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ABSTRACT
Characterising spatial variability, which is of utter importance in inspection and
maintenance strategies, requires comprehensive spatially distributed databases.
However, in real practice, spatially distributed inspection is costly and could damage
the structure if a large number of destructive tests are carried out. Therefore, the first
objective of this work is to propose a methodology to extract as much informations
as possible from available spatially distributed databases, in order to characterise
the spatial correlation. Moreover, a preventive maintenance strategy should be sup-
ported by deterioration models able to propagate uncertainty and spatial variability.
Then, the second objective of the paper is to evaluate the ability of these models to
propagate uncertainties and spatial variability. The methodology is illustrated with
data collected through destructive tests in a concrete wall exposed to carbonation.
The database encompasses information about the concrete porosity, saturation de-
gree, density, and carbonation depth. Recommendations are hence provided in this
work for the choice of input parameters that should be modelled as random fields.
These recommendations were applied and then confirmed by comparing measured
and modelled spatially distributed carbonation depths. The results highlight that
uncertainties in measurements and statistical uncertainties have significant impact
when dealing with spatial variability.

KEYWORDS
Reinforced concrete; modelling; Carbonation; Spatial variability; Random field;
Uncertainty quantification

1. Introduction

Corrosion of reinforcing bars has been identified among the firsts mechanisms pro-
ducing a premature deterioration, lifetime reduction and therefore larger maintenance
and rehabilitation costs for reinforced concrete (RC) structures. The annual cost of
corrosion worldwide is estimated to exceed $1.8 trillion, which translates to 3–4% of5

the Gross Domestic Product (GDP) of industrialised countries (Schmitt, 2009). Since
the direct and indirect costs of corrosion are immense, many studies related with pre-
ventive maintenance strategies against RC corrosion have been carried out for decades
(Bastidas-Arteaga and Schoefs, 2012, 2015; Engelund and Sorensen, 1998; O’Connor
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et al., 2013; Tesfamariam et al., 2018). These research works highlight the importance10

of accounting for uncertainties in lifetime assessment and maintenance optimisation;
nevertheless, their predictions could be improved by considering the spatial variability
of materials and deterioration processes.

Stewart (2006) and Stewart and Mullard (2007) pointed out that accounting for
spatial variability has significant impact on lifetime assessment and maintenance op-15

timisation. As a consequence, spatial variability characterisation of concrete physical
properties have been a topic of recent studies (Karimi et al., 2005; Kenshel, 2009; Li,
2004; Moshtaghin et al., 2017; Othmen et al., 2018; Schoefs et al., 2017a, 2016; Zhu
et al., 2017). Such characterisation requires a large number of measurements on dif-
ferent points of the concrete surface. Spatial inspection could be performed by using20

accurate non-destructive techniques or sensors; however, further technical develop-
ments are necessary to obtain reliable measurements (Gomez-Cardenas et al., 2015;
Schoefs et al., 2017b; Torres-Luque et al., 2014, 2017; Villain et al., 2017). In current
practice, the quantity of measurements is low, due to high inspection costs and limited
resources allocated to maintenance policies. Therefore, increasing the possibilities of25

extracting as much information as possible from the collected measurements becomes
a crucial challenge for spatial variability characterisation.

On the other hand, the use of predictive deterioration models is essential to op-
timise the resource allocation in the formulation of optimal maintenance strategies.
Representative models should be also able to deal with the spatial variability of model30

parameters, material properties or environmental exposure. This issue was recently
addressed by Rakotovao Ravahatra et al. (2017) where a methodology was proposed
for ranking deterioration models with respect to their capability to propagate spatial
variability. The outcomes of this study provided a first attempt for establishing practi-
cal recommendations about the selection of models. However, they could be improved35

by studying for each model which parameters could be represented as random vari-
ables or random processes as well as considering the uncertainty in the identification
of the spatial correlation parameter.

Within this context, the first objective of this paper is to provide a methodology to
assess the spatial correlation of model parameters or material properties. Some inter-40

esting recent studies dealt with spatial variability (Cameletti et al., 2012; , Lindgren
et al.; Wang et al., 2018). However their analysis did not focus on the fact that the
amount of available data could be particularly limited, as it is the case in real civil
engineering applications. The methodology proposed in this paper aims at extracting
as much information as possible of spatially distributed data to identify the range of45

variation and the mean of the parameter characterising the spatial correlation. The
second objective is related to the improvement of the analysis of the capability of
deterioration models according to the aspects mentioned previously. The proposed
methodology is applied to a database collected during one of the experimental cam-
paigns of the ANR-EVADEOS project1. The data concerns destructive tests on a con-50

crete wall for determining the spatial variability of inputs (porosity, saturation degree,
concrete density) and output (carbonation depth) of carbonation models. The present
study will focus only on concrete carbonation; nevertheless, the proposed methodology
could be extended to chloride ingress or other deterioration processes and/or material
properties.55

The paper is organised as follows. We describe in section 2 the structure investigated

1Non-destructive evaluation of the structures for damage prediction and optimisation of the follow-up. Web-

site: http://www-lmdc.insa-toulouse.fr/evadeos/accueilevadeos.htm
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and data used in this work. In section 3 we provide details concerning the proposed
methodology for the assessment of the range of variation and mean of the parameter
characterising the spatial variability of the inputs and outputs of carbonation models.
In section 4 we present the methodology and results of the sensitivity analysis aiming60

to evaluate the ability of carbonation models to propagate the spatial variability. This
section uses simulated data to generate a significant database to propagate uncer-
tainties and/or spatial variability on the model inputs. The methodology proposed in
section 3 is also implemented in section 4 to identify the parameter characterising the
spatial variability. The main outcome of section 4 will be to provide recommendations65

about the modelling of model inputs as random variables or fields. These recommen-
dations are tested in section 5 by utilising the real inspection data. Finally, we provide
in section 6 some remarks concerning the “nugget e↵ect” that will be considered in
future works to improve the spatial variability characterisation.

