

Characterization of an adaptive immune response in microsatellite-instable colorectal cancer

Florence Boissière-Michot, Gwendal Lazennec, Hélène Frugier, Marta Jarlier, Lise Roca, Jacqueline Duffour, Emilie Du Paty, Daniel Laune, France Blanchard, Florence Le Pessot, et al.

▶ To cite this version:

Florence Boissière-Michot, Gwendal Lazennec, Hélène Frugier, Marta Jarlier, Lise Roca, et al.. Characterization of an adaptive immune response in microsatellite-instable colorectal cancer. OncoImmunology, 2014, 3 (6), pp.e29256. 10.4161/onci.29256 . hal-02146604

HAL Id: hal-02146604 https://hal.science/hal-02146604

Submitted on 12 Nov 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Characterization of an adaptive immune response in microsatellite-instable colorectal
2	cancer
3	
4	
5	Florence Boissière-Michot, ^{1#} Gwendal Lazennec, ^{2#} Hélène Frugier, ¹ Marta Jarlier, ¹ Lise Roca, ¹
6	Jacqueline Duffour ¹ , Emilie Du Paty, ² Daniel Laune, ² France Blanchard, ³ Florence Le Pessot, ³
7	Jean-Christophe Sabourin, ³ Frédéric Bibeau ¹
8	
9	Correspondence to: Frédéric Bibeau; Email: Frederic.Bibeau@icm.unicancer.fr
10	
11	¹ Institut régional du Cancer de Montpellier (ICM) - Val d'Aurelle, 34298, Montpellier, France
12	² UMR 3145 SYSDIAG CNRS, 34093, Montpellier, France
13	³ University Hospital, 76038, Rouen, France
14	
15	[#] These authors contributed equally to this work.
16	
17	Disclosure/conflicts of interest: the authors declare no conflicts of interest.
18	
19	
20	

21 ABSTRACT

22 Most sporadic or hereditary colorectal cancers (CRC) with microsatellite instability (MSI) are 23 frequently characterized by an inflammatory infiltrate of lymphocytes and are associated with a better outcome than microsatellite stable (MSS) CRC, probably in relation to their more 24 25 effective immune response. We investigated the inflammatory mechanisms in 48 MSI CRC and 26 62 MSS CRC by analyzing i) the expression of 48 cytokines using Bio-plex multiplex cytokine 27 assays and ii) the in situ immune response using immunohistochemistry with anti-CD3 (T 28 lymphocytes), -CD8 (cytotoxic T lymphocytes), -CD45RO (memory T lymphocytes), -T-bet 29 (Th1 CD4 cells) and -FoxP3 (regulatory T cells) antibodies. Statistically significant higher levels of RANTES (CCL5), IL-8 (CXCL8), MIG (CXCL9), IL-1β, IP-10 (CXCL10), IL-16, 30 31 GROa (CXCL1) and IL-1ra and lower levels of MIF were found in MSI CRC than in MSS 32 CRC. Immunohistochemistry combined with image analysis indicated that the density of CD3⁺, 33 CD8⁺, CD45RO⁺ and T-bet⁺ T lymphocytes was higher in MSI than in MSS CRC, whereas the 34 number of regulatory T cells (FoxP3⁺) was not statistically different between groups. These 35 results indicate that MSI CRC are associated with a specific cytokine expression profile that 36 includes the cytokines RANTES, IP-10 and MIG, which are involved in the T Helper 1 response 37 and in the recruitment of memory CD45RO⁺ T cells. Our findings highlight the major role of 38 adaptive immunity in MSI CRC, thus possibly explaining the better prognosis of this CRC 39 subtype.

40

41 Keywords: colorectal cancer, microsatellite instability, inflammation, cytokines, chemokines.
42

- 43 List of abbreviations and acronyms:
- 44 CRC: colorectal carcinoma
- 45 MMR: mismatch repair
- 46 MSI: microsatellite instability
- 47 MSS: microsatellite stable
- 48 IHC: immunohistochemistry
- 49 Th1: T helper type-1 lymphocytes
- 50 UICC: Union for International Cancer Control
- 51 TMA: tissue microarray
- 52 *ct:* tumor center
- 53 *im:* invasive margin

54

55 INTRODUCTION

The immune contexture of human solid tumors has become an emerging hallmark of cancer and assessing its impact on the clinical outcome might lead to the identification of new prognostic markers.^{1, 2} Indeed, colorectal carcinomas (CRC) that display a strong and coordinate adaptive immune response, as indicated by high density of CD45RO⁺ memory and CD8⁺ cytotoxic T lymphocytes, have been associated with a good prognosis.³⁻⁵

61 CRC is considered to be a heterogeneous disease. About 85% of CRC occur in a context of 62 chromosomal instability and 15% display a deficiency in the DNA mismatch repair (MMR) system^{6, 7} linked to epigenetic or genetic mechanisms. Defects in the DNA MMR machinery 63 64 leads to microsatellite instability (MSI), a condition in which repetitive DNA sequences named microsatellites accumulate mutations that can affect tumor suppressor genes and oncogenes.⁸ 65 Although not specific, pronounced peritumoral lymphoid reaction (Crohn's-like reaction) and 66 dense infiltration of the tumor by lymphocytes are typically associated with MSI CRC^{9, 10} and 67 could contribute to their good prognosis.^{7, 11}. The immunogenicity of MSI CRC is attributed to 68 the occurrence of microsatellite mutations generating immunogenic neo-antigens.¹²⁻¹⁴ 69

70 One of the mechanisms involved in the recruitment of inflammatory cells at the tumor 71 site is the expression of cytokines, chemokines and growth factors by the tumor and its microenvironment. However, beside its positive involvement in the identification and 72 73 destruction of cancer cells, inflammation may also play an important role during cancer development and progression.¹⁵⁻¹⁷ Initiation of carcinogenesis,¹⁸ tumor progression,¹⁹ 74 angiogenesis^{20, 21} and metastatic processes^{22, 23} can be modulated by inflammation. Thus, 75 inflammation appears as a key process, with dual functions, controlling the relationship 76 between tumor cells and its microenvironment.²⁴ Some recent works have assessed the 77 78 expression of various cytokines, chemokines and their receptors in CRC, but only focused on a limited number of factors and the tumor MMR status was rarely taken into consideration.^{3, 25-28} 79 80 Therefore, in this study we wanted to clearly determine the differential role of inflammatory

4

components and tumor microenvironment in CRC relative to their MMR status. To this aim,
we characterized the immune cell infiltrate in 62 microsatellite-stable (MSS) and 48 MSI CRC
by immunohistochemistry (IHC) and quantified their cytokine profile using multiplex-based
assays.

85

86 **RESULTS**

87 Clinico-pathological features

At the time of surgery, the median age was 72.5 years (range 30-95) for patients with MSI CRC 88 89 and 65.0 years (range 30-86) for patients with MSS CRC (p=0.206) (see Table 1). The stage 90 distribution of tumors was statistically different between groups (p=0.018): 52% of MSI CRC 91 were classified as stage II (versus 44% of MSS CRC) and 29% of MSS CRC as stage IV (versus 92 6% of MSI CRC). As expected, MSI CRC were more commonly identified in the right colon 93 (65% were proximal to the splenic flexure, p=0.018) and were more often poorly differentiated than MSS CRC (35% versus 8%, p=0.004). They also displayed a significantly higher level of 94 95 lymphocyte infiltration (58% versus 37%, p=0.034) and expansile tumor border configuration 96 (55% versus 33%, p=0.040) as assessed by morphological evaluation.

97

98 Inflammatory infiltrate in MSS and MSI CRC

99 IHC analysis of tumor inflammatory cells showed a higher infiltration of CD3⁺ lymphocytes in 100 the *ct and im* areas of MSI CRC than MSS CRC (mean \pm SD: 1335 \pm 1320 *versus* 777 \pm 718 in 101 the *ct* area, *p*=0.046; 1574 \pm 1017 *versus* 1183 \pm 1342 in the *im* area, *p*=0.008). The number of 102 CD8⁺ lymphocytes also was significantly more elevated in MSI CRC than MSS CRC (mean \pm 103 SD: 717 \pm 724 *versus* 262 \pm 349 in the *ct* area, *p*< 0.001; 837 \pm 629 *versus* 539 \pm 631 in the *im* 104 area, *p*=0.001), indicating an efficient recruitment of cytotoxic cells (Figure 1).

