rate tensor, with norm S = 2S i j S i j . The Smagorinsky constant C s has values between 0.1 and 0.2, and ∆ is the filter width which in the DG framework can be defined as ∆ = h/(p + 1).

By applying the same numerical treatment used for the viscous fluxes, the DG-LES model term can be written as,

L m (u h , φ) = K ∂K h m (u + h , u - h , n + )φ + dσ - K F m (u h )∇φdx , ∀φ ∈ S p h , (26) 
where h m is the model numerical flux.

Following the approach presented above (see Sec. 3.1), the modelled spectral energy transfer can therefore be evaluated as

T m (k) = k =k u h (k) • L m (k) with L m . . = K m L m (u h , ψ m K )ψ m K , (27) 
and the modelled modal energy transfer and eddy viscosity take the form

T m (m) . . = L m (u h , P W m h [u h ]) , and ν † m (m) . . = L m (u h , P W m h [u h ]) νL v (u h , P W m h [u h ]) . ( 28 
)
The VMS approach is based on the separation of the resolved scales into large and small resolved scales by means of a projection filter. To this end, we separate the solution space into a large-scale space V L . . = m≤p L W m h and a small-scale space V S . . = S p h \ V L , where p L is the so-called scale-separation parameter and we indicate as β = (p L + 1)/(p + 1) the scale-fraction parameter. 1The original formulation of the VMS approach proposed by Hughes et al. [START_REF] Hughes | Large eddy simulation and the variational multiscale method[END_REF] relies on two assumptions: the absence of energy transfer between the large resolved and the unresolved scales and the fact that the SGS model should be evaluated from the small-resolved scales.

This leads to a model term which takes the form

∇ • F m (u h ) s-s = P V s ∇ • 2ν s (P V s [∇u h ])S (P V s [∇u h ]) . ( 29 
)
This approach is commonly referred to as the small-small approach, as both the eddy viscosity and the strain rate tensor in the model term are computed directly from the small resolved scales.

The outer filter operation restricts the action of the LES model only to the small-scale solution corresponding to mode-numbers higher than the scale-separation parameter. It corresponds therefore to the assumption T sgs (m) ≈ 0 and ν sgs ≈ 0 for m ≤ p L .

We point out once more that the L2 -projection and differentiation do not commute, thus the order of the operations is important in the definition of the model term. In particular, we remark that while the effect of the model is applied to the small-scale solution, the model flux is computed from the filtered gradient 2 which does not correspond to the gradient of the small-scale solution. This distinction disappears in the original formulation employing a convolution filter.

Other variants of the VMS model have been proposed in the literature. They include the large-small [START_REF] Hughes | Large eddy simulation and the variational multiscale method[END_REF] and the all-small [START_REF] Holmen | Sensitivity of the scale partition for variational multiscale large-eddy simulation of channel flow[END_REF] approaches which correspond to evaluating the eddy viscosity from either the low-pass filtered gradients or all the resolved scales.

Vreman [START_REF] Vreman | The filtering analog of the variational multiscale method in large-eddy simulation[END_REF] has proposed to discard the outer filter in Eq. ( 29) leading to

∇ • F m (u h ) Vrem = ∇ • 2ν s (P V s [∇u h ])S (P V s [∇u h ]) . (30) 
This approach has led to qualitatively similar results to the small-small approach [START_REF] Vreman | The filtering analog of the variational multiscale method in large-eddy simulation[END_REF]. However it is not consistent with the original formulation by Hughes et al. [START_REF] Hughes | Large eddy simulation and the variational multiscale method[END_REF] and is more closely related to the high-pass filtered Smagorinsky model [START_REF] Stolz | High-pass filtered eddy-viscosity models for large-eddy simulations of transitional and turbulent flow[END_REF]. This formulation has nonetheless the advantage of reducing the number of filtering operations required for the evaluation of the model. A large reduction of its computational cost can therefore be obtained for some formulations of the DG method (e.g. nodal DG).

Chapelier et al. [START_REF] Chapelier | Development of a multiscale LES model in the context of a modal discontinuous Galerkin method[END_REF] have proposed an all-all approach consisting in retaining only the outer filtering operation

∇ • F m (u h ) a-a = P V s ∇ • 2ν s (∇u h )S (∇u h ) . ( 31 
)
This approach is specifically tailored for the DG-modal formulation employing orthonormal hierarchical bases. In this case the outer filtering operation can be implicitly applied by removing the model term from the equation of the modal coefficients associated with the large-scale space basis functions. Thus the all-all approach presents the same computational cost as the standard Smagorinsky model for this class of methods.

In Sec. 6 the three variants of the DG-VMS approach here described are compared by analysing their accuracy in replicating the ideal energy transfer mechanism.

Ideal energy transfer from DNS data

The methodology laid out in the Sec. 3 is applied to three DNS data sets of the TGV configuration at Re = 5 000, 20 000 and 40 000. The reference DNS have been performed using the sixth-order incompressible flow solver Incompact3D [START_REF] Lamballais | Implicit/Explicit Spectral Viscosity and Large-Scale SGS Effects[END_REF]. The considered computations have been obtained on a regular Cartesian mesh of respectively 1280 3 , 3456 3 and 5400 3 nodes in a triperiodic domain of [-π, π] 3 using symmetries to divide by 8 the number of degrees of freedom (dofs) actually computed. A snapshot of each of these data sets at t = 14 (non-dimensional time units) is selected for analysis. At this time the flow is fully developed in a state close to isotropic and homogeneous conditions with values of the Reynolds number based on the Taylor microscale Re λ = 136, 286 and 400 for Re = 5 000, 20 000 and 40 000 respectively.