2. RC structure study case70

We investigate a RC wall built in 1979 enclosing a yard where inert wastes are stored
(Rakotovao Ravahatra et al., 2017). The portion of wall studied is east-west oriented
and 3.5 m length (Figure 1). There is no inhomogeneity due to casting or exposure
conditions. It is assumed in the following that random fields are stationary and er-
godic; as a consequence spatial variability can be modelled using a correlation function75

(Schoefs et al., 2017a). 21 successive measurements were taken from cores along a sin-
gle horizontal line 1.5 m above the ground. They were located between reinforcement
meshes with a constant distance of 16 cm between measurements. Cores were extracted
according to EN-13-791 (2007) and immediately placed into sealed plastic bags and
measurements were conducted in lab. Porosity, saturation degree and concrete density80

were determined following the procedures described in NF-18-459 (2010) The distance
of the measurement line to the ground (1.5 m) and to the top (0.8 m) was selected
to avoid border e↵ects. It was found that exposure conditions after 35 years of each
wall side are rather di↵erent: on the South side, the drying is faster and carbonation
is supposed to be facilitated. The mean value of carbonation depth is 1.96 cm for the85

North side (Side A) and 2.42 cm for the South side (Side C). It was therefore decided
to consider separately the measurements obtained on each side. In Figure 2 are shown
the measured values of porosity, saturation degree, concrete density and carbonation
depth for the two exposed sides of the wall. The position of the measurement along
the wall is located by its abscissa on the horizontal axis, while the value of the mea-90

surement of the parameter studied is given on the vertical axis. It is observed that
there is a significant spatial variability and that values di↵er for each side.

3. Characterisation of spatial correlation

A trajectory is defined as a successive set of measurements along an horizontal line
on the surface of the structure. The set of measurements for each side in Figure 295

are examples of trajectories. Given that only one sample path (trajectory) of each
random field is available for each side of the wall and for the sake of simplicity, we
assume that the random fields are ergodic and Gaussian; this means that one sample
(one trajectory of measurements) is su�cient to fully characterise the random field.
Otherwise we can carry out as previous step the pre-treatment proposed by (Clerc100
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and Mallat, 2003). In addition, as well as for many study cases in civil engineering
where the amount of data is insu�cient (Kenshel, 2009; Li, 2004; O’Connor et al.,
2013), we assume second order stationarity. This means that the mean value, the
standard deviation are constant, and the autocorrelation function depends only on
the distance. The objectives of this section are to describe and illustrate the proposed105

method called ”windowing” for identifying the range of variation and the mean value
of the parameter characterising the autocorrelation function. Section 3.1 provides the
basis for the estimation of the parameters that characterise the spatial variability.
The proposed windowing method including the criterion to determine the minimum
number of points considered in the analysis are described in sections 3.2 and 3.3,110

respectively. The methodology is finally illustrated in section 3.4.

3.1. Parameters estimation

Let X(x) be a stationary Gaussian random with mean µX , the variance �2
X and

the correlation function ⇢(�x). The field X is composed by m spatially correlated
positions x1 . . . , xm. Many of the correlation functions ⇢(�x) (Table 1) were proposed115

in the literature (see for instance (Der Kiureghian and Ke, 1988; Kenshel, 2009) for an
overview). They are characterised by the scale of fluctuation ✓. The scale of fluctuation
is related to the distance from which two values from the same random field can
be considered more or less dependent from another. Identifying the autocorrelation
of a given physical property aims to determine the appropriate type of continuous120

autocorrelation function and to estimate the corresponding scale of fluctuation ✓.
For illustrative purposes, we consider in this work the exponential autocorrelation

function, generally used for representing the spatial variability of concrete proper-
ties or durability indicators (Kenshel, 2009; Schoefs et al., 2017a, 2016): ⇢(�x) =
exp(� |�x| /b) where b = ✓/2. We recall that the correlation matrix R(b) is defined125

by entries Ri,j(b) = ⇢(xi � xj), for i, j = 1, . . . ,m. There are two widely used proce-
dures for the estimation of b: Maximum Likelihood Estimation (MLE) and least square
(LSM) methods. The LSM is very simple and can be used even for non-Gaussian dis-
tributions, it consists in fitting an empirical covariance function Ĉ(·) defined in eq. (1)
with the parametric model �2

X⇢(·).130

Ĉ(h) =
1

Nh

X

i

(X(xi)� µ̃X) (X(xi + h)� µ̃X) , (1)

where µ̃X :=
1

m

mX

i=1

X(xi) is the unbiased estimate of µX , Nh being the number of

points distant with h from all locations of study. The fitted parameters from eq. (1) are
biased since Ĉ is a biased estimator of �2

X⇢(·). The MLE consists in searching for the
value of b that maximises the joint probability density of the data. It gives estimates
with minimal variance and asymptotic normal limit. We note ⇣ := (µX ,�2

X , b) and135

b⇣ := (µ̂X , �̂2
X , b̂) its estimate by MLE, this later is computed by minimising the negative

log-likelihood (Clerc et al., 2019; Oumouni and Schoefs, 2019),

`(⇣, X) =
1

2

✓
m log(�2

X) + log |R(b)|+ 1

�2
X

(X � µX)tR(b)�1(X � µX)

◆
(2)
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where |R(b)| is the determinant of R(b). In practice, an iterative resolution is preferred
than direct optimisation procedure. This iterative procedure is summarised by the
following steps:140

(1) we choose an initial estimate b̂ = b0, and we compute its corresponding estimate
of the mean µX and variance �2

X , both as follows:
• MLE of the mean µX :

µ̂X =
X 0R(b̂)�1

1

1

0R(b̂)�1
1

, (3)

where we note by 1 the vector with m entries all equal 1.
• MLE of the variance �2

X :145

�̂2 =
(X � µ̂X)0R(b̂)�1(X � µ̂X)

m
(4)

(2) We compute b̂ by minimising ` knowing µ̂X and �̂2
X from step 1.

(3) We repeat these steps until convergence.

This iterative procedure is stopped when two successive estimates b̂ of b are close to a
fixed threshold.