105 As T helper type-1 lymphocytes (Th1) have a crucial role in activating cytotoxic T 106 lymphocytes, the T-bet⁺ population, which is representative of the Th1 CD4 T cell subset, was 107 then quantified. The density of T-bet⁺ cells in MSI CRC was significantly higher than in MSS 108 CRC samples in both studied areas (mean \pm SD: 453 \pm 492 versus 115 \pm 141 in the *ct* area, 109 p < 0.001; 115 ± 93 versus 64 ± 74 in the *im* area, p=0.001). Similarly, the number of CD45RO 110 effector T cells was higher in MSI than in MSS CRC samples (mean \pm SD: 1461 \pm 1031 versus 798 ± 743 in the *ct* area, *p*<0.001; 2716 ± 1620 versus 2195 ± 2186 in the *im* area, *p*=0.025). 111 112 On the other hand, $FoxP3^+$ cells, which are representative of the regulatory T cell (Tregs) 113 population, were similarly recruited in MSI and MSS CRC (mean \pm SD: 250 \pm 183 versus 305 114 ± 237 in the *ct* area, *p*=0.276; 343 ± 303 versus 356 ± 441 in the *im* area, *p*=0.490).

To determine whether other specific inflammatory populations were recruited, macrophages and B-lymphocytes were quantified by using anti-CD68 and -CD20 antibodies, respectively. MSI CRC displayed a significant higher number of CD68⁺ macrophages (mean \pm SD: 626 \pm 364 *versus* 339 \pm 285 in the *ct* area, p<0.001; 908 \pm 579 *versus* 683 \pm 653 in the *im* area, *p*=0.019), whereas the density of tumor-infiltrating B cells was similar in both groups (mean \pm SD: 36 \pm 93 *versus* 44 \pm 168 in the *ct* area, *p*=0.629; 255 \pm 556 *versus* 406 \pm 993 in the *im* area, *p*=0.712).

122

123 Cytokines expression in MSS and MSI CRC

Using multiplex assays that allow the measurement of 48 cytokines, many cytokines could not be detected (median = 0; IL-2, IL-4, IL-5, IL-9, IL-10, IL-13, IL-15, MIP-1α, G-CSF, TNFα, PDGFbb) or were barely detectable (median $<1pg/\mu g$ of total proteins; IL-1α, IL2-Rα, IL-6, IL-7, IL-12(p70), IL-17, IL-18, LIF, Eotaxin, CTACK, IFN-γ, MCP-1, MCP-3, MIP-1β, β-FGF, β-NGF, IFN-α2, GM-CSF, M-CSF, SCF, TNFβ, TRAIL) in both MSS and MSI CRC protein samples (Table 2). MSI CRC displayed a specific cytokine profile compared to MSS CRC: RANTES, IL8, MIG, IL-1β, IP-10, IL-16, GROα and IL-1ra were significantly overexpressed, whereas the
level of MIF was decreased (Table 2). RANTES, IP-10, IL-8, MIG and IL-1β showed the
strongest increase (between 12.9 and 2.3-fold) in MSI CRC compared to MSS CRC samples.

134 Finally, variations in cytokine expression within the MSS CRC group were analyzed by 135 comparing MSS CRC with strong lymphocytic infiltration and/or Crohn's-like lymphocytic 136 reaction (inflammatory MSS CRC, n=29) and MSS CRC without these features (non-137 inflammatory MSS CRC, n=33). The initial classification in these two subgroups by 138 morphological evaluation was validated by IHC: the density of intra-tumoral CD3⁺ 139 lymphocytes was higher in inflammatory than in non-inflammatory MSS CRC (mean \pm SD: 140 882 ± 612 versus 685 ± 798 cells/mm², p=0.044; Table 3). Despite this significant difference, 141 inflammatory and non-inflammatory MSS CRC had comparable cytokine content. Conversely, 142 although a similar density of CD3⁺ lymphocytes was observed in inflammatory MSS CRC and MSI CRC (882 \pm 612 versus 1335 \pm 1320 CD3⁺ cells/mm², p=0.391), the levels of RANTES, 143 144 IL-8, MIG, IL-1β, IP-10, IL-16 and IL-1ra remained significantly higher in the MSI group 145 (Table 3). These data suggest that the cytokine expression profile observed in MSI CRC is 146 linked to the MSI status and to the distinct inflammatory infiltrate observed in this CRC 147 subgroup.

We also investigated the correlations between cytokines levels and specific immune 148 149 densities in MSS and MSI groups. We identified significant correlations between different 150 subsets of immune cells and chemokine expression, mainly MIG and IP-10 (Supplementary 151 Table 1). In MSS CRC high levels of MIG were associated with a significantly increased 152 intratumor density of CD3, CD8 and T-Bet T cells. Interestingly, in MSI CRC, these 153 correlations were strongest, also involving CD45RO population, and were not limited to the 154 center of the tumor. Taken together, these data showed that *in situ* immune cells are strongly 155 associated with specific chemokines pattern, indicating a specific coordinated process.

156

157 **DISCUSSION**

The tumor microenvironment, notably the immune response, may play an important role in CRC progression and control, in addition to the tumor morphological and molecular features.^{29,} Here, we show that MSI CRC display a specific *in situ* immune response and chemokine profile compared to MSS CRC. This particular inflammatory microenvironment could explain the better clinical course of this CRC subtype.

163 By using image analysis that allows the objective quantification of the positive cells and minimizes the observer's bias, we found a significant increase of CD3⁺, CD8⁺, CD45RO⁺ and 164 165 T-bet⁺ lymphocytes in MSI CRC compared to MSS CRC, whereas the density of FoxP3⁺ cells 166 was similar in both groups. These results are in agreement with previous studies that also reported a relationship between MSI and density of CD3⁺, ³¹⁻³³ CD8⁺, ^{26, 31, 33-35} and CD45RO⁺ 167 in CRC.^{30, 35} Several studies provide compelling evidence that effector/cytotoxic (CD3⁺ and 168 169 CD8⁺) and memory (CD45RO⁺) T-cells play major roles in the anti-tumor immune response in 170 CRC and that their high expression correlate with a good clinical outcome (for a review, see Fridman et al.,²). CD8⁺ cytotoxic T lymphocytes can kill efficiently tumor cells and are mainly 171 172 activated through the Th1 pathway. One way to analyze the Th1 pathway is to assess the 173 expression of the Tbox transcription factor T-bet, which is crucial for the development of effector Th1 CD4 T cells³⁶ and, to date, the most specific marker for this cell subset. T-bet 174 175 mRNA levels and T-bet in situ expression in CRC have been previously correlated with reduced 176 tumor recurrence.^{5, 26} Here we show for the first time that T-bet⁺ lymphocytes are significantly 177 increased in MSI CRC, highlighting an efficient Th1 response that could account for the good 178 clinical outcome of this population. Similarly, the increased density of CD45RO⁺ cells in MSI 179 CRC compared to MSS CRC might also strengthen the efficiency of the anti-tumor immune 180 response. Indeed, $CD45RO^+$ cells, which include both antigen-exposed $CD4^+$ and $CD8^+$ 181 lymphocytes, respond faster and with increased intensity to antigenic stimulation than naive T

cells.² Combined with the similar density of FoxP3⁺ cells found in MSI and MSS CRC, these results suggest that in MSI CRC the balance is toward an effective host-mediated immune response rather than tolerance induction. Indeed, Tregs, which express the nuclear transcription factor FoxP3, modulate the anti-tumor immune response ^{25, 33, 35, 37-43} and suppress the activity of cytotoxic T cells (reviewed in deLeeuw *et al* ⁴⁴), thus maintaining immunologic tolerance. Few studies have evaluated the relationship between FoxP3⁺ and the MSI status, leading to controversial results in terms of prognosis.^{25, 30, 33, 35, 45}Correale, 2010 #2278; Lee, 2010 #2284}