In Fig. 1 we report the energy spectrum of the snapshot corresponding to Re = 5 000. On the same figure we report the energy spectra of the ideal DG-LES solution for p = 7 and respectively 72 3 , 144 3 and 288 3 dofs, computed as described in Appendix A.

When analysing DG-LES simulation results it is assumed that the resolution limit is defined by the cut-off frequency

k DG = π(p+1) h = (p+1)n el 2
(marked by black dashed lines in Fig. 1) where n el is the number of elements in one direction. By analysing Fig. 1, however, it can be observed that the DG-LES spectrum is almost undistinguishable from that corresponding to the DNS up to a frequency kDG = (p+1)n el 3 and decays rapidly for higher frequencies. Moreover, the energy spectrum is "polluted" by the presence of discontinuities for frequencies close to k DG . Additionally the discontinuities generate a tail on the energy spectrum that decays as k -2 . It is argued therefore that kDG is more relevant in identifying the resolving capabilities of the DG discretization. We will see in Sec. 5.2 that these observations are valid for other values of the polynomial degree p.

The values of kDG for the three discretizations considered are therefore also reported in Fig. 1.

These frequencies fall respectively within the inertial range (E ∝ k -5/3 ), at the end of the inertial range and in the dissipation range. Re=5 000, DG+spectral filter In Fig. 2 we report the ideal SGS dissipation spectra, as defined in Eq. ( 15), computed for the three considered resolutions. In each plot, we observe that the dissipation spectrum presents a peak at kDG and rapidly decays for higher frequencies. This behaviour is remarkably different as compared to the case of sharp spectral filters for which a cusp appears at the cut-off frequency. This observation further confirms the relevance of kDG in identifying the resolving capabilities of the employed discretization.

As regards the lower frequencies, we observe that for the coarsest employed discretization the interaction between the largest-resolved scales and the unresolved scales is non-negligible.

As the value of kDG is moved toward the dissipation range, we observe from the middle and right panel of Fig. 2 a clearly different behaviour. In this case the ideal energy transfer is negligible up to a frequency corresponding to kDG /2 = k DG /3 and the dissipation spectrum rapidly increases up to kDG corresponding to a hyperviscous-type behaviour. A sharper peak of the SGS dissipation spectrum is observed as the resolution is increased. Additionally for the finest resolution considered k DG = 144 the ideal energy transfer is negative for frequencies below k DG /3 corresponding to backscatter. While similar results are seldom presented in the literature we mention that both Domaradzki [START_REF] Domaradzki | An analysis of subgrid-scale interactions in numerically simulated isotropic turbulence[END_REF] and Métais and Lesieur [START_REF] Métais | Spectral large-eddy simulation of isotropic and stably stratified turbulence[END_REF] reported negative values of the eddy viscosity in the smallest wavenumber range employing an isotropic sharp spectral filter with cut-off frequency in the dissipation range. Moreover Métais and Lesieur [START_REF] Métais | Spectral large-eddy simulation of isotropic and stably stratified turbulence[END_REF] have shown that with this type of LES filter a negative value of the plateau of the eddy viscosity is obtained assuming an energy spectrum E(k) ∝ k -m with m ≥ 5.

In order to analyse the generality of these observations we consider now the TGV configuration at higher Reynolds numbers, namely Re = 20 000 and 40 000. The corresponding energy spectra are reported in Fig. 3 as well as the values of kDG corresponding to three discretizations considered. These discretizations correspond to p = 7 and a number of dofs equal to 144 3 , 288 3 and 576 3 for the lower Reynolds number and 288 3 , 576 3 and 1152 3 for the higher Reynolds number configuration. For both configurations the coarsest discretizations correspond to kDG in the inertial range, whereas the finer discretizations correspond respectively to kDG at the end of the inertial range and kDG in the dissipation range.

For both configurations and all resolutions considered we observe in Figs. 4 and5 again a peak of the dissipation spectrum at kDG and a rapid decay towards k DG , confirming the results obtained for the configuration at Re = 5 000. In this case, however, for the two lower resolutions, with kDG located in the inertial range, we observe a mixed viscous-hyperviscous behaviour. The viscous type behaviour, corresponding to an ideal SGS dissipation spectrum which scales as k The results obtained therefore indicate that the large-resolved scales are free of interaction with the unresolved ones only when the DG-LES limit of resolution falls at the end of the inertial range and within the dissipation range. When a coarser resolution is employed, a mixed viscous-hyperviscous type behaviour can be observed and the SGS dissipation acting on the large-resolved scales is not negligible.

The mixed type behaviour is not observed in Fig. 2 as the TGV at Re = 5 000 presents a very short inertial range.

Ideal modal energy transfer and eddy viscosity

We now analyse the modal energy transfer as defined by Eq. ( 20) for the same configurations described in the previous section. Obtained results are reported in Fig. 6. We observe a remark- ably consistent behaviour across all resolutions and Reynolds numbers considered. A first region can be identified which is characterized by a nearly constant modal energy transfer for modenumbers m from 0 to 5. The modal energy transfer then increases rapidly presenting a peak at m = p and then decreases smoothly for higher mode-numbers. We remark that these two different behaviours are separated by the same mode-number corresponding to (m + 1)/(p + 1) = 0.75 for all the discretizations and Reynolds numbers considered.

As we would expect from the previous analysis in Fourier space, the energy transferred to modes corresponding to low mode-numbers is not in general negligible. As the discretization is refined this value progressively decreases and the energy transfer mechanism is dominated by the SGS dissipation acting on modes (m + 1)/(p + 1) > 0.75.