3.2. Windowing methodology150

The application of the MLE procedure to a single trajectory will provide only one
estimate of b̂ which remains a sample value among other possible values that could be
supplied if new trajectories are available. Hence the estimated parameter b̂ can be seen
as a random variable whose uncertainty is to be determined. Taking into account that
just one trajectory is available in this case and that the measures are correlated for155

this trajectory, the main focus of the methodology is to identify a range of variation of
b̂ as well as its mean value µb̂. Towards this aim, we discretise a trajectory containing

N spatial correlated measures into several windows where a value of b̂ is estimated
from each the trajectory trapped in the window (Figure 3). Figure 4 summarises the
steps of the proposed methodology:160

(1) Assessment of the minimum number of points per window nw,min: this value is
determined for each trajectory following the procedure detailed in section 3.3.

(2) Window definition: we consider a window with a fixed number of successive
measurements nw 2 [nw,min, N ] from which we identify a value of b̂ using the
MLE method (section 3.1).165

(3) Windowing: we shift the window along the trajectory, and for each position, we
identify a new value of b̂. In Figure 3 are shown various positions of a window
containing nw =4 measurements.

(4) Increasing window size: we consider a larger window with nw + 1 measurements
and we repeat the steps 2 and 3. We increase the length of the window and we170

repeat the steps 2 and 3 until all measurements are considered (nw = N).
(5) Post-processing: the identified values of b̂ for nw 2 [nw,min, N ] are considered to

determine the range of variation (minimum and maximum value) as well as the
mean of b̂.
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3.3. Assessment of the minimum number of measurements per window175

It is known from a confidence interval theory that large number of uncorrelated mea-
sures allow us to compute a good estimate. However, since there is a considerable
correlation between spatial data, the variance of the mean estimate var[µ̂X ] stagnates
or decreases very slowly from a given number nm. Therefore, it is possible to define
a minimum number of measures per window nw,min ensuring that var[µ̂X ] is close to180

the value estimated with all values available in the trajectory nw = N .
The minimum number of measurements per window is relatively reached to an

accuracy level based on the confidence region of the mean µX . The estimate of µX

given in eq. (3) is unbiased and follows a Gaussian distribution with mean µX and
variance var[µ̂X ]. This variance is derived from the inverse of the second derivative of185

`(⇣, X) with respect to µX :

var[µ̂X ] =

✓
E

@2`(⇣, X)

@2µX

�◆�1

=
�2

1R(b̂)�1
1

0
. (5)

Therefore, by considering the ↵-quantile of a normal distribution with order ↵, we
could define the following confidence interval µX using the estimated value of b̂:

IµX
=

2

4µ̂X � q↵�̂Xq
1

0R(b̂)�1
1

, µ̂X +
q↵�̂Xq

1

0R(b̂)�1
1

3

5 , (6)

where �̂2
X is the estimate of �2 defined in eq. (4).

Equation (6) is therefore used to determine nw,min given a certain threshold vth > 0190

as follows:

�µX
:=

q↵�̂Xq
1

0R(b̂)�1
1

⇡ vth (7)

The minimum number of measurements nw,min for which the indicator �µX
satisfies

eq. (7) ensures also that the mean µX respects the following accuracy:

P
✓
µ̂X 2 [µX � vth, µX + vth]

◆
⇡ 1� ↵. (8)

3.4. Application of the windowing method to the study case

The proposed methodology is illustrated in this section considering the data measured195

in the side A for the carbonation depth. Following the procedures given in sections 3.2
and 3.3, Figure 5 provides the variance of the mean estimate var[µ̂X ] for ↵ = 10% (90%
confidence interval) and various values of nw. It is observed that var[µ̂X ] decreases up
to a minimum value of 0.5 when nw = N . For the other trajectories, the minimum
var[µ̂X ] varies between 0.4 and 0.5. Taking into account these findings, we selected200

a threshold value vth = 0.6 to determine nw,min. Table 2 gives the values of nw,min

computed for all the parameters. We found di↵erent values ranging from 8 to 15 for
each parameter and side. Since our database is limited to generalise these findings, we
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suggest to assess and use a given nw,min per trajectory. The values given in Table 2
will be used in this paper.205

When carrying out the previous numerical procedure, we obtained for each length
of window and each position, a value of b̂. In Table 3, we provide an example of the
assessment of b̂ with the windowing method and measurements of porosity. We observe
that when nw varies between 4 and 11, the identification process does not converge
(NC) for some positions of the window. The non-convergence of the MLE method210

occurs often for windows with fewer number of measurements. Moreover, results in
(Rakotovao Ravahatra et al., 2017) showed that for nw <10, statistical uncertainties
in the computation of discrete spatial autocorrelation are significant. For this case we
retain the values in green coloured cells that satisfy the condition nw 2 [nw,min, N ].

In Figure 6 are depicted the results of identification of b̂ for all measured parameters215

and for the two sides (A and C) of the wall. More or less significant di↵erences appear
on the mean values of b between the two sides. This can be due to both the e↵ect of
degradation and the exposure conditions. Particularly, one observes in Figure 2 that
the mean value of porosity and saturation degree are lower and carbonation depth is
larger for the side C. This side is south exposed and then prone to exhibit a faster220

drying of the surface of the concrete, favourable to carbonation. Therefore the data
observed are consistent with the process of the degradation. No significant di↵erence
is observed for concrete density.

Besides it can be noted in Figure 6 that the values of the mean of b̂ for the concrete
density are close on both sides indicating that both faces of the wall are made of the225

same initial material (the concrete was coming from the same batch when poured and
with the same process of concrete vibration). Then it is possible to suggest that the
impact of carbonation or exposure conditions on the spatial correlation of concrete
density is negligible. The mean values of b̂ for the porosity and carbonation depth
are more important on side A than on side C. This can be attributed to the e↵ect of230

the process of carbonation that is more pronounced on side C and brings additional
scatter on the physical properties of the material. This leads hence to less spatial
correlation of material properties that are modified by carbonation process (porosity
and carbonation depth). The mean of b̂ for the saturation degree is more important
on side C than on side A. As this property mainly depends on exposure conditions, a235

variation between both sides is expected.
According to the previous observations, the spatial autocorrelation of the concrete

physical properties that are influenced by carbonation process (porosity and carbon-
ation depth) depends on the current deterioration state driven by carbonation. Given
these results, we could reasonably conclude that the spatial autocorrelation of poros-240

ity and carbonation depth changes over time, –i.e. b̂ is a function of time for these
parameters. In order to confirm these findings, data collected at several other time
steps would be required.