189 It has been proposed that the local immune response in MSI CRC could be related to 190 the potentially immunogenic neopeptides produced by frameshift mutations in microsatellites sequences. Accordingly, Tougeron et al. have described a significant association between CD3⁺ 191 density and the overall number of frameshift mutations.⁴⁶ The local inflammatory reaction 192 193 might thus promote cytokine production, which in turn, could expand the immune recruitment. 194 On the other side, the specific cytokine profile we identified in this study involves mostly 195 chemokines, namely CXCL1 (Gro-α), CXCL8 (IL-8), CXCL9 (MIG), CXCL10 (IP-10) and 196 CCL5 (RANTES). Based on the literature, these chemokines could be produced by immune 197 cells, but a number of reports on colon cancer have shown that they are mainly produced by 198 tumor cells and stromal cells rather than by Th1, Th2 or Treg cells. Indeed, CXCL1 is mainly detected in colon cancer cells and at a lesser extent in mesenchymal cells ^{47, 48}. As CXCL10 ^{49,} 199 ⁵⁰, CXCL8 is mainly produced by tumor cells ^{51, 52} but also detected at weaker levels in 200 macrophages, lymphocytes and myofibroblasts ⁵². There is not any paper describing the 201 202 identification of the cells producing CXCL9 in colon cancer, but the source could be neutrophils ⁵³ or M2 macrophages ⁵⁴. Finally, one report suggests that CCL5 is produced by lymphocytes 203 in colon cancer ⁵⁰, even if in a general manner, CCL5 could be also produced by tumor 204 associated macrophages ⁵⁵. The correlations we observed between various cytokines and 205 206 specific subsets of immune cells to different locations in the MSS or MSI tumors, suggest a fine 207 regulation of *in situ* inflammatory recruitment but whether the cytokine profile is a cause or 208 consequence of immune infiltration remains to be fully understood. However, within the tumor 209 stroma, chemokines are generally thought to play a role in the recruitment of immune cells. 210 Some of these chemokines are characterized by anti-tumor activity, whereas others are either pro-tumorigenic or controversial. Specifically, besides its chemo-attractant properties for T 211 lymphocytes, monocytes, natural killer cells and eosinophils,⁵⁶ RANTES promotes tumor 212 213 growth and metastasis by inducing tumor cell proliferation, migration, angiogenesis, or expression of matrix metalloproteinases in various cancer types.⁵⁷⁻⁶⁰ Moreover, it can recruit 214 Tregs within the tumor to kill cytotoxic CD8⁺ T cells,⁶¹ suggesting that RANTES 215 216 overexpression promotes an immunosuppressive tumor microenvironment, which might help 217 tumor progression. Similarly, IL-8 possess tumorigenic and pro-angiogenic properties both in vitro and in vivo in CRC.⁶² In agreement with our study, Banerjea et al. described increased 218 IL8 levels in MSI CRC.⁶³ The overexpression of these chemokines in the MSI CRC, which are 219 220 considered to have good prognosis, suggests the presence of regulatory pathways that 221 counterbalance their pro-tumorigenic effects.

222 The Th1-type inflammatory mediators MIG (CXL9) and IP-10 (CXL10), two IFN-yinducible CXCR3 ligands, act as angiostatic regulators⁶⁴ and promote the infiltration and 223 expansion of anti-tumor T lymphocytes, particularly CD8⁺ effector T cells^{65, 66} and memory 224 CD45RO⁺ T cells.³ In our hands, tumors displaying high levels of MIG and IP-10 were 225 226 associated with significantly higher densities of CD3⁺, CD8⁺, T-Bet⁺, with stronger in situ recruitment in MSI tumors. Our results are in line with previous reports that showed a 227 228 correlation between high MIG and IP-10 mRNA expression levels in CRC and increased density of CD8⁺, CD4⁺ cells and macrophages,^{3, 49, 50} Moreover, these chemokines have been 229 associated with better outcome.³ Thus, together with the increased density of T-bet⁺ cells in 230 231 MSI CRC, the higher expression levels of MIG and IP-10 suggest a host protection via the 232 generation of a Th1 immune response.

233 The role of GRO α in CRC progression is controversial. High GRO α expression has been 234 associated with shorter recurrence-free survival in stage III patients²⁷ and its down-regulation 235 resulted in a nearly complete inhibition of tumor growth in nude mice.⁶⁷ However, *GRO\alpha* 236 transcription level is higher in the less invasive tumors and in samples from <65 years old 237 patients.⁶⁸ These results could be related to the stronger immune response more frequently 238 observed in younger patients and to the fact that MSI CRC are often early stage tumors.

In summary, our data suggest a fine regulation of the immune contexture in MSI CRC, leading to an efficient recruitment of inflammatory cells through the expression of specific chemokines. They also reveal a Th1-polarized immune response in MSI CRC through the activation of the IP-10/MIG axis. This translates in the local recruitment or expansion of specific inflammatory populations that are involved in the anti-tumor response and immune surveillance and probably accounts for the favorable outcome of this tumor subtype.

245

246 PATIENTS AND METHODS

247 CRC samples and patients

248 All CRC resection specimens with documented MMR status and available frozen tissue 249 samples that included at least 50% of tumor cells were identified at the Pathology departments 250 of the Val d'Aurelle Cancer Centre and Rouen University Hospital. All samples have been 251 homogeneously collected with fresh biopsies taken in the vicinity of the tumor invasion front 252 before flash freezing in liquid nitrogen. Thus, 110 CRC samples of which 48 had MSI were 253 selected for this study. Among the 48 MSI CRC, 11 were from patients with Lynch syndrome, 254 as defined by the presence of a deleterious germline mutation of a gene of the MMR system. 255 Tumor samples were collected following French laws under the supervision of an investigator 256 and declared to the French Ministry of Higher Education and Research (declaration number 257 DC-2008-695). All patients were informed about the use of their tissue samples for biological 258 research and a written informed consent was systematically obtained for analysis of germline 259 mutations in the MMR system. The study was approved by the local translational research 260 committee and was in accordance with the Helsinki Declaration of 1975. All samples were 261 anonymized and analyses were performed blinded to the clinico-pathological data. 262 Haematoxylin and eosin slides were reviewed by a gastrointestinal surgical pathologist (FB) to 263 identify morphological features, including histologic differentiation, lymphocytic infiltration, Crohn's-like reaction and tumor border configuration.⁶⁹ All tumors were staged according to 264 the TMN classification system (7th edition) of the Union for International Cancer Control 265 266 (UICC). The patients' clinico-pathological features are reported in Table 1.

267

268 MMR status assessment

The MMR status was assessed by IHC analysis of the hMLH1, hMSH2, hMSH6 and PMS2
 proteins and by PCR analysis of microsatellites as previously described.⁷⁰

271

272 **Protein extract preparation**

Frozen CRC samples were sectioned into 15 μ m-thin slices to obtain 25-100 mg of tissue that was collected in Lysing Matrix D tubes (MP Biomedicals, # 116913500). Samples were crushed in TEG (10 mM Tris-HCl, pH 7.4, 1.5 mM EDTA and 10% glycerol) containing protease inhibitors (20 μ g/ml aprotinin, 20 μ g/ml leupeptin, 10 μ g/ml pepstatin A and 0.40 μ g/ml phenylmethylsulfonyl fluoride) using a MagNA lyser (Roche Diagnostics) and then centrifuged at 13,000g at 4°C for 20 minutes. Total protein concentration was measured in the supernatant using the Bradford assay.

280

281 **Bio-plex multiplex cytokine assays**

Two Bio-Plex ProTM Human kits (BioRad, #171-A11127 and #171-A11171) were used to measure the amount of cytokines, chemokines and growth factors in CRC samples, following the manufacturer's instructions, as previously described.⁷¹ The first multiplex assay detected 27 proteins (27 plex assay: IL-1β, IL-1ra, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8 (CXCL8), IL-9, IL-10,
IL-12 [p70], IL-13, IL-15, IL-17, Eotaxin (CCL11), b-FGF, G-CSF, GM-CSF, IFN-γ, IP-10
(CXCL10), MCP-1 (CCL2), MIP-1α (CCL3), MIP-1β (CCL4), PDGFbb, RANTES (CCL5),
TNF-α, VEGF) and the second one 21 additional factors (21 plex assay: IL-1α, IL-2Ra, IL-3,
IL-12 (p40), IL-16, IL-18, CTACK (CCL27), GRO-α (CXCL1), HGF, IFN-α2, LIF, MCP-3
(CCL7), M-CSF, MIF, MIG (CXCL9), β-NGF, SCF, SCGF-β, SDF-1α (CXCL12), TNF-β,
TRAIL).

292 Coupled beads were incubated with 25 µg of total protein samples in a final volume of 293 50 µl. Data on the antibody reactions were acquired using the Bio-Plex system, a dual-laser, 294 flow-based microplate reader system (BioRad). The concentrations of each target protein 295 (expressed as pg/ml for 25 µg of total proteins) were matched to the clinico-pathological data.