To further verify that this result is not specific to the chosen resolutions, we report in Fig. 7 the modal energy transfer obtained at Re = 20 000 for 9 discretizations with p = 7 and a number of dofs between 144 3 and 576 3 . This figure clearly illustrates the consistency of the described behaviour. We further observe that for relatively coarse discretizations as the resolution is increased, the main effect is to reduce the modal energy transfer at low mode-numbers. Only when the resolution limit is in the dissipation range (k DG > 168) we observe a significant reduction of the peak value as the discretization is further refined.

The ideal modal eddy viscosity, as defined in Eq. ( 22) using the BR1 scheme for the viscous discretization, is reported in Fig. 8 for the three Reynolds numbers and discretizations.

Similarly to what has been observed for the modal energy transfer, the modal eddy viscosity presents a plateau at mode-numbers m ≤ 5 and increases for higher mode-numbers. In contrast to the modal dissipation spectrum, however, the modal eddy viscosity presents in general a "parabolic" shape (in place of a spike) with a smoother increase and decay for relatively high mode-numbers.

We remark that the values reported in Fig. 8 correspond to the ideal modal eddy viscosity that should be provided by the SGS model employing the BR1 discretization. In Fig. 9 we compare this value with the modal eddy viscosity corresponding to the BR2 scheme with η br2 = 2.

As expected the additional dissipation provided by the BR2 scheme leads to a reduction of the modal eddy viscosity required at the higher mode-numbers. This result agrees with the observation that the optimal LES model must be aware of the discretization employed due to their interaction in actual simulations.

To conclude this analysis we observe that all the obtained results indicate that the interaction between large-resolved scales and unresolved ones, when employing the DG-LES filter, is negligible only for finite Reynolds numbers when the turbulent scales are resolved up to the end of the inertial range. Based on these findings, it could be argued that models based on this assumption present a limited applicability as they would rely on high resolution being available and thus provide a limited computational gain as compared to (underresolved) DNS. We want to remark however that the resolution requirements in an actual simulation vary in space and time and thus this assumption might be locally valid. This is the case for transitional or spatially inhomogeneous flows.

Re=20 000 modal by spherical shells 

Sensitivity to the polynomial degree

In this section we investigate the generality of the obtained results by analysing discretizations corresponding to various values of the polynomial degree p. All the results here reported have been obtained from a snapshot at t = 14 of the TGV at Re = 20 000. The comparisons are carried out by fixing the total number of dofs to the same values employed in Sec. 5, that is 1443 , 288 3 and 576 3 dofs. Four values of the polynomial degree are at first considered: p = 5, 7, 8, and 11.

Fig. 11 presents the energy spectra of the DNS data set and the ideal DG-LES solutions for all considered discretizations. We observe that for a fixed number of dofs the energy spectra are almost identical up to k DG and as mentioned in the previous section (see Fig. 1) identical to the DNS spectrum up to kDG . The most notable differences appear in the tail of the spectra related to the discontinuities of the DG-LES solutions. Thus we can reasonably conclude that increasing the polynomial degree for a fixed number of dofs has a limited effect on the resolving capabilities of the DG-LES method. 3 This conclusion is also confirmed by analysing Fig. 12 which reports the SGS dissipation spectrum. Indeed the same behaviour can be observed for all polynomial degrees confirming the generality of the conclusions drawn in the previous section.

In Figs. 13 and 14 we report the modal energy transfer and eddy viscosity. The modal energy transfer levels cannot be directly compared, as a different number of modes is retained for each Re=20 000 polynomial degree, however we can observe that the same trend seen for p = 7 (see Sec. We consider now relatively lower polynomial degree representations: p = 2, 3, 4 and 5. The energy spectra for all discretizations are not reported here as they lead to the same conclusions drawn from Fig. 11. More marked differences can be observed in Figs. 15 and16 reporting the ideal SGS dissipation spectrum and modal eddy viscosity. Overall a similar behaviour can be recognized for different values of p in Fig. 15. As observed for relatively higher values of p, as the resolution is increased the SGS dissipation concentrates on the scales characterized by higher wavenumbers, and eventually the SGS dissipation acting on wavenumbers lower than k DG /3 becomes negligible. In constrast with the results obtained for higher polynomial degrees, the presence, location and value of the peak of the SGS dissipation spectrum appear to be dependent on the polynomial degree for p ≤ 4.

Similarly, in Fig. 16 we observe relatively marked differences in the modal eddy viscosity for different values of p. As the resolution is increased the SGS dissipation acts on the highest Re=20 000 modenumbers. However compared to Fig. 14, no real plateau can be identified for the modal eddy viscosity at low modenumbers. For the highest resolution (right panel of Fig. 16) relatively higher values of the modal eddy viscosity are obtained for m + 1 ≥ 0.75(p + 1), similarly to what observed for p ≥ 5, however, markedly negative values are obtained for the modal viscosity at low modenumbers.

Effect of the DG-LES filter

As discussed in Sec. 2, all the results presented have been obtained by defining the ideal DG-LES solution as the L 2 -projection on the discretization space of the DNS solution filtered with a sharp spectral filter removing frequencies k ∞ ≥ k DG . Other possible definitions can be considered. Among them, the L 2 -projection of the DNS solution on the DG discretization space is an interesting candidate.

The effect of these two different definitions on the results obtained is therefore investigated.