4. Sensitivity of concrete carbonation models to input random fields

An optimal maintenance strategy should be supported by models able to predict the245

corrosion onset caused by concrete carbonation. Given that concrete properties as
well as carbonation depth are spatially variable, it is necessary to analyse the ability
of models to transfer the spatial correlation of input parameters. We should also assess
the influence of each input parameter when it is modelled as a random field. This study
extends a previous work (Rakotovao Ravahatra et al., 2017) where the uncertainty on250
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the assessment of b was not investigated. Since previous results (section 3.4) showed
that this uncertainty is significant, we carry out a sensitivity analysis on concrete
carbonation models by considering model inputs as independent random fields and
varying the value of b. The carbonation models studied in this paper are those which
require the physical parameters that are usually investigated in existing structures255

(porosity, saturation degree, concrete density): Hyvert (2009), Papadakis et al. (1991),
Miragliotta (2000) and Ying-Yu and Qui-Dong (1987). According to the review of
Rakotovao Ravahatra et al. (2019), we provide a summarised description of these
models in Appendix A.

4.1. Methodology260

In the first part of the study, we will focus on evaluating separately the influence
of considering each model input as a random field. Towards this aim, whereas one
input is modelled as a random field, the other inputs are set as deterministic values
(mean values). Afterwards, we will consider that all the inputs are represented by
random fields (reference case). We summarise in Table 4 the cases studied. The model265

parameters not mentioned in Table 4 are represented as deterministic values and are
provided in Table A3.

The objective being to adopt a wide view and to be able to generalise the results;
the sensitivity analysis will consider several values of the autocorrelation parameter
(b = 5 cm, 50 cm or 100 cm) for the input parameters modelled as random fields. 5270

cm appears to be an acceptable minimum with respect to the size of aggregates, 50
cm is close to the distance between two successive points of vibration when pouring
concrete, and 100 cm corresponds to the maximum value of b found in the literature
(Kenshel, 2009).

The sensitivity analysis concerns the following steps:275

(1) to generate 100 trajectories (sample paths) for each value of b (5cm, 50cm and
100cm) using the Karhunen-Loève expansion (Karhunen, 1947; Loeve, 1948);

(2) to compute the model output (spatial distribution of the carbonation depth at
35 years of exposure) corresponding to the generated input trajectories for the
considered carbonation models (Appendix A);280

(3) to compute the simulated discrete autocorrelation function of the output and
to identify the corresponding values of b̂ for the 100 trajectories of carbonation
depth using the windowing method described in section 3;

(4) to analyse the e↵ects of the spatial correlation of inputs on the spatial variability
of the output (carbonation depth assessed from models).285

4.2. Results

We present the results in Figures 7, 8, 9 and 10. In these figures are reported results
of simulated and empirical discrete autocorrelation, and the histograms of the iden-
tified b̂ from the output of the models. On simulated discrete autocorrelation curves,
point marks represent the mean values and dotted lines provide the 10% and 90%290

quantiles values over 100 simulated discrete autocorrelation functions at each �x. On
the empirical discrete autocorrelation function, points describe the autocorrelation
values obtained from measurements and dotted lines provide the bounds determined
when uncertainties in measurements and statistical uncertainties are taken into ac-
count (Rakotovao Ravahatra et al., 2017). Concerning the histograms of b̂, we present295
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on each figure the results corresponding to a given value of b (5 cm, 50 cm and 100
cm) for the input considered. In the following sections, we analyse the results for the
cases described in Table 4.

4.2.1. Sensitivity to the porosity random field

We report in Figure 7 the results for each carbonation model when the porosity is300

modelled as a random field (Case 1 in Table 4).
Regarding simulated discrete autocorrelation functions, the results for all models are

similar. When b increases, the gap between minimum and maximum values (scatter) is
smaller. One observes hence in the spatial correlation of the models outputs the same
tendencies as for the spatial correlation of the porosity. Indeed, when we increase305

the value of b for the porosity, the realisations of the porosity random field are more
correlated and less uncertain. This indicates that the correlation of the porosity is
quite well transferred to the model output (simulated carbonation depth).

The ratio of the mean value of b̂, µ̂b, with respect to the value of b (i.e., µ̂b/b) for
a given input provides a quantification of the ability of the model to transfer spatial310

correlation from the inputs to the output. We present in Table 5 the ratios µ̂b/b for
each input parameter, each case, and each model.

Regarding porosity (case 1), we can observe that for all models there is an amplifi-
cation (µ̂b/b > 1) of the spatial correlation when b 50cm. On the contrary there is
a reduction of the spatial dependency when b=100cm. The uncertainties in measure-315

ments and statistical uncertainties (Rakotovao Ravahatra et al., 2017) could explain
these results. Indeed, we can see in Figure 7 (black coloured curves) that these uncer-
tainties are quite significant and could have important influence in the identification
of b̂. The presence of uncertainty brings additional di�culties to the analysis and
characterisation of the spatial correlation.320

4.2.2. Sensitivity to the saturation degree random field

We provide in Figure 8 the results for each carbonation model when saturation degree
is modelled as a random field (Case 2 in Table 4).

Concerning simulated discrete autocorrelation functions, we can observe significant
di↵erences between models. It is di�cult to establish a constant value of b over time325

for the saturation degree because this parameter highly depends on the exposure
conditions during the inspection. Nevertheless it can be stated that the mean value
of b for this parameter could lie between 5 cm and 50 cm when comparing simulated
and empirical discrete autocorrelation functions. This confirms the results in Figure 6.
Regarding the model of Ying-Yu, modifying the value of b has no significant impact.330

Especially, it is observed that between b=50 cm and 100 cm the results are very similar.
On the other hand, it is noted that the autocorrelation of the model output is quite
low whatever the value of b for the saturation degree. These findings indicate that
high correlations of the saturation degree are not transferred to the Ying-Yu model
output. The scatter of the simulated discrete autocorrelation is slightly higher for the335

models of Hyvert and Papadakis and larger than when the porosity is considered as
a random filed. These models appear to be more sensitive to saturation random field.
We can observe similar trend as for porosity for the model of Miragliotta.