296

297 Tissue Microarrays

After reviewing the archived tumor slides, tissue microarray (TMA) were prepared. Triplicate tissue cores (0.6 mm in diameter) were obtained from the tumor center (referred as *ct*) and from the invasive margin (referred as *im*), and arrayed using a manual arraying instrument (Beecher Instrument, MTA1).

302

303 Evaluation of tumor-infiltrating inflammatory cells

Tissue-microarray sections were incubated with monoclonal antibodies against CD3 (clone
LN10, Menarini), CD8 (clone C8/144B, Dako), CD45RO (clone UCHL1, Dako), FoxP3 (clone
236A/E7, AbCam), T-Bet (clone 4B10, SCB), CD20 (clone L26, Dako) and CD68 (clone KP1,
Dako) on a Autostainer Link48 platform (Dako) using Flex[®] system for signal amplification
and diaminobenzidine tetrahydrochloride–chromogen (DAB) as chromogen.
Immunoreactive cells were automatically quantified with the Spot Browser software

310 (Excilone) as previously described.⁵ Measurements were recorded as the number of positive

cells per mm² of tissue surface. Results were exported into an Excel file and data from triplicate
cores were consolidated into a single score that was matched to the clinico-pathological data.

313

314 Statistical analysis

315 Continuous variables were described using mean, standard deviation, median and range. For 316 categorical variables, frequencies and percentages were computed. Possible associations 317 between the microsatellite status and the clinico-pathological parameters were investigated 318 using the χ^2 test. The non-parametric Mann-Whitney test was used for continuous variables 319 (quantification of cytokines and immunophenotypic markers). Differences were considered 320 statistically significant when the p-value was < 0.05, except for the cytokine analyses for which 321 the statistically significant threshold was corrected with the Bonferroni method to account for 322 multiple testing and set at 0.001. All statistical analyses were performed using STATA 10.0

323 (StataCorp).

324

325

326 Acknowledgements: the authors thank the tumor libraries "Tumorothèque" from ICM-Val

327 d'Aurelle and Haute Normandie for the tumor samples. The study was funded by the Société

328 Nationale Française de Gastroentérologie (SNFGE).

329 **REFERENCES**

- 332 2. Fridman WH, Pages F, Sautes-Fridman C, Galon J. The immune contexture in human
 333 tumours: impact on clinical outcome. Nat Rev Cancer 2012; 12:298-306.
- Mlecnik B, Tosolini M, Charoentong P, Kirilovsky A, Bindea G, Berger A, Camus M,
 Gillard M, Bruneval P, Fridman WH, et al. Biomolecular network reconstruction identifies T cell homing factors associated with survival in colorectal cancer. Gastroenterology 2010;
 138:1429-40.
- 338 4. Pages F, Berger A, Camus M, Sanchez-Cabo F, Costes A, Molidor R, Mlecnik B,
- Kirilovsky A, Nilsson M, Damotte D, et al. Effector memory T cells, early metastasis, and
 survival in colorectal cancer. N Engl J Med 2005; 353:2654-66.

^{330 1.} Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2000;331 144:646-74.

- 341 5. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C,
 342 Tosolini M, Camus M, Berger A, Wind P, et al. Type, density, and location of immune cells
 343 within human colorectal tumors predict clinical outcome. Science 2006; 313:1960-4.
- 344 6. Jass JR. Classification of colorectal cancer based on correlation of clinical,
 345 morphological and molecular features. Histopathology 2007; 50:113-30.
- 346 7. Ogino S, Goel A. Molecular classification and correlates in colorectal cancer. J Mol347 Diagn 2008; 10:13-27.
- Buval A, Rolland S, Compoint A, Tubacher E, Iacopetta B, Thomas G, Hamelin R.
 Evolution of instability at coding and non-coding repeat sequences in human MSI-H colorectal
 cancers. Hum Mol Genet 2001; 10:513-8.
- 9. Dolcetti R, Viel A, Doglioni C, Russo A, Guidoboni M, Capozzi E, Vecchiato N, Macri
 E, Fornasarig M, Boiocchi M. High prevalence of activated intraepithelial cytotoxic T
 lymphocytes and increased neoplastic cell apoptosis in colorectal carcinomas with
 microsatellite instability. Am J Pathol 1999; 154:1805-13.
- Phillips SM, Banerjea A, Feakins R, Li SR, Bustin SA, Dorudi S. Tumour-infiltrating
 lymphocytes in colorectal cancer with microsatellite instability are activated and cytotoxic. Br
 J Surg 2004; 91:469-75.
- 358 11. Sargent DJ, Marsoni S, Monges G, Thibodeau SN, Labianca R, Hamilton SR, French
- AJ, Kabat B, Foster NR, Torri V, et al. Defective mismatch repair as a predictive marker for
 lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer. J Clin Oncol 2010;
 28:3219-26.
- Linnebacher M, Gebert J, Rudy W, Woerner S, Yuan YP, Bork P, von Knebel Doeberitz
 M. Frameshift peptide-derived T-cell epitopes: a source of novel tumor-specific antigens. Int J
 Cancer 2001; 93:6-11.
- 365 13. Schwitalle Y, Kloor M, Eiermann S, Linnebacher M, Kienle P, Knaebel HP, Tariverdian
 366 M, Benner A, von Knebel Doeberitz M. Immune response against frameshift-induced
 367 neopeptides in HNPCC patients and healthy HNPCC mutation carriers. Gastroenterology 2008;
 368 134:988-97.
- 369 14. Saeterdal I, Bjorheim J, Lislerud K, Gjertsen MK, Bukholm IK, Olsen OC, Nesland JM,
 370 Eriksen JA, Moller M, Lindblom A, et al. Frameshift-mutation-derived peptides as tumor371 specific antigens in inherited and spontaneous colorectal cancer. Proc Natl Acad Sci U S A
 372 2001; 98:13255-60.
- 15. Lazennec G, Richmond A. Chemokines and chemokine receptors: new insights into
 cancer-related inflammation. Trends Mol Med 2010; 16:133-44.
- 375 16. Ali S, Lazennec G. Chemokines: novel targets for breast cancer metastasis. Cancer
 376 Metastasis Rev 2007; 26:401-20.
- 377 17. Vindrieux D, Escobar P, Lazennec G. Emerging roles of chemokines in prostate cancer.
 378 Endocr Relat Cancer 2009; 16:663-73.
- 18. Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A. Cancer-related inflammation,
 the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 2009; 30:1073-81.
- 381 19. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature
 382 2008; 454:436-44.
- 383 20. Strieter RM, Burdick MD, Mestas J, Gomperts B, Keane MP, Belperio JA. Cancer CXC
 384 chemokine networks and tumour angiogenesis. Eur J Cancer 2006; 42:768-78.
- 385 21. Mehrad B, Keane MP, Strieter RM. Chemokines as mediators of angiogenesis. Thromb
 386 Haemost 2007; 97:755-62.
- 387 22. Coussens LM, Werb Z. Inflammation and cancer. Nature 2002; 420:860-7.
- Zlotnik A, Burkhardt AM, Homey B. Homeostatic chemokine receptors and organ specific metastasis. Nat Rev Immunol 2011; 11:597-606.
- Allen M, Louise Jones J. Jekyll and Hyde: the role of the microenvironment on theprogression of cancer. J Pathol 2011; 223:162-76.