For this purpose we employ the snapshot at t = 14 of the TGV at Re = 20 000. In order to simplify the notation we will refer to the L 2 -projection of the DNS solution on the DG space as simply the DG-projection in contrast to the employed definition of ideal DG-LES solution.

In Fig. 17 we report the energy spectra corresponding to the ideal DG-LES and the DG-projection for three resolutions. We observe that for all resolutions the energy spectra are indistinguishable for frequencies up to kDG . Moreover we notice remarkably higher values of the tail of the energy Re=20 000 spectra for the DG-projection which is especially evident in the coarsest resolution (left panel of Fig. 17). This indicates, as one would expect, that the L 2 -projection of the DNS field presents stronger discontinuities than the L 2 -projection of the filtered field. Nonetheless, kDG appears to be a relevant frequency identifying the resolution properties of DG using both definitions.

In Fig. 18 and 19 we present the spectral and modal energy transfer for the same resolutions.

These figures illustrate a fair agreement between results obtained with the two definitions. The most remarkable differences appear in Fig. 18 for the relatively low frequencies. Indeed the DG-projection leads to a more erratic behaviour of the spectral energy transfer which could be explained by the presence of aliasing errors as described in Sec. 2.

Slightly more significant differences can be observed in Fig. 20 which reports the modal eddy viscosity employing the BR1 scheme. In this figure we can identify lower values of the modal eddy viscosity at relatively high mode-numbers. These can be explained by the presence of stronger discontinuities and higher values of the lifting coefficients used for the BR1 scheme and therefore, higher values of the diffusive term in the denominator of Eq. ( 22) at high modenumbers.

Overall the results obtained demonstrate that, with the exception of small differences, the definition of the reference DG-LES solution as the L 2 -projection of the DNS field leads to the same conclusions drawn by employing the current definition of the ideal DG-LES solution. 

A-priori analysis of the DG-VMS approach

In this section, we perform an a-priori analysis of the DG-VMS model based on the three variants described in Sec. 4. For this purpose, we evaluate the DG-VMS model from the ideal DG-LES solution corresponding to Re = 20 000 and t = 14 for p = 7 and n el = 72. As described in the previous section, for this Reynolds number and discretization considered the resolution limit, kDG = 192, falls within the dissipation range. Under these conditions the interaction between large-resolved and unresolved scales is negligible (see Fig. 4) and we expect the DG-VMS approach to recover the ideal SGS dissipation.

The three variants of the DG-VMS model are therefore evaluated from this solution for different values of the scale fraction parameter β. For all three variants we do not consider the calibration of the model coefficients, as described e.g. by Meyers et al. [START_REF] Meyers | Optimal model parameters for multi-objective large-eddy simulations[END_REF], as a function of β.

One reason for not employing such calibration is that it is derived for convolution filters. As we have observed in Sec. 2, this is not the case for the DG-projection and additional care is required to derive a consistent calibration procedure. Additionally it has been shown by Meyers et al. [START_REF] Meyers | Optimal model parameters for multi-objective large-eddy simulations[END_REF] that the model constant is dependent on the ratio ∆/η, where η is the Kolmogorov scale, when ∆/η 100. This is the case when the DG-LES resolution falls at the beginning of the dissipation range as considered here. Thus we also make no attempt at providing a general calibration of the model coefficient from the employed DNS/LES data as the results would be dependent on this parameter in the range of validity of the DG-VMS approach. In order to facilitate the analysis, all the results are presented with the model constant selected such that the modelled dissipation spectrum presents the same maximum value as that of the ideal SGS dissipation spectrum. The employed values of the model coefficient are reported in Table 1. In Fig. 21 we report the ideal and model SGS dissipation spectrum corresponding to the Smagorinsky model and the three variants of the DG-VMS approach using the BR1 discretization scheme.

It is obvious from this figure that, as already shown by other authors, the Smagorinsky model provides excessive dissipation at low wavenumbers. This effect is drastically reduced by employing all the considered variants of the DG-VMS approach. As expected, increasing the value of β restricts the action of the SGS model on progressively finer scales and, for a fixed model constant, reduces the total SGS dissipation.

In We further remark that the SGS dissipation spectrum decays smoothly for low wavenumbers for all variants of the DG-VMS approach. This is expected as the high-pass projection filter is not sharp in Fourier space. As Sagaut and Levasseur [START_REF] Sagaut | Sensitivity of spectral variational multiscale methods for large-eddy simulation of isotropic turbulence[END_REF] have shown that a smooth decay of the SGS dissipation spectrum leads to improved results in a-posteriori tests, this result demonstrates an advantage of using a modal decomposition as opposed to an orthogonal spectral filter.

Among the three variants, the all-all approach presents the smoothest behaviour at low wavenumbers and the small-small approach presents the sharpest behaviour. Moreover we identify the presence of bumps in the SGS dissipation spectrum of the small-small variant, clearly visible for β = 0.25 in Fig. 21. These results indicate an advantage of the Vreman variant with respect to the small-small approach. Indeed we recall that the eddy viscosity and the strain rate are evaluated in the same way for the two variants and the obtained results show that removing the outer projection operation leads to a smoother SGS dissipation spectrum for a lower computational cost.

Comparing the all-all and the Vreman approaches is not as straightforward. Indeed we observe that the all-all variant presents a marginally better agreement with the ideal SGS dissipation spectrum and we recall that the it presents a much lower computational cost for modal DG methods. However, in contrast to the all-all variant, for the Vreman approach the SGS model is computed from the filtered gradients. For this reason the SGS stress is aligned with the smallscale gradients and tends to zero when the flow is well resolved and the solution is represented entirely by the large-scale component. An analysis of the alignment between the ideal SGS stress and the modelled one could therefore be employed in order to draw more definitive conclusions.