Regarding the histogram of b̂, we can confirm the same findings observed for the
simulated discrete autocorrelation functions. After propagation in the models, the340

spatial variability of the saturation degree is less amplified and slightly more reduced
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than the one imposed by the porosity. Indeed, we can observe in Table 5 that the ratios
µ̂b/b for the Case 2 are lower than the Case 1. Concerning the ranges of variation, they
are slightly higher than for Case 1 excepting for the model of Ying-Yu for which it is
drastically amplified for b=50cm and b=100cm. These results indicate that excepting345

the model of Ying-Yu, all the models studied well transfer lower and higher spatial
correlation of saturation degree, and are hence sensitive to spatial correlation of this
input parameter.

4.2.3. Sensitivity to the concrete density random field

In Figure 9 are reported the results obtained when the concrete density is considered350

as a random field (Case 3 in Table 4). The results concern only the model of Ying-Yu
because it is the only one that uses the concrete density as an input parameter.

Regarding simulated discrete autocorrelation, in comparison with the previous re-
sults, one observes that the scatter is larger for b = 5cm. For b = 50 and 100 cm there
is an e↵ect on the mean value of the autocorrelation but the scatter is negligible. These355

findings indicate that Ying-Yu model is highly sensitive to the choice of the value of b
used to represent the spatial variability of concrete density.

Concerning the histogram of b̂, even if there is no scatter in the simulated discrete
autocorrelation function when the imposed value of b is equal to 50 cm and 100 cm
for density, it is observed an important scatter in the estimated b̂. On the other hand,360

the spatial dependency significantly raises after being transferred through the model.
Indeed, µ̂b for the simulated carbonation depth is 4 times higher than b when this
latter is equal to 5 cm (Table 5). However, µ̂b/b < 1 when b=100 cm. The same trend
was observed in the previous cases.

4.2.4. Random fields of all inputs365

In Figure 10 are depicted the results obtained when all the parameters (porosity,
saturation degree and density) are modelled as random fields (Case 4 in Table 4).

Concerning simulated discrete autocorrelations, first, we can observe that scatter
is wider for the models of Hyvert and Papadakis, while it is smaller for the model
of Ying-Yu. The model of Miragliotta is an intermediate between the 2 tendencies.370

This indicates that some models (Hyvert and Papadakis) are more sensitive to input
random fields when compared to others. Second, it is noted that the scatters estimated
in Figure 10 are quite similar to those of Figure 8 (random field for saturation degree)
for the models of Hyvert, Papadakis and Ying-Yu. This indicates that the spatial
variability of the output is highly influenced by the spatial variability of saturation375

degree for these models. Regarding the Miragliotta model, the scatters when varying
b for saturation degree (Figure 8) are wider than when varying it for porosity (Figure
7). However, when varying b for all inputs, the scatters appear to be similar to results
in Figure 7 indicating mofe sensitivity to the random field of porosity. This indicates
that the Miragliotta model is more sensitive to the spatial variability of the porosity380

random field. Finally, whatever the correlation of any input of Ying-Yu model, the
outputs would always be uncorrelated. Therefore, describing spatial variability with
this model appears to be di�cult.

Concerning the histogram of b̂, one observes the same tendencies as with simulated
discrete autocorrelation function. Indeed, the histograms are similar to Figure 8 for385

all models except for the model of Miragliotta which presents the same tendencies as
in Figure 7.
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We present in Table 6 the Absolute Error (AE) on µ̂b for the Cases 1 to 3. This AE
is estimated taking as a reference the µ̂b of Case 4. The results show that the lowest AE
are for the Case 2 and for the models of Hyvert, Papadakis and Ying-yu. Therefore,390

the saturation degree appears to be the most influential parameter for these models
with respect to spatial correlation propagation. Regarding the model of Miragliotta,
the lowest error corresponds to the Case 1. The spatial variability of the output of this
model is hence strongly influenced by the spatial variability of the porosity.

Concerning the model of Ying-Yu, the Case 2 leads to similar results than Case 4395

(see Table 6). This implies that choosing this case will provide simulated carbonation
depth with lower spatial correlation. Therefore, the AE analysis is not useful for the
Case 2. Following the findings found in Table 5, the Case 1 appears to be better for
propagating spatial variability in this model.

The findings of this sensitivity analysis were used to propose the recommendations400

summarised in Table 7. For instance, it was found that the saturation degree is the
most influencing random field for the models of Hyvert and Papadakis. The model of
Miragliotta is driven by the spatial variability of the porosity, and the model of Ying-
Yu can only deal with the spatial variability of the porosity. The results of this table
can be used to define which parameters should be prioritised in inspection campaigns405

when the objective is to characterise and propagate spatial variability.

5. Evaluation of the recommendations of the sensitivity analysis

In this section we test the previous recommendations (Table 7) to analyse how e�cient
they are when dealing with the real database obtained during the inspection work
presented in Section 2. The following steps are proposed for this study:410

(1) Define the study cases according to the recommendations given in Table 7. Table
8 provides a description of these study cases. In the full case all the parameters
are modelled as random fields. The ”Reduced 1” and ”Reduced 2” cases follow
respectively the findings of first (R1) or second (R2) priorities given in Table 7 to
determine if the parameters should be modelled as random field or constant val-415

ues. The constant value is equal to the mean determined from the data reported
in Figure 2.

(2) Propagate the spatially correlated data reported in Figure 2 into the carbonation
models for each case.

(3) Use the windowing method presented in section 3 to estimate the variability of420

b̂ for each model and case.
(4) Evaluate the e↵ectiveness of the recommendations by comparing the histograms

obtained after propagating spatial variability for each model and case with those
estimated from the measurements of carbonation depth (Figure 6). The compar-
ison is carried out in terms of the AE between the µ̂b for each model and the µ̂b425

for measurements (Table 9).