- Le Gouvello S, Bastuji-Garin S, Aloulou N, Mansour H, Chaumette MT, Berrehar F,
 Seikour A, Charachon A, Karoui M, Leroy K, et al. High prevalence of Foxp3 and IL17 in
 MMR-proficient colorectal carcinomas. Gut 2008; 57:772-9.
- 395 26. Tosolini M, Kirilovsky A, Mlecnik B, Fredriksen T, Mauger S, Bindea G, Berger A,
- Bruneval P, Fridman WH, Pages F, et al. Clinical impact of different classes of infiltrating T
 cytotoxic and helper cells (Th1, th2, treg, th17) in patients with colorectal cancer. Cancer Res
 2011; 71:1263-71.
- 399 27. Oladipo O, Conlon S, O'Grady A, Purcell C, Wilson C, Maxwell PJ, Johnston PG,
- Stevenson M, Kay EW, Wilson RH, et al. The expression and prognostic impact of CXCchemokines in stage II and III colorectal cancer epithelial and stromal tissue. Br J Cancer 2011;
 104:480-7.
- 403 28. Halama N, Braun M, Kahlert C, Spille A, Quack C, Rahbari N, Koch M, Weitz J, Kloor
 404 M, Zoernig I, et al. Natural killer cells are scarce in colorectal carcinoma tissue despite high
 405 levels of chemokines and cytokines. Clin Cancer Res 2011; 17:678-89.
- 406 29. Pages F, Galon J, Fridman WH. The essential role of the in situ immune reaction in 407 human colorectal cancer. J Leukoc Biol 2008; 84:981-7.
- 30. Nosho K, Baba Y, Tanaka N, Shima K, Hayashi M, Meyerhardt JA, Giovannucci E,
 Dranoff G, Fuchs CS, Ogino S. Tumour-infiltrating T-cell subsets, molecular changes in
 colorectal cancer, and prognosis: cohort study and literature review. J Pathol 2010; 222:35066.
- 412 31. Guidoboni M, Gafa R, Viel A, Doglioni C, Russo A, Santini A, Del Tin L, Macri E,
 413 Lanza G, Boiocchi M, et al. Microsatellite instability and high content of activated cytotoxic
- 414 lymphocytes identify colon cancer patients with a favorable prognosis. Am J Pathol 2001;415 159:297-304.
- 416 32. Laghi L, Bianchi P, Miranda E, Balladore E, Pacetti V, Grizzi F, Allavena P, Torri V,
 417 Repici A, Santoro A, et al. CD3+ cells at the invasive margin of deeply invading (pT3-T4)
 418 colorectal cancer and risk of post-surgical metastasis: a longitudinal study. Lancet Oncol 2009;
 419 10:877-84.
- 33. Michel S, Benner A, Tariverdian M, Wentzensen N, Hoefler P, Pommerencke T, Grabe
 N, von Knebel Doeberitz M, Kloor M. High density of FOXP3-positive T cells infiltrating
 colorectal cancers with microsatellite instability. Br J Cancer 2008; 99:1867-73.
- 423 34. Prall F, Duhrkop T, Weirich V, Ostwald C, Lenz P, Nizze H, Barten M. Prognostic role 424 of CD8+ tumor-infiltrating lymphocytes in stage III colorectal cancer with and without 425 microsatellite instability. Hum Pathol 2004; 35:808-16.
- 35. Salama P, Phillips M, Grieu F, Morris M, Zeps N, Joseph D, Platell C, Iacopetta B.
 Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal
 cancer. J Clin Oncol 2009; 27:186-92.
- 431 dependent selection. Science 2001; 292:1907-10.
- 432 37. Frey DM, Droeser RA, Viehl CT, Zlobec I, Lugli A, Zingg U, Oertli D, Kettelhack C,
- Terracciano L, Tornillo L. High frequency of tumor-infiltrating FOXP3(+) regulatory T cells
 predicts improved survival in mismatch repair-proficient colorectal cancer patients. Int J Cancer
 2010; 126:2635-43.
- 436 38. Pages F, Kirilovsky A, Mlecnik B, Asslaber M, Tosolini M, Bindea G, Lagorce C, Wind
 437 P, Marliot F, Bruneval P, et al. In situ cytotoxic and memory T cells predict outcome in patients
 438 with early-stage colorectal cancer. J Clin Oncol 2009; 27:5944-51.
- 439 39. Suzuki H, Chikazawa N, Tasaka T, Wada J, Yamasaki A, Kitaura Y, Sozaki M, Tanaka
- 440 M, Onishi H, Morisaki T, et al. Intratumoral CD8(+) T/FOXP3 (+) cell ratio is a predictive
- 441 marker for survival in patients with colorectal cancer. Cancer Immunol Immunother 2010;
- 442 59:653-61.

- 443 40. Correale P, Rotundo MS, Del Vecchio MT, Remondo C, Migali C, Ginanneschi C,
 444 Tsang KY, Licchetta A, Mannucci S, Loiacono L, et al. Regulatory (FoxP3+) T-cell tumor
 445 infiltration is a favorable prognostic factor in advanced colon cancer patients undergoing chemo
- 446 or chemoimmunotherapy. J Immunother 2010; 33:435-41.
- 447 41. Curiel TJ. Tregs and rethinking cancer immunotherapy. J Clin Invest 2007; 117:1167448 74.
- 449 42. Chaput N, Louafi S, Bardier A, Charlotte F, Vaillant JC, Menegaux F, Rosenzwajg M,
 450 Lemoine F, Klatzmann D, Taieb J. Identification of CD8+CD25+Foxp3+ suppressive T cells
 451 in colorectal cancer tissue. Gut 2009; 58:520-9.
- 43. Blatner NR, Bonertz A, Beckhove P, Cheon EC, Krantz SB, Strouch M, Weitz J, Koch
 M, Halverson AL, Bentrem DJ, et al. In colorectal cancer mast cells contribute to systemic
 regulatory T-cell dysfunction. Proc Natl Acad Sci U S A 2010; 107:6430-5.
- 455 44. deLeeuw RJ, Kost SE, Kakal JA, Nelson BH. The prognostic value of FoxP3+ tumor456 infiltrating lymphocytes in cancer: a critical review of the literature. Clin Cancer Res 2012;
 457 18:3022-9.
- 458 45. Sinicrope FA, Rego RL, Ansell SM, Knutson KL, Foster NR, Sargent DJ. Intraepithelial
 459 effector (CD3+)/regulatory (FoxP3+) T-cell ratio predicts a clinical outcome of human colon
 460 carcinoma. Gastroenterology 2009; 137:1270-9.
- 461 46. Tougeron D, Fauquembergue E, Rouquette A, Le Pessot F, Sesboue R, Laurent M,
 462 Berthet P, Mauillon J, Di Fiore F, Sabourin JC, et al. Tumor-infiltrating lymphocytes in
 463 colorectal cancers with microsatellite instability are correlated with the number and spectrum
 464 of frameshift mutations. Mod Pathol 2009; 22:1186-95.
- 465 47. Rubie C, Frick VO, Wagner M, Schuld J, Graber S, Brittner B, Bohle RM, Schilling
 466 MK. ELR+ CXC chemokine expression in benign and malignant colorectal conditions. BMC
 467 Cancer 2008; 8:178.
- 468 48. Wang D, Wang H, Brown J, Daikoku T, Ning W, Shi Q, Richmond A, Strieter R, Dey
 469 SK, DuBois RN. CXCL1 induced by prostaglandin E2 promotes angiogenesis in colorectal
 470 cancer. J Exp Med 2006; 203:941-51.
- 471 49. Jiang Z, Xu Y, Cai S. CXCL10 expression and prognostic significance in stage II and
 472 III colorectal cancer. Mol Biol Rep 2010; 37:3029-36.
- Musha H, Ohtani H, Mizoi T, Kinouchi M, Nakayama T, Shiiba K, Miyagawa K,
 Nagura H, Yoshie O, Sasaki I. Selective infiltration of CCR5(+)CXCR3(+) T lymphocytes in
 human colorectal carcinoma. Int J Cancer 2005; 116:949-56.
- 476 51. Brew R, Southern SA, Flanagan BF, McDicken IW, Christmas SE. Detection of
 477 interleukin-8 mRNA and protein in human colorectal carcinoma cells. Eur J Cancer 1996;
 478 32A:2142-7.
- 479 52. Cui G, Yuan A, Goll R, Vonen B, Florholmen J. Dynamic changes of interleukin-8
 480 network along the colorectal adenoma-carcinoma sequence. Cancer Immunol Immunother
 481 2009; 58:1897-905.
- 482 53. Mantovani A, Cassatella MA, Costantini C, Jaillon S. Neutrophils in the activation and
 483 regulation of innate and adaptive immunity. Nat Rev Immunol 2011; 11:519-31.
- 484 54. Galdiero MR, Garlanda C, Jaillon S, Marone G, Mantovani A. Tumor associated
 485 macrophages and neutrophils in tumor progression. J Cell Physiol 2013; 228:1404-12.
- 486 55. Balkwill F. Cancer and the chemokine network. Nat Rev Cancer 2004; 4:540-50.
- 487 56. Homey B, Muller A, Zlotnik A. Chemokines: agents for the immunotherapy of cancer?
 488 Nat Rev Immunol 2002; 2:175-84.
- 489 57. Mrowietz U, Schwenk U, Maune S, Bartels J, Kupper M, Fichtner I, Schroder JM, 490 Schadendorf D. The chemokine RANTES is secreted by human melanoma cells and is
- 491 associated with enhanced tumour formation in nude mice. Br J Cancer 1999; 79:1025-31.
- 492 58. Sugasawa H, Ichikura T, Kinoshita M, Ono S, Majima T, Tsujimoto H, Chochi K, Hiroi
 493 S, Takayama E, Saitoh D, et al. Gastric cancer cells exploit CD4+ cell-derived CCL5 for their

494 growth and prevention of CD8+ cell-involved tumor elimination. Int J Cancer 2008; 122:2535495 41.