Further analysing Fig. 21 we observe that, despite presenting a smooth decrease of the dissipation spectrum towards the low wavenumbers, all VMS approaches present a negligible amount of SGS dissipation acting on the large resolved scales. This confirms that the DG-VMS approach is not able to replicate the viscous-type behaviour observed at low wavenumbers when the resolution limit falls within the inertial range. Additionally we observe that the modelled energy transfer presents a small region with negative values for the all-all approach with β = 0.25. A similar result has been observed also for the small-small variant for other resolutions when low values of β are considered (not shown here). This effect has not been observed for the Vreman variant and is thus possibly caused by the outer high-pass L 2 -projection filter. These regions of negative energy transfer can therefore be considered as numerical artefact of the high-pass filter used in the DG-VMS approach and should not be interpreted as modelling backscatter.

Finally we note that for all VMS approaches with β = 0.75 the peak of the SGS dissipation spectrum is located at a relatively lower frequency compared to the ideal SGS dissipation spectrum. This effect is partially explained by the use of the BR1 scheme in Fig. 21. Indeed, it is well known that the BR1 scheme presents very low and less than exact dissipation at frequencies close to k DG [START_REF] Alhawwary | On the accuracy and stability of various dg formulations for diffusion[END_REF]. A possible remedy is therefore to employ a different discretization for the SGS model term, e.g. the BR2 method.

In Fig. 22 we compare the ideal SGS dissipation spectrum and modelled energy transfer obtained with the BR2 scheme for η br2 = 2. As expected the presence of the penalty term in the BR2 scheme leads to a shift and increase of the model dissipation toward higher wavenumbers.

However we remark that the optimal value of η br2 has been observed to depend on the employed discretization. Additionally for sufficiently high values of η br2 the dissipation provided by the SGS model might be overwhelmed by that introduced by the penalty term. A similar effect could be provided by the upwind dissipation associated to the discretization of the convective flux.

The conclusions drawn above are confirmed by analysing the modal energy transfer and eddy viscosity corresponding to the configuration considered in this section and the two discretization schemes BR1 and BR2. These are presented from Figs. 23 to 26.

It is clear from these figures that for the all-all approach a value of β = 0.75 must be employed in order to mimic the negligible ideal energy transfer at low mode-numbers. Additionally we observe that when employing the BR2 scheme with η br2 = 2 a remarkably good agreement is obtained with both the modal energy transfer and eddy viscosity, confirming the conclusion drawn from the spectral energy transfer analysis.

Considering now the Vreman and small-small approaches we observe that the outer filter operation does not appear necessary to limit the effect of the modelled dissipation on the highestorder modes. However we observe that while for the small-small variant T m = 0 for (m + 1)/(p + 1) = β, in the case of the Vreman approach it is positive and becomes negative for lower values of m. The combination of this positive and negative contribution leads to the smooth distribution of the modelled dissipation spectrum in Fig. 21 and22.

In order to assess the generality of our remarks, we have repeated the presented analysis for different values of the polynomial degree p. Similar conclusions have been obtained with regards (m + 1)/(p + 1) small-small (m + 1)/(p + 1) small-small to the comparison of the three variants and the effect of variations of β on the model dissipation spectrum (not reported here). However, the optimal value of β appears to be dependent on p when p ≤ 4. This result is expected from the a-priori analysis carried out in Sec. 5.2. To illustrate this, we report in Fig. 27 the ideal SGS dissipation spectrum and the model energy transfer for p = 3, 8 and 11 using the DG-VMS all-all approach and the BR2 scheme (η br2 = 2).

We can observe that for p = 8 and 11 the value β ≈ 0.75 leads to the modelled dissipation acting on the scales of wavenumbers in the range [k DG /3, k DG ] similarly to the ideal SGS dissipation spectrum. For p = 3, however, we observe that the ideal SGS dissipation spectrum does not present a peak at kDG and the model dissipation presents a peak at a higher frequency. In this case the ideal SGS dissipation is in between that provided by the DG-VMS model for β = 0.5 and β = 0.75. This result indicates that for p ≤ 4 the DG-VMS approach might not be able to replicate the distribution of the ideal SGS dissipation.

The analysis presented up to this point has focused on the ability of the DG-VMS approach to replicate the ideal energy transfer mechanism when the resolution limit falls within the dissipation range and the SGS dissipation acting on large-resolved scales is negligible.

We have observed in Sec. 5 that when the resolution limit falls within the inertial range a viscous-type behaviour can be observed and is dominant at frequencies below k DG /3. It appears from these analyses that the DG-VMS approach is not able to replicate this mechanism. The two model coefficients however should be dynamically adapted (e.g. using Germano's procedure) as the relative contribution to the total SGS dissipation will depend on the resolution.

As an example, in Fig. 28 we consider the ideal SGS dissipation spectrum for a snapshot at t = 14 of the TGV at Re = 20 000, p = 7 and 288 3 dofs. The ideal SGS dissipation spectrum is compared to the three variants of the mixed model with constant coefficients, for the Smagorinsky contribution C s,smag = 0.057 and C s,a-a = 0.063 for the all-all variant, C s,vrem = 0.095 for the Vreman variant and C s,s-s = 0.087 for the small-small variant. This figure illustrates that a dynamic mixed model even with global model coefficients has the potential to a very accurate agreement with the ideal SGS-dissipation. Similar approaches have already been proposed, e. g. the Smagorinsky and residual-based-VMS approach by Wang and Oberai [START_REF] Wang | A mixed large eddy simulation model based on the residual-based variational multiscale formulation[END_REF], or the enhanced field model by Jeanmart and Winckelmans [START_REF] Jeanmart | Investigation of eddy-viscosity models modified using discrete filters: A simplified regularized variational multiscale model and an enhanced field model[END_REF]. However this is the first work that demonstrates the potential of such methodology by a-priori analyses which include details of the numerical discretization and the effect of the DG-projection filter in the VMS approach.