5.1. Full

We present results for all models and for the 2 sides of the wall in the Figure 11.
On the side A, we can observe that the models of Hyvert and Ying-Yu appear to
underestimate the correlation and provide hence slightly lower values of b̂. Regarding430

the models of Papadakis and Miragliotta the histograms of b̂ overlap those identified
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from measurements. However, no significant di↵erences could be observed between
models with respect to side A. On this side, we can also note that the values of b̂ for
porosity are low when they are slightly higher for saturation degree (see Figure 6).
Excepting the model of Ying-Yu, results of the previous sensitivity analysis show that435

all models are sensitive to the spatial variability of porosity and saturation degree (see
Figures 7 and 8). The e↵ect of slightly higher correlation of porosity appears to be
compensated by lower correlation of saturation degree. Consequently we observe the
intermediate tendencies on the Figure 11.

Regarding the side C, none of the histograms of b̂ obtained using the models overlaps440

the one from measurements and di↵erences between models are more important. One
observes that the models of Hyvert and Papadakis slightly overestimate b̂, while the
models of Miragliotta and Ying-Yu underestimate it. On the contrary for side A, the
identified values of b̂ are lower for porosity in this side, while they are higher for
saturation degree (see Figure 6). It appears through these results that the models of445

Hyvert and Papadakis are more sensitive to higher correlation of saturation degree
while the models of Miragliotta and Ying-Yu are more sensitive to lower correlation of
porosity. On the other hand, concerning the last two models (Miragliotta and Ying-
Yu), the interval of values of b̂ is smaller when compared to the measurements, –i.e.
the dispersion is reduced. This is in agreement with the results in Figure 10 where we450

can see that for these models the transfer of dispersion is lower when compared to the
models of Hyvert and Papadakis.

5.2. Reduced 1

Regarding the models of Hyvert and Papadakis, and for the two sides of the wall, the
µ̂b is close to the results reported in Figure 11. Concerning the models of Miragliotta455

and Ying-Yu and for the side A, the values of µ̂b in Figure 11 are higher than those
of Figure 12. For the side C, the values of µ̂b are similar to the found for the Full
cases for all the models. In Table 9, it is noted that when considering the Reduced
1 cases, the AE on the assessment of µ̂b are close to the values obtained for the Full
case. These results found when only one random field is propagated in the models460

may indicate that the recommendations in Table 8 could be su�cient to represent the
spatial variability of the problem.

5.3. Reduced 2

Concerning the models of Hyvert and Papadakis and for the side A, one observes that
the histograms of b̂ of the model outputs overlap that of the measurements. However,465

the ranges of variation are widely higher when b̂ is estimated after propagating spatial
variability in such models. Regarding the models of Hyvert and Papadakis for the
side C and the models of Miragliotta and Ying-Yu for both sides, one observes that
the number of identified values of b is small. This is due to a large number of non-
convergences found during the simulations. On the other hand, for the model of Ying-470

Yu and side A, any value of b̂ was identified for the case Reduced 1 (bis). Then, we
present in Figure 14 only the results for the side B.

It is noted in Table 9 that the AE are smaller in comparison with the other cases.
However, it is not possible to provide a recommendation based on this indicator be-
cause: (i) the assessment of µ̂b is based in few data (due to the large number of475

non-convergences), and (ii) there are significant di↵erences between the maximum
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and minimum bounds when comparing the histograms obtained from measurements
and models.

5.4. Summary of recommendations

Previous results highlight that recommendations in Table 7 could be convenient for480

all models, especially for the models of Hyvert and Papadakis. However, these recom-
mendations are less e�cient for the models of Miragliotta and Ying-Yu with respect to
the side C. This ine�ciency could be related to uncertainties in measurements which
were more important in side C. The increase of the AE for µ̂b for all models may indi-
cate non negligible correlation between the models inputs, especially for the models of485

Miragliotta and Ying-Yu. However, in order to confirm this assumption, further data
is required.

6. Nugget e↵ects

When analysing auto-covariance, we can observe an abrupt change of the value of
the covariance in the beginning of the curve (�x=0). This discontinuity is called490

“nugget e↵ect” in the field of geostatistics. This may bring additional uncertainty
when modelling spatial variability. The nugget e↵ect in variogram analysis was dealt
with in some studies (Wagner et al., 2005). Its e↵ect in kriging was also handled
by Brooker (1986) or Yin et al. (2011). Concerning the autocorrelation function, we
should carry out a similar analysis to the reported in the above-mentioned studies495

when we observe nuggets in the discrete autocorrelation function. Further work will
focus on the development of a methodology to take into account nugget e↵ects in
spatial variability assessment.

7. Conclusions and perspectives

The following conclusions are drawn from the present study:500

• The proposed windowing method is useful for spatial variability characterisation
when the spatially correlated data is scarce. It allow us to determine the range of
variation and the mean of the parameter used to model the spatial correlation.

• Significant di↵erences for the range of variation and mean value of b̂ were found
for each side of the wall for the porosity and carbonation depth. Since car-505

bonation modifies along time concrete porosity, saturation degree and concrete
density, we can suppose that the autocorrelations of these physical properties
will also become time-dependent. Further data collected at several time steps is
required to confirm this assumption.

• A sensitivity analysis aiming to test the ability of concrete carbonation models510

to propagate spatial variability was useful to provide recommendations about
the input parameters that could be modelled as random fields. This sensitiv-
ity analysis was based on simulated data by considering several values of the
autocorrelation parameter b.

• The recommendations were tested with the real and scarce database of the case515

study. This analysis highlighted that the recommendations are rather convenient
for all models, especially for the models of Hyvert and Papadakis.
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• The proposed methodology and findings of this paper could help to decision-
makers to define which parameters are more appropriate to measure and which
models are more accurate to use when dealing with spatially deteriorated prac-520

tical applications. This methodology could be also applied to other deterioration
problems.

Further work in this area will focus on:

• Obtaining a more rich spatially correlated database to test the methodology and
confirm the findings and assumptions.525

• Considering correlations between random fields.
• Determining which is the best type of autocorrelation function for each random
field.