496 59. Soria G, Ben-Baruch A. The inflammatory chemokines CCL2 and CCL5 in breast 497 cancer. Cancer Lett 2008; 267:271-85.

60. Cambien B, Richard-Fiardo P, Karimdjee BF, Martini V, Ferrua B, Pitard B, SchmidAntomarchi H, Schmid-Alliana A. CCL5 neutralization restricts cancer growth and potentiates
the targeting of PDGFRbeta in colorectal carcinoma. PLoS One 2011; 6:e28842.

- 501 61. Chang LY, Lin YC, Mahalingam J, Huang CT, Chen TW, Kang CW, Peng HM, Chu 502 YY, Chiang JM, Dutta A, et al. Tumor-derived chemokine CCL5 enhances TGF-beta-mediated 503 killing of CD8(+) T cells in colon cancer by T-regulatory cells. Cancer Res 2012; 72:1092-102.
- Ning O CDO(Y) Feens in colon cancer by Fregulatory const cancer res 2012, 72:1092 102.
 62. Ning Y, Manegold PC, Hong YK, Zhang W, Pohl A, Lurje G, Winder T, Yang D,
 LaBonte MJ, Wilson PM, et al. Interleukin-8 is associated with proliferation, migration,
 angiogenesis and chemosensitivity in vitro and in vivo in colon cancer cell line models. Int J
 Cancer 2011; 128:2038-49.
- 508 63. Banerjea A, Ahmed S, Hands RE, Huang F, Han X, Shaw PM, Feakins R, Bustin SA,
 509 Dorudi S. Colorectal cancers with microsatellite instability display mRNA expression
 510 signatures characteristic of increased immunogenicity. Mol Cancer 2004; 3:21.
- 511 64. Strieter RM, Polverini PJ, Arenberg DA, Kunkel SL. The role of CXC chemokines as 512 regulators of angiogenesis. Shock 1995; 4:155-60.
- 513 65. Padovan E, Spagnoli GC, Ferrantini M, Heberer M. IFN-alpha2a induces IP-514 10/CXCL10 and MIG/CXCL9 production in monocyte-derived dendritic cells and enhances 515 their capacity to attract and stimulate CD8+ effector T cells. J Leukoc Biol 2002; 71:669-76.
- 516 66. Kim HJ, Song DE, Lim SY, Lee SH, Kang JL, Lee SJ, Benveniste EN, Choi YH. Loss
- 517 of the promyelocytic leukemia protein in gastric cancer: implications for IP-10 expression and 518 tumor-infiltrating lymphocytes. PLoS One 2011; 6:e26264.
- 519 67. Bandapalli OR, Ehrmann F, Ehemann V, Gaida M, Macher-Goeppinger S, Wente M,
 520 Schirmacher P, Brand K. Down-regulation of CXCL1 inhibits tumor growth in colorectal liver
 521 metastasis. Cytokine 2012; 57:46-53.
- 68. Chiu ST, Hsieh FJ, Chen SW, Chen CL, Shu HF, Li H. Clinicopathologic correlation of
 up-regulated genes identified using cDNA microarray and real-time reverse transcription-PCR
 in human colorectal cancer. Cancer Epidemiol Biomarkers Prev 2005; 14:437-43.
- 525 69. Jass JR, Atkin WS, Cuzick J, Bussey HJ, Morson BC, Northover JM, Todd IP. The 526 grading of rectal cancer: historical perspectives and a multivariate analysis of 447 cases. 527 Histopathology 1986; 10:437-59.
- 528 70. Boissiere-Michot F, Denouel A, Boulle N, Guillaume C, Orsetti B, Lopez-Crapez E,
 529 Chateau MC, Bibeau F. The Non-Crosslinking Fixative RCL2(R)-CS100 is Compatible with
 530 Both Pathology Diagnosis and Molecular Analyses. Pathol Oncol Res 2012; 19:41-53.
- 531 71. Chavey C, Bibeau F, Gourgou-Bourgade S, Burlinchon S, Boissiere F, Laune D, Roques
 532 S, Lazennec G. Estrogen-receptor negative breast cancers exhibit a high cytokine content.
 533 Breast Cancer Res 2007; 9:R15.
- 534
- 535

Table 1. Characteristics of the study population

D	All CRC	MSS CRC	MSI CRC	p-
Parameter	n (%)	<i>n</i> (%)	<i>n</i> (%)	value ¹
Total. <i>n</i>	110	62	48	
Sex				1.000
Male	54 (49)	30 (48)	24 (50)	
Female	56 (51)	32 (52)	24 (50)	
Median age at surgery [range]	67.0 [30-	65.0 [30-	72.5 [30-	0.206
	95]	86]	95]	
Stage	-	-	-	0.022
Ι	12 (11)	6 (10)	6 (13)	
II	52 (47)	27 (44)	25 (52)	
III	25 (23)	11 (17)	14 (29)	
IV	21 (19)	18 (29)	3 (6)	
Tumor location	~ /		~ /	0.018
Right-sided	57 (52)	26 (42)	31 (65)	
Other	53 (48)	36 (58)	17 (35)	
Histologic differentiation				0.004
Poorly differentiated	22 (20)	5 (8)	17 (35)	
Moderately differentiated	48 (44)	32 (52)	16 (33)	
Well differentiated	22 (20)	15 (24)	7 (15)	
Mucinous	18 (16)	10 (16)	8 (17)	
Tumor border configuration				0.040
Expansile	42 (42)	19 (33)	23 (55)	
Infiltrative	58 (58)	39 (67)	19 (45)	
NA	10	4	6	
Lymphovascular invasion	10		Ŭ	0.432
Yes	41 (37)	21 (34)	20 (42)	01102
No	69 (63)	41 (66)	28 (58)	
Perineural invasion	07 (03)	41 (00)	20 (50)	1.000
Yes	11 (10)	6 (10)	5(10)	1.000
No	11 (10) 99 (90)	6 (10) 56 (90)	5 (10) 43 (90)	
Signet ring cell carcinoma	99 (90)	30 (90)	43 (90)	1.000
Yes	A(A)	2(2)	2(4)	1.000
No	4(4)	2(3)	2(4)	
	106 (96)	60 (97)	46 (96)	0.410
Median number of lymph nodes	36 [2 94]	26 [2 04]	25 [4 71]	0.419
examined [Range]	26 [3-84]	26 [3-84]	25 [4-71]	0 100
Crohn's-like reaction	21 (20)	14 (22)	17 (25)	0.199
Yes	31 (28)	14 (23)	17 (35)	
No	79 (72)	48 (77)	31 (65)	0.02:
Lymphocyte infiltration ²			20 (5 0)	0.034
Yes	51 (46)	23 (37)	28 (58)	
No	59 (54)	39 (63)	20 (42)	

 ¹p value of Fisher's exact test or Mann-Whitney test as appropriate.
 ²assessed on HES sections by a single pathologist blinded to the clinico-pathological data (No: no patent tumor infiltrating lymphocytes- Yes: infiltrating lymphocytes)
 CRC, colorectal cancers; MSI, microsatellite instable; MSS, microsatellite stable. 539 540 541