Conclusions

In this work we have proposed a framework for the a-priori analysis of DG-LES methods based on DNS databases. It is an extension of the classical framework for the analysis of the energy transfer between resolved and unresolved scales of Kraichnan [START_REF] Kraichnan | Eddy viscosity in two and three dimensions[END_REF] and Domaradzki et al. [START_REF] Domaradzki | An analysis of subgrid-scale interactions in numerically simulated isotropic turbulence[END_REF]. The proposed framework is consistent with the employed discretization and as such, allows the evaluation of the ideal SGS dissipation spectrum that needs to be modelled including the effect of discontinuities inherently present in the DG method and the particular choice of the numerical flux.

We have further introduced the concept of a modal energy transfer and eddy viscosity. These quantities can be employed to analyse a-priori LES models that rely on modifying the amount of SGS dissipation acting on different modes of the solution such as the DG-VMS model and the spectral vanishing viscosity approach.

The developed framework has been applied to a DNS database of the TGV at Re = 5 000, 20 000 and 40 000 [START_REF] Lamballais | Implicit/Explicit Spectral Viscosity and Large-Scale SGS Effects[END_REF]. It has been shown that the ideal SGS dissipation spectrum presents in general a mixed viscous-hyperviscous behaviour. The viscous behaviour is dominant for frequencies below kDG /2 = k DG /3 = n el (p + 1)/6 whereas the hyperviscous behaviour is dominant at higher frequencies with a peak at kDG . Only when the DG resolution limit falls at the beginning of the dissipation range the energy transfer between large-resolved and unresolved scales is negligible. This corresponds to a negligible energy transfer to DG modes of mode-number m + 1 ≤ 0.75(p + 1). Under these conditions, the DG-VMS approach can provide an accurate approximation of the SGS dissipation spectrum.

A-priori analyses of three variants of the DG-VMS approach have been carried out. We have considered the small-small [START_REF] Hughes | The multiscale formulation of large eddy simulation: Decay of homogeneous isotropic turbulence[END_REF], Vreman [START_REF] Vreman | The filtering analog of the variational multiscale method in large-eddy simulation[END_REF], and all-all variants [START_REF] Chapelier | Development of a multiscale LES model in the context of a modal discontinuous Galerkin method[END_REF]. We have observed that the Vreman approach provides an improved agreement with the SGS dissipation spectrum as compared to the small-small variant at lower computational cost. A similar improvement has been obtained for the all-all approach. It presents a lower computational cost while behaving similarly to the Vreman variant although the model viscosity does not vanish when the solution is completely represented by the large-resolved scales.

It has been also shown in this study that, when the ideal SGS dissipation acting on the large-resolved scales is negligible, the best results for the DG-VMS approach are obtained for a scale-fraction parameter of β = 0.75. All results have been shown to only mildly depend on the polynomial degree for p ≥ 5 and more marked differences are observed for lower values of p which lead to different optimal values of β. We therefore suggest to employ a value of p ≥ 5 as it leads to a more consistent behaviour of the ideal energy transfer mechanism and a good agreement of the DG-VMS approach with the ideal quantities.

Finally, we have shown that the DG-VMS approach is not able to reproduce the viscous-type behaviour observed at relatively low wavenumbers when the resolution limit falls within the inertial range. Under these conditions, a mixed model based on the Smagorinsky model and the DG-VMS approach with β = 0.75 can provide an improved agreement over a wide range of resolutions provided that the model coefficients are dynamically adapted. q s = (p + 1) q s = 3/2(p + 1) q s = 2(p + 1) q s = 3(p + 1) q s = 4(p + 1) DNS k q s = (p + 1) q s = 3/2(p + 1) q s = 2(p + 1) q s = 3(p + 1) q s = 4(p + 1) DNS 10 0 10 -8 We observe that the isolevel curves for ν † (m) are better approximated by spheres (circles in the plot) rather than by cubes centred in (0, 0, 0). Therefore we assume that improved results can be obtained for LES models by modifying the modal eddy viscosity as a function of m rather than m ∞ . 

  we call m the mode-number and define P W m h [u h ] as the component of the DG-LES solution u h of mode-number m and the modal energy spectrum as

Figure 1 :

 1 Figure 1: TGV at Re = 5 000: Energy spectra from the DNS computation (black) and the ideal DG-LES solution (blue) for various discretizations: p = 7 and 72 3 , 144 3 and 288 3 dofs. Dashed lines indicate the corresponding value of k DG (black) and kDG (blue).

Figure 2 :

 2 Figure 2: TGV at Re = 5 000: Ideal SGS dissipation spectrum for three discretizations with p = 7. The values kDG and kDG /2 are marked by dash-dotted lines.