• Defining which variables should be modelled as random variables.
• Adapting the methodology to account for the nugget e↵ect.530
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Table 1. Autocorrelation function (ACF) and scale of fluctuations

ACF Name ⇢(�x) ✓ Reference

1 Triangular

(
1� |�x|

a
|�x|  a

0 |�x| > a
a Vanmarcke and Grigoriu (1983)

2 Exponential exp

✓
� |�x|

b

◆
2b Vanmarcke and Grigoriu (1983)

3
Second-order
autoregressive

✓
1 +

|�x|
c

◆
exp

✓
� |�x|

c

◆
4c Vanmarcke and Grigoriu (1983)

4 Gaussian exp

"
�
✓
|�x|
l

◆2
#

p
⇡l Vanmarcke and Grigoriu (1983)

5
Cosine

exponential
exp

✓
� |�x|

e

◆
cos

✓
|�x|
e

◆
e Kim (2005)

6 Sinusoidal

sin


�2, 2

|�x|
f

�

�2, 2
|�x|
f

f Gomes and Awruch (2002)

Table 2. Values of nw,min for the studied parameters

Parameter nw,min for Side A nw,min for Side B
Porosity 15 8

Saturation 9 10
Density 8 12

Carbonation depth 15 9
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Table 3. Identified values of b(cm) for porosity (Side A), each nw and each position of the window

nw
Position of the corresponding window

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

4 8 16 7 8 18 12 NC NC NC NC NC NC NC 12 NC 12 16
5 24 11 9 13 17 NC NC NC NC NC NC NC NC NC 11 19 –
6 20 10 14 13 11 NC NC NC NC NC NC NC NC 11 17 – –
7 13 14 13 10 11 NC NC NC NC NC 6 NC 9 16 – – –
8 16 13 10 10 8 NC NC NC NC NC NC 7 16 – – – –
9 15 10 10 8 7 NC NC NC NC NC 8 13 – – – – –
10 10 10 8 7 7 NC NC NC NC 6 14 – – – – – –
11 10 8 7 7 8 NC NC NC 6 12 – – – – – – –
12 8 7 7 8 10 6 6 6 12 – – – – – – – –
13 7 7 8 10 11 10 6 12 – – – – – – – – –
14 7 8 10 11 7 7 11 – – – – – – – – – –
15 8 10 11 8 10 12 – – – – – – – – – – –
16 10 11 8 10 13 – – – – – – – – – – – –
17 11 8 10 13 – – – – – – – – – – – – –
18 8 10 13 – – – – – – – – – – – – – –
19 10 13 – – – – – – – – – – – – – – –
20 13 – – – – – – – – – – – – – – – –

NC: non convergence

Table 4. Summary of cases for the sensitivity analysis

Case Model Porosity (�) Saturation (Sr) Density (⇢) Results
1 Hyvert Random field Constant n/a

Figure 7
Papadakis Random field Constant n/a
Miragliotta Random field Constant n/a
Ying-Yu Random field Constant Constant

2 Hyvert Constant Random field n/a

Figure 8
Papadakis Constant Random field n/a
Miragliotta Constant Random field n/a
Ying-Yu Constant Random field Constant

3 Ying-Yu Constant Constant Random field Figure 9
4 Hyvert Random field Random field n/a

Figure 10
Papadakis Random field Random field n/a
Miragliotta Random field Random field n/a
Ying-Yu Random field Random field Random field

n/a: non applicable
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Table 5. Ratio µ̂b/b for the each model and cases

Hyvert Papadakis Miragliotta Ying-Yu
b (cm) µ̂b (cm) µ̂b/b µ̂b (cm) µ̂b/b µ̂b (cm) µ̂b/b µ̂b (cm) µ̂b/b

Case 1
5 9.09 1.81 9.09 1.81 8.77 1.75 9.1 1.82
50 69.2 1.38 67.9 1.35 67.6 1.35 71.9 1.43
100 64.2 0.64 62.9 0.62 62.7 0.62 66.7 0.66

Case 2
5 9.04 1.8 9.02 1.8 9.03 1.8 9.07 1.81
50 39.8 0.79 41.9 0.83 60.2 1.2 41.1 0.82
100 49 0.49 52.5 0.52 63.5 0.63 39.5 0.39

Case3
5 n/a - n/a - n/a - 20.7 4.14
50 n/a - n/a - n/a - 93.1 1.86
100 n/a - n/a - n/a - 78.1 0.78

Case 4
5 9.09 1.81 9.11 1.82 9.13 1.82 8.91 1.78
50 40.1 0.8 45.4 0.9 65.5 1.31 42 0.84
100 48.2 0.48 51.7 0.51 60.2 0.6 40.2 0.4

n/a: non applicable

Table 6. Absolute Error (AE) on the mean of b̂ between the Case 4 and all other cases

Hyvert Papadakis Miragliotta Ying-Yu
b (cm) µ̂b (cm) AE (%) µ̂b (cm) AE (%) µ̂b (cm) AE (%) µ̂b (cm) AE (%)

Case 1
5 9.09 0 9.09 -0.21 8.77 -3.94 9.1 2.13
50 69.2 72.56 67.9 49.55 67.6 3.2 71.9 71.19
100 64.2 33.19 62.9 21.66 62.7 4.15 66.7 65.92

Case 2
5 9.04 -0.55 9.02 -0.98 9.03 -1.09 9.07 1.79
50 39.8 -0.74 41.9 -7.7 60.2 -8.09 41.1 -2.14
100 49 1.65 52.5 1.54 63.5 5.48 39.5 -1.74

Case 3
5 n/a - n/a - n/a - 20.7 132.32
50 n/a - n/a - n/a - 93.1 121.66
100 n/a - n/a - n/a - 78.1 94.27

n/a: non applicable

Table 7. Recommendations about modelling input parameters as random fields for each model

Model Porosity (�) Saturation (Sr) Density (⇢)
Hyvert R2 R1 n/a

Papadakis R2 R1 n/a
Miragliotta R1 R2 n/a
Ying-Yu R1 NR NR

R1: recommended (priority), R2: recommended (second priority), NR: non
recommended, n/a: non applicable
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Table 8. Summary of study cases for evaluating the recommendations obtained from numerical analysis