Marler		MSS (CRC (<i>n</i> =	=62)		MSI (Ratio	Dub *		
Marker	Mean	SD	Media		Mean	SD	Median	Range	(MSI/MSS)	Prb*
RANTES	0.40	0.80	0.13	[0-4.29]	5.16	18.13	1.37	[0-125.92]	12.9	< 0.001
IL-8	14.62	40.13	2.19	[0-284.63]	77.05	149.22	12.70	[.01-507.61]	5.3	< 0.001
MIG	6.17	8.77	3.20	[0-49.9]	28.51	35.39	14.16	[0-154.09]	4.6	< 0.001
IL1-β	2.24	8.87	0.13	[0-68.39]	5.13	8.86	1.78	[0-41.93]	2.3	< 0.001
IP-10	5.84	9.07	1.70	[0-44.67]	61.36	238.43	8.49	[0-1652.31]	10.5	< 0.001
IL-16	9.53	8.03	7.91	[1.75-53.59]	14.90	14.89	12.10	[0-87.05]	1.6	0.011
GROa	1.89	2.58	0.94	[0-12.89]	2.84	3.58	1.40	[0-18.59]	1.5	0.033
MIF	106.66	53.64	92.40	[47.68-319.81]	89.23	60.19	76.16	[0-350.63]	0.8	0.039
IL-1ra	80.72	116.43	37.96	[.27-506.35]	105.98	123.77	58.83	[5.61-567.4]	1.3	0.049
MIP-1β	0.55	0.97	0.28	[0-5.92]	1.31	2.08	0.45	[0-10.25]	_	_
LIF	0.08	0.10	0.07	[065]	0.05	0.07	0.01	[033]	-	-
MIP-1α	0.00	0.10	0.00	[004]	0.03	0.07	0.01	[024]	_	-
IFNγ	0.00	0.01	0.00	[089]	0.02	0.05	0.00	[0-1.97]	_	_
IL-18	13.32	47.74	0.85	[.02-270.58]	6.33	24.73	0.02	[0-160.42]	_	_
HGF	8.25	10.86	5.42	[1.55-63.03]	6.16	5.96	3.85	[0-23.19]	0.7	0.108
IL-13	0.02	0.04	0.00	[1.33-03.03]	0.10	0.03	0.00	[0-23.19]	-	0.108
IL-13 IL-1α			0.00	[0-3.02]		0.03	0.00		-	-
	0.26	0.49			0.38			[0-3]	-	-
βFGF	0.95	1.29	0.38	[0-4.6]	1.00	1.99	0.17	[0-9.14]	-	0.259
IL-12p40	2.14	2.72	1.24	[0-14.2]	1.81	2.69	0.69	[0-12.86]	0.8	0.258
CCL11	0.22	0.37	0.05	[0-1.71]	0.19	0.37	0.02	[0-1.73]	-	-
GM-CSF	0.03	0.05	0.00	[019]	0.03	0.04	0.00	[015]	-	-
IL-7	0.59	1.56	0.00	[0-8.9]	0.83	1.72	0.01	[0-9.39]	-	-
SDF1a	2.17	3.05	1.54	[0-16.09]	1.55	1.93	0.43	[0-7.67]	0.7	0.342
MCP-3	0.97	1.93	0.16	[0-10.74]	1.01	1.38	0.63	[0-7.81]	-	-
CCL27	0.28	0.21	0.26	[0-1.17]	0.23	0.22	0.22	[084]	-	-
TNFβ	0.02	0.02	0.03	[01]	0.02	0.03	0.00	[008]	-	-
SCF	0.65	0.71	0.48	[0-3.29]	0.90	0.98	0.60	[0-3.47]	-	-
IL-12p70	0.18	0.31	0.04	[0-1.72]	0.10	0.14	0.02	[053]	-	-
SCFGβ	2.54	3.21	1.28	[0-15.46]	2.57	3.70	1.13	[0-18.79]	1.0	0.404
MCP-1	0.16	0.25	0.08	[0-1.47]	0.16	0.31	0.01	[0-1.53]	-	-
βNGF	0.06	0.10	0.04	[059]	0.05	0.08	0.00	[038]	-	-
IL-10	0.00	0.01	0.00	[003]	0.00	0.00	0.00	[001]	-	-
IL-17	0.05	0.08	0.00	[033]	0.08	0.15	0.00	[055]	-	-
IL-6	0.35	0.76	0.01	[0-4.03]	0.74	1.72	0.02	[0-7.86]	-	-
IL-3	2.98	4.41	1.42	[0-20.35]	3.20	3.93	2.52	[0-18.77]	1.1	0.549
IFN-α2	0.45	0.30	0.43	[0-1.25]	0.42	0.32	0.44	[0-1.33]	-	-
PDGFbb	0.02	0.06	0.00	[032]	0.06	0.27	0.00	[0-1.74]	-	-
IL-2	0.01	0.02	0.00	[012]	0.00	0.01	0.00	[005]	-	-
TRAIL	0.33	0.41	0.21	[0-1.89]	0.33	0.44	0.16	[0-2.24]	-	-
VEGF	12.94	20.97	5.10	[.26-120.91]	9.18	9.98	5.16	[.09-46.65]	0.7	0.786
IL-2Rα	0.32	0.37	0.23	[0-1.83]	0.34	0.38	0.21	[0-1.66]	-	-
TNFα	0.00	0.00	0.00	[0-0]	0.00	0.00	0.00	[0-0]	-	-
G-CSF	0.00	0.00	0.00	[024]	0.00	0.13	0.00	[07]	-	-
IL-9	0.02	0.03	0.00	[011]	0.00	0.15	0.00	[008]	-	-
M-CSF	0.01	0.02	0.33	[0-2.96]	0.00	0.30	0.35	[0-1.1]	_	-
IL-4	0.43	0.00	0.00	[0-2:90]	0.00	0.00	0.00	[0-1.1]	_	_
IL-4 IL-15	0.00	0.00	0.00	[0-0]	0.00	0.00	0.00	[0-0]	_	-
IL-15 IL-5			0.00	[0-0]			0.00	[0-0]	-	-
	0.00	0.00		[U-U] ann-Whitney test	0.00	0.00			-	-

542 Table 2. Differential expression of cytokines, chemokines and growth factors in MSS and MSS colorectal cancers (expressed as pg/ml for 25 µg of total proteins) 543

5<u>44</u> 545 * *p*-value of non-parametric Mann-Whitney test (only shown for biological markers with median ≥ 1 pg/ml) CRC, colorectal cancers; MSI, microsatellite instable; MSS, microsatellite stable.

	Group 1 (<i>n</i> =29)					Group 2 (n=33)					Group 1 vs 2 Group 3 (n=48)					
Marker	I	nflamm	atory MS	S CRC ⁽¹⁾	No	Non-Inflammatory MSS CRC						Μ	Group 3 vs 1			
Warker	Mean	SEM	Median	Range	Mean	SEM	Median	Range	Ratio	Prb*	Mean	SEM	Median	Range	Ratio	Prb*
CD3 ct	882	612	701	[65-2491]	685	798	451	[53-3673]	1.29	0.044	1335	1320	905	[13-5604]	1.51	0.391
CD45RO ct	977	787	705	[64-2788]	625	667	521	[0-3362]	1.56	0.055	1462	1031	1359	[78-4595]	1.49	0.031
CD68 im	779	737	618	[50-3678]	601	568	469	[20-2669]	1.29	0.241	908	579	816	[46-2022]	1.17	0.188
CD68 ct	364	276	328	[14-1198]	317	296	249	[20-1274]	1.15	0.378	626	364	596	[43-1464]	1.72	0.002
FoxP3 ct	254	155	223	[5-534]	352	285	255	[54-1162]	0.72	0.378	250	183	206	[15-820]	0.98	0.701
CD8 ct	303	420	155	[5-1956]	225	272	148	[7-1057]	1.35	0.459	717	724	505	[31-2916]	2.36	0.002
CD45RO im	2045	1525	1715	[139-5965]	2326	2651	1574	[99-11293]	0.88	0.553	2716	1620	2614	[125-6462]	1.33	0.083
T-bet ct	105	121	60	[0-533]	124	159	53	[9-664]	0.85	0.554	453	492	233	[4-2053]	4.30	< 0.0001
FoxP3 im	326	321	214	[53-1508]	383	531	177	[0-2568]	0.85	0.603	343	303	259	[0-1159]	1.05	0.761
CD8 im	492	460	345	[40-1806]	579	751	268	[18-3445]	0.85	0.707	837	629	672	[57-3154]	1.70	0.006
CD3 im	1041	936	761	[152-3805]	1308	1621	863	[44-8474]	0.79	0.789	1573	1017	1363	[80-4059]	1.51	0.013
T-bet im	61	61	38	[5-226]	67	84	36	[0-388]	0.91	0.905	115	93	109	[3-386]	1.89	0.005
IL-16	7.14	3.84	6.48	[1.75-14.05]	11.63	10.02	10.54	[2.08-53.59]	0.61	0.059	14.90	14.89	12.10	[0-87.05]	2.09	0.002
IL-1ra	56.38	90.45	27.83	[7-464.13]	102.11	132.94	44.21	[.27-506.35]	0.55	0.080	105.98	123.77	58.83	[5.6-567.4]	1.88	0.007
RANTES	0.29	0.57	0.12	[0-2.37]	0.49	0.96	0.15	[0-4.29]	0.59	0.438	5.16	18.13	1.37	[0-125.92]	17.79	< 0.0001
IL-8	12.27	24.75	2.79	[0-114.29]	16.69	50.25	1.51	[0-284.63]	0.74	0.494	77.05	149.22	12.70	[.01-507.6]	6.28	< 0.0001
MIG	6.92	8.76	2.66	[0.16-29.43]	5.52	8.86	3.73	[0-49.90]	1.25	0.568	28.51	35.39	14.16	[0-154.09]	4.12	< 0.0001
IL-1β	3.43	12.71	0.09	[0-68.39]	1.2	2.48	0.15	[0-10.58]	2.86	0.577	5.13	8.86	1.78	[0-41.93]	1.50	< 0.0001
IP-10	6.44	9.98	1.85	[0-44.67]	5.31	8.31	1.54	[0-34.12]	1.21	0.843	61.36	238.43	8.50	[0-1652.31]	9.53	0.003
MIF	107.45	57.42	102.78	[50.73-319.81]	105.96	50.97	87.37	[47.68-226.69]	1.01	0.927	89.23	60.19	76.16	[0-350.63]	0.83	0.084
GROα	1.77	2.51	0.89	[0-12.89]	1.99	2.67	1.00	[0-12.80]	0.89	0.978	2.84	3.58	1.40	[0-18.59]	1.60	0.057