Figure 3 :

 3 Figure 3: Energy spectra and relevant values of kDG for the TGV at Re = 20 000 (left), 40 000 (right).

  the low and intermediate wavenumbers up to approximately k DG /3 whereas the
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 45 Figure 4: TGV at Re = 20 000: Ideal SGS dissipation spectrum for three discretizations with p = 7. The values kDG and kDG /2 are marked by dash-dotted lines.Re=40 000
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 67 Figure 6: Modal energy transfer for the ideal SGS stress for the TGV at Re = 5 000 (left), 20 000 (center), and 40 000 (right) for various discretizations with p = 7.Re=20 000 modal by spherical shells
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 829 Figure 8: Ideal modal eddy viscosity for the ideal subgrid stress for the TGV at Re = 5 000 (left), 20 000 (center), 40 000 (right) for various discretizations with p = 7.Re=20 000 modal by spherical shells

Figure 10 :

 10 Figure 10: TGV at Re = 20 000: Ideal modal energy transfer for the ideal SGS stress at various times for p = 7 and 288 3 dofs.

Figure 11 :

 11 Figure 11: TGV at Re = 20 000: Energy spectra of the DNS data and the ideal DG-LES solution for various discretizations for 144 3 , 288 3 and 576 3 dofs. Close-up view at frequencies between kDG and k DG .

Figure 12 :

 12 Figure 12: TGV at Re = 20 000: Ideal SGS dissipation spectrum for various discretizations for 144 3 , 288 3 and 576 3 dofs. Dashed lines mark values of kDG and kDG /2.

Figure 13 :

 13 Figure 13: TGV at Re = 20 000: Ideal modal energy transfer for various discretizations for 144 3 , 288 3 and 576 3 dofs. Dashed lines indicate mode-numbers m + 1 = 0.75(p + 1) and m = p. Re=20 000 modal by spherical shells

Figure 14 :

 14 Figure 14: TGV at Re = 20 000: Ideal modal eddy viscosity for various discretizations for 144 3 , 288 3 and 576 3 dofs. Dashed lines indicate mode-numbers m + 1 = 0.75(p + 1) and m = p.

  5.1) isobtained for the other discretizations. In particular, we remark the presence of nearly constant value for mode-numbers up to approximately m + 1 = 0.75(p + 1) and a peak at m = p for the modal energy transfer. The generality of our conclusions is further illustrated by Fig.14which demonstrates the close agreement of the modal eddy viscosity for all discretizations and confirms the relevance of the mode-number m + 1 = 0.75(p + 1) in separating the two different behaviours.
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 515516 Figure 15: TGV at Re = 20 000: Ideal SGS dissipation spectrum for various discretizations for 144 3 , 288 3 and 576 3 dofs. Dashed lines mark values of kDG and kDG /2.Re=20 000 modal by spherical shells
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 1718 Figure 17: TGV at Re = 20 000: Energy spectra of the DNS data, the ideal DG-LES solution, and DG-projection for three resolutions with p = 7. Close-up view for frequencies between kDG and k DG .Re=20 000
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 1920 Figure 19: TGV at Re = 20 000: Ideal modal energy transfer of the ideal DG-LES solution and the DG-projection for three discretizations with p = 7. Dashed lines indicate mode-numbers m + 1 = 0.75(p + 1) and m = p.

BR1 BR2 η br2 = 2 β

 2 = 0.25 β = 0.5 β = 0.75 β = 0.25 β = 0.5 β = 0.75

  particular for β = 0.75 the SGS model acts only on the range of scales [k DG /3, k DG ]. For lower values of β however the distribution of the modelled SGS dissipation does not correspond to the ideal SGS dissipation for any of the considered discretizations. This effect is particu-

Figure 21 :

 21 Figure 21: TGV at Re = 20 000, p = 7, k DG = 288: Ideal SGS energy transfer (black solid), SGS model dissipation spectrum provided by the Smagorinsky model (dashed) and three variants of the DG-VMS approach for: β = 0.25 (green), β = 0.5 (blue), and β = 0.75 (red) using the BR1 scheme.

Figure 22 :

 22 Figure 22: TGV at Re = 20 000, p = 7, k DG = 288: Ideal SGS energy transfer (black solid), SGS model dissipation spectrum provided by the Smagorinsky model (dashed) and three variants of the DG-VMS approach for: β = 0.25 (green), β = 0.5 (blue), and β = 0.75 (red) using the BR2 scheme (η br2 = 2).

Figure 23 :

 23 Figure 23: TGV at Re = 20 000, p = 7, k DG = 288 : Ideal modal energy transfer (black solid) and modelled modal energy transfer provided by the Smagorinsky model (dashed) and three variants of the DG-VMS approach for: β = 0.25 (green), β = 0.5 (blue), and β = 0.75 (red) using the BR1 scheme.

Figure 24 :

 24 Figure24: TGV at Re = 20 000, p = 7, k DG = 288 : Ideal modal eddy viscosity (black solid) and modelled modal eddy viscosity provided by the Smagorinsky model (dashed) and three variants of the DG-VMS approach for: β = 0.25 (green), β = 0.5 (blue), and β = 0.75 (red) using the BR1 scheme.

Figure 25 :

 25 Figure 25: TGV at Re = 20 000, p = 7, k DG = 288 : Ideal modal energy transfer (black solid) and modelled modal energy transfer provided by the Smagorinsky model (dashed) and three variants of the DG-VMS approach for: β = 0.25 (green), β = 0.5 (blue), and β = 0.75 (red) using the BR2 scheme (η br2 = 2).

Figure 26 :

 26 Figure 26: TGV at Re = 20 000, p = 7, k DG = 288 : Ideal modal eddy viscosity (black solid) and modelled modal eddy viscosity provided by the Smagorinsky model (dashed) and three variants of the DG-VMS approach for: β = 0.25 (green), β = 0.5 (blue), and β = 0.75 (red) using the BR2 scheme (η br2 = 2).

3 ,Figure 27 :

 327 Figure27: TGV Re = 20 000: ideal SGS dissipation spectrum and model dissipation spectrum using the all-all DG-VMS approach with C S = 0.1 using the BR2 scheme for k DG = 288 and p = 3 (left), p = 8 (center) and p = 11(right).
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 28 Figure 28: TGV Re = 20 000, p = 7, k DG = 144: Ideal SGS dissipation spectrum and modelled dissipation spectrum for mixed Smagorinsky+DG-VMS models.

k

  Figure A.29: TGV at Re = 20 000, t = 14, k DG = 144: Energy spectrum for p = 5 (left) and p = 7 (right) for various values of q s .

Figure B. 30 :

 30 Figure B.30: TGV at Re = 20, 000, t = 14: Contour plot of ν † (m) at constant m z = 0 for p = 7 and 144 3 , 288 3 and 576 3 dofs (left to right) using the BR1 scheme.

Figure B. 31 :

 31 Figure B.31: TGV at Re = 20, 000, t = 14: Contour plot of ν † (m) at constant m z = 0 for p = 11 and 144 3 , 288 3 and 576 3 dofs (left to right) using the BR1 scheme.

Table 1 :

 1 TGV at Re = 20 000, p = 7, k DG = 288: Model coefficients selected for the Smagorinsky and DG-VMS model using the BR1 and BR2 schemes.

	all-all	0.093	0.103	0.122	0.094	0.096	0.098
	Vreman	0.099	0.120	0.181	0.099	0.117	0.162
	small-small	0.102	0.122	0.156	0.103	0.112	0.139
	Smagorinsky		0.090			0.090	

Other choices can be employed for the definition of the large-scale space. Further discussion on this topic is presented in Appendix B.

When employing the BR1 and BR2 schemes this requires the use of the filtered lifted derivatives (see e.g.[START_REF] Flad | On the use of kinetic energy preserving DG-schemes for large eddy simulation[END_REF]).

This observation only concerns the accuracy of the considered solution space in representing the DNS solution. It does not take into account the dissipation properties of the numerical fluxes as done e.g. by Moura et al.[START_REF] Moura | On the eddy-resolving capability of high-order discontinuous Galerkin approaches to implicit LES/under-resolved DNS of Euler turbulence[END_REF].
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Appendix A. Energy and dissipation spectra computation

For the computation of the energy and dissipation spectra we need to evaluate the Fourier transform of the velocity field, SGS residual, and SGS model term. For this purpose we employ the Fast Fourier Transform (FFT) algorithm as implemented in the FFTW-3.3.8 library [START_REF] Frigo | The design and implementation of FFTW3[END_REF].

The FFT algorithm requires the solution to be known on an uniform Cartesian grid. The variable of which we want to compute the FFT is therefore sampled on a post-processing grid formed by the union of n 3 el uniform Cartesian grids centered on each cell and composed of q 3 s sampling points. The post-processing grid on the domain [-π, π] 3 is thus composed of the Cartesian product of the coordinates ( j -1 2 ) 2π q s n el for j = 1, . . . , N FFT = q s n el . The value of q s must be sufficiently large to evaluate accurately the Fourier coefficients corresponding to the frequencies of interest (that is at least up to k DG ).

Indeed, the presence of discontinuities in the DG-LES field leads to a reduction in the order of convergence of the FFT algorithm. We remark that the FFT algorithm relies on the trapezoidal integration rule which presents an order of accuracy O(N FFT -1 ) in the presence of discontinuities, as opposed to the exponential convergence obtained for smooth functions. In this case the use of n el (p + 1) points per direction, as is usually found in the literature of DG-LES, is not sufficient for the evaluation of the energy and dissipation spectra. For this reason, we employ at least 3n el (p + 1) points per direction and verify that increasing this value does not modify the energy and dissipation spectra at frequencies below k DG .

In order to illustrate the need for a sufficiently high number of points for the evaluation of the FFT, we report in Fig. A.29 the energy spectra of the DG-LES solution of the TGV configuration at Re = 20 000 and t = 14 using p = 5 and 7 and a total of 288 degrees of freedom for various values of q s . It can be observed that the FFT is inaccurate for low values of q s even at wavenumbers below k DG . Slight differences can be observed for frequencies below kDG and in some cases marked differences can appear at frequencies close to k DG . This is visible from the bump in the energy spectrum at k DG for q s = p + 1 on the right panel of Nonetheless, the spectrum converges as q s is increased and a value of q s ≈ 3n el (p + 1) appears sufficient to obtain the Fourier transform for frequencies up to k DG . Further increasing the value of q s leads to the slow convergence of the tail of the spectrum associated with the DG-LES discontinuities.

We note that alternative techniques can be employed to evaluate the Fourier transform avoiding the use of a large number of post-processing points. Such methodologies include the Non Uniform Fast Fourier Transform (NUFFT) [START_REF] Lee | The type 3 nonuniform FFT and its applications[END_REF][START_REF] Fan | Fast Fourier transform for discontinuous functions[END_REF] and the Conformal Fourier Transform (CFT) [START_REF] Zhu | A high accuracy conformal method for evaluating the discontinuous fourier transform[END_REF].

Appendix B. Choice of the large-scale space

In Sec. 3 we have defined the space W m h = span ψ m K , ∀K ∈ Ω h , m -1 2 < m ≤ m + 1 2 . With this choice the assumption of Tsgs (m) = 0 for m ≤ p L corresponds to the VMS approach defining the large-scale space as V L . . = m≤p L W m h as described in Sec. 4. Other definitions are possible,