Model Case Porosity (�) Saturation (Sr) Density (⇢)

Hyvert
Full Random field Random field n/a

Reduced 1 Constant Random field n/a
Reduced 2 Random field Constant n/a

Papadakis
Full Random field Random field n/a

Reduced 1 Constant Random field n/a
Reduced 2 Random field Constant n/a

Miragliotta
Full Random field Random field n/a

Reduced 1 Random field Constant n/a
Reduced 2 Constant Random field n/a

Ying-Yu
Full Random field Random field Random field

Reduced 1 Random field Constant Constant
Reduced 2 Constant Random field Constant

Reduced 2 (bis) Constant Constant Random field
n/a: non applicable

Table 9. Absolute error (AE) between µ̂b computed from the models and µ̂b estimated from the data

Side A Side C
Case µ̂b (cm) AE (%) µ̂b (cm) AE (%)

Measurements n/a 10.35 n/a 7.39 n/a

Hyvert
Full 7.19 31 9.47 28

Reduced 1 6.57 37 9.5 28
Reduced 2 12 14 8.45 14

Papadakis
Full 7.89 24 9.12 23

Reduced 1 6.63 36 9.64 30
Reduced 2 12 14 8.07 9

Miragliotta
Full 9.18 12 5.62 23

Reduced 1 12.4 18 4.83 34
Reduced 2 10.6 0 6.24 15

Ying-Yu
Full 7.21 31 5.33 27

Reduced 1 12.4 18 5.47 25
Reduced 2 10.8 2 6.71 9

Reduced 2 (bis) NC – 6.3 14
n/a: non applicable
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Figure 1. Studied wall

Figure 2. Measurements of porosity, saturation degree, density and carbonation depth
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Window 1 Window 2

Window 3

Window 4

Window 5

Window 17

Figure 3. Positions of window with 4 measurements
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Spatially distributed data

Determination of the minimum number of points per window nw,min

Place the initial
window at the left
(or rigth) extremity

Identify b

Window at
the rigth
(or left)

extremity ?

Shift
window

i = i + 1

nw > N

END

Bounds and mean of b

No Yes

Yes

No

Figure 4. Algorithm of the windowing method
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Figure 5. Variance of the mean estimate var[µ̂X ] for the carbonation data of side A

Porosity Saturation degree

Concrete density Carbonation depth

Figure 6. Identified values of b̂ for porosity, saturation degree, concrete density and carbonation depth
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Discrete autocorrelation Identified values of b̂

Figure 7. Sensitivity of each model with respect to random field of porosity (Case 1)
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Discrete autocorrelation Identified values of b̂

Figure 8. Sensitivity of each model with respect to random field of saturation degree (Case 2)
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Discrete autocorrelation Identified values of b̂

Figure 9. Sensitivity of each model with respect to random field of concrete density (Case 3)
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Discrete autocorrelation Identified values of b̂

Figure 10. Sensitivity of each model with respect to random field of all inputs (Case 4)
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Figure 11. Correspondence between identified values of b̂ from models outputs and measurements for Full

cases
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Figure 12. Correspondence between identified values of b̂ from models outputs and measurements for Reduced
1 cases
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Figure 13. Correspondence between identified values of b̂ from models outputs and measurements for Reduced
2 cases
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Figure 14. Supplementary correspondence between identified values of b̂ from models outputs and measure-

ments for Reduced 2 bis case and the model of Ying-Yu
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Appendix A. Models

According to (Rakotovao Ravahatra et al., 2019), concrete carbonation models can be
written in a generalized expression:

x(t) =
p

kexpkexekPDCO2

p
t (A1)

where x(t) [m] is the carbonation depth at time t [s], kexp is a factor which introduces
environmental conditions, kexe is a factor accounting for execution conditions, kP is665

a factor accounting for the interaction between the di↵usion coe�cient of the carbon
dioxide DCO2

[m2/s] and the concrete porosity �. kP is expressed as:

kP = kP,MkP,E (A2)

where kP,M is related to material properties and kP,E to exposure conditions. Expres-
sions of kP,M , kP,E , kexp and kexe are given in Table A1 for each considered model.
↵1 and n1 are fitting parameters, fp is the volumetric fraction of the cement paste,670

R is the gas constant (8.31 USI), RH is Relative humidity, T is temperature, PCO2

is carbon dioxide pressure, � is porosity, Sr is saturation degree, ⇢ is concrete den-
sity, [Component] is the “component” content, Cabs is the absorbed carbone dioxide
(Cabs = �(1�Sr)⇥C0) , C0 is the CO2 content at the exposed surface, ke is a param-
eter which assesses environmental conditions, kc is a parameter which considers cure675

conditions.

ke =

0

B@
1�

�
RH
100

�2.5

1�
⇣
RHref

100

⌘2.5

1

CA

5

(A3)

where RHref corresponds to a reference relative humidity ('65%). HR could be com-
puted using Sr from desorption curves.

Despite the fact that cement paste hydrates and unhydrates contents are input
parameters for the same models, it was decided to consider their variability through680

hydration degree ↵hyd and cement content c, using the empirical expressions, found
in Hyvert (2009). The mean value of measured compressive strength is 40 MPa. This
value is similar to C45 concrete. Therefore, we assume a cement content equal to
c =350 kg/m3. Table A2 presents a cement composition which could suit for such a
concrete. The values of the other parameters are given in Table A3.685
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Table A2. Cement composition (%)

Component (%)
SiO2 20.1
Al2O3 5
Fe2O3 3
CaO 64.1
MgO 1
SO3 3.2
K2O 0.72

Table A3. Values of input parameters for carbonation models

Parameter Unit Value
RH % 72.91
kc - 0.63
kt - 0.98
T K 284.04
c kg/m3 350

↵hyd � 0.81
Patm Pa 101325
PCO2

Pa 40.53
C0 kg/m3 6.5⇥10�4

↵1 L/mol 23.5
n1 - 0.67
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