Table 3. Inflammatory cell populations and cytokine expression in inflammatory MSS, non-inflammatory MSS and MSI colorectal cancers (expressed as number of cells/mm² and pg/ml for 25 µg of total proteins, respectively)

¹⁾ Based on the presence of a strong lymphocytic infiltration and/or Crohn's-like lymphocytic reaction. * p-value of non-parametric Mann-Whitney test CRC, colorectal cancers; MSI, microsatellite instable; MSS, microsatellite stable.

		IL-8 low	IL-8 high	Prb*	MIG low	MIG high	Prb*	IL1-β low	IL1-β high	Prb*	IP-10 low	IP-10 high	Prb*	IL-16 low	IL-16 high	Prb*	MIF low	MIF high	Prb*
MSI	CD3 ct	1018.6	751.0	0.145	403.6	1577.4	< 0.0001	1007.1	715.1	0.307	639.0	1200.5	0.056	751.0	1073.7	0.069	840.8	956.1	0.874
	CD3 im	1746.3	1249.3	0.114	909.5	1591.8	0.032	1478.9	1350.1	0.526	1611.7	1336.0	0.248	1611.7	1302.8	0.741	1609.4	1323.5	0.934
	CD8 ct	524.8	473.6	0.351	147.2	951.9	< 0.0001	612.7	293.8	0.166	276.0	881.9	0.010	311.5	759.5	0.010	473.6	524.8	0.803
	CD8 im	764.2	632.4	0.409	480.1	999.8	0.004	724.5	598.3	0.313	598.3	894.3	0.020	617.3	787.4	0.465	661.2	680.2	0.953
	CD45RO ct	1362.4	1356.2	0.519	778.8	1709.8	0.001	1394.1	1227.9	0.318	980.8	1618.0	0.039	1059.3	1564.7	0.045	1520.7	1172.0	0.182
	CD45RO im	2474.1	2753.6	0.962	1516.7	3279.8	0.053	3244.9	2072.7	0.139	2007.3	3017.7	0.509	2353.7	3244.9	0.777	3302.8	2449.2	0.318
	T-Bet <i>ct</i>	319.1	231.2	0.509	147.5	410.7	0.000	276.9	214.0	0.540	153.8	324.9	0.038	199.0	321.3	0.097	231.2	279.0	0.892
	T-Bet im	94.0	110.3	0.556	48.5	147.8	0.001	111.5	90.1	0.589	103.4	119.4	0.212	91.3	119.7	0.126	103.7	114.4	0.916
	FoxP3 ct	206.5	210.8	0.604	194.2	239.1	0.358	197.6	230.4	0.404	197.4	223.7	0.850	159.3	246.1	0.124	189.9	223.7	0.690
	FoxP3 im	259.4	271.7	0.697	221.6	261.9	0.981	207.8	348.0	0.109	301.8	208.5	0.129	221.6	261.9	0.788	221.6	324.5	0.733
	CD68 ct	626.6	506.1	0.570	400.8	690.8	0.084	704.8	408.1	0.188	531.8	650.3	0.363	415.3	690.8	0.139	676.8	500.5	0.633
	CD68 im	921.0	609.3	0.509	601.9	942.4	0.164	1070.3	550.2	0.023	771.0	921.0	0.777	847.9	778.4	0.962	857.6	774.9	0.664
	CD20 <i>ct</i>	8.4	4.4	0.539	3.1	11.5	0.127	9.9	5.9	0.555	8.3	7.1	0.909	6.8	11.5	0.065	9.9	3.1	0.089
	CD20 im	42.1	66.8	0.443	18.4	87.6	0.031	69.1	33.7	0.725	64.6	43.5	0.751	18.4	82.3	0.126	44.9	82.3	0.679
MSS	CD3 ct	510.0	636.9	0.281	499.1	698.2	0.051	540.4	588.4	0.451	540.4	698.2	0.060	555.6	674.3	0.418	416.5	674.3	0.050
	CD3 im	741.3	827.6	0.482	611.6	845.4	0.206	751.0	808.1	0.994	758.5	808.1	0.589	623.5	897.6	0.246	746.2	817.8	0.416
	CD8 ct	108.0	155.2	0.379	82.3	173.7	0.014	141.9	155.2	0.314	108.0	162.6	0.058	126.6	158.7	0.342	82.3	189.3	0.051
	CD8 im	314.4	327.7	0.954	253.6	368.7	0.445	329.0	293.9	0.594	271.1	333.7	0.718	253.6	353.2	0.535	218.7	381.5	0.042
	CD45RO ct	529.3	663.9	0.207	553.3	623.3	0.380	529.3	663.9	0.388	578.7	493.8	0.513	520.5	563.4	0.786	389.4	721.7	0.044
	CD45RO im	1228.2	1722.6	0.149	1597.8	1862.2	0.133	1144.2	1721.6	0.348	1597.8	1721.6	0.348	1144.2	1721.6	0.264	1609.8	1807.7	0.554
	T-Bet <i>ct</i>	49.9	57.7	0.897	43.8	143.0	0.001	61.9	52.7	0.762	43.8	137.9	0.001	49.5	84.7	0.106	41.4	114.0	0.116
	T-Bet im	33.9	44.5	0.693	33.9	52.6	0.229	31.4	52.6	0.447	31.4	58.8	0.028	42.8	36.2	0.569	31.8	55.9	0.149
	FoxP3 ct	255.0	232.8	0.588	229.5	255.0	0.379	255.0	232.8	0.598	161.4	290.8	0.035	199.5	318.9	0.015	275.9	232.8	0.961
	FoxP3 im	239.2	185.8	0.851	184.1	203.4	0.708	317.9	156.9	0.226	210.2	187.2	0.507	165.6	236.8	0.480	218.3	151.6	0.614
	CD68 ct	211.9	317.6	0.356	195.2	353.4	0.038	243.2	282.7	0.468	211.9	353.4	0.188	208.5	282.7	0.364	217.6	402.1	0.098
	CD68 im	507.0	531.3	0.420	440.5	708.0	0.099	519.4	500.3	0.842	500.5	531.3	0.773	531.3	500.3	0.706	475.0	632.7	0.399
	CD20 ct	6.2	6.5	0.349	3.6	21.3	0.018	5.8	15.2	0.257	5.8	15.2	0.213	4.7	10.9	0.223	4.2	11.4	0.058
	CD20 im	49.5	50.3	0.448	61.2	47.1	0.638	38.7	54.3	0.255	61.2	44.6	0.565	45.8	64.1	0.844	49.3	54.3	0.413

Supplementary Table 1. Immune Cell Densities According to Chemokine Expression Levels

* *p*-value of non-parametric Mann-Whitney test; Only chemokines displaying significant differences for a lymphocytic population and/or localization were shown in this